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The static dielectric constantε of buckminsterfullerene (C60) particles is determined incis-decalin, toluene,
and 1,2-dichlorobenzene using continuum models for spherical and spherical shell inclusions. The value for
ε for isolated C60 in cis-decalin and toluene agrees well with molecular beam measurements using a spherical
shell model, but theε estimate in the highly polar solvent 1,2-dichlorobenzene deviated from these other
measurements. Complications of measurements in highly polar solvents are summarized. We conclude that
virial measurements have a great potential for determining the effective properties of nanoparticles from the
properties of nanofilled materials over a range of dilute filler concentrations.

1. Introduction

Particle dispersions have been of interest in materials
development since the dawn of history. In pre-scientific times
there was much interest in perfumes, inks, and balms that
improved the quality of life and in recent times this interest in
particle dispersions remains strong. Heterogeneous media have
the advantage that they retain many of the properties of their
components, so that adjustment of the composition often allows
material properties to be tailored for specific applications without
the synthesis of new materials. Properties of interest fall into
the general areas of mechanical (e.g., flexural modulus and
fracture toughness), viscoelastic (e.g., viscosity and dynamic
modulus), and electromagnetic (e.g., conductivity, dielectric
constant and refractive index). A myriad of models have arisen
for the purpose of predicting these specific properties. In this
paper, we will be concerned with models that predict electro-
magnetic properties, or more specifically the dielectric properties
of heterogeneous media.

Predictive models for the dielectric properties of composite
materials have existed since the 1800’s, going back to classic
works by Maxwell,1 Rayleigh,2 and many others. These models
attempted to account for the bulk electrical properties of
spherical inclusions embedded in a continuous matrix. Despite
the importance of calculating the properties of particle disper-
sions there has been very little work addressing itself to the
influence of particle shape, apart from phenomenological
treatments incorporating empirical “shape factors”. Most theo-
retical treatments focus on generalizing the problem of spherical
dispersed particles to finite concentrations. The methods include
rigorous and heuristic bounds on the “effective” properties of
the mixtures and many effective medium type models have been
proposed (e.g., Bruggeman,3 Böttcher,4 Hsu,5 and Landau and
Lifshitz6) to estimate mixture properties. Brown7 and Landau
and Lifshitz6 have shown how to develop a systematic expansion
of dispersion properties for the dielectric constant of a particle
dispersion when the mismatch between the dielectric constant
of the medium and the particles is small. Until recently,

ellipsoids were the only family of particle shapes that could be
rigorously and accurately estimated using continuum modeling,
even in the limit of vanishing particle concentration where a
virial expansion is applicable. Douglas and Garboczi8,9 recently
made an important advance in treating more complicated shaped
objects by recognizing that the virial coefficient of the dielectric
constant (and other electromagnetic properties) could be ex-
pressed in terms of electric and magnetic polarizability tensors
or related functionals of particle shape (e.g., hydrodynamic
virtual mass tensor, logarithmic capacity). These quantities have
been under investigation in the mathematical and engineering
communities for a very long time,10 and the results of Douglas
and Garboczi8 can be immediately applied to calculating the
leading virial coefficient of the dielectric constant for a wide
range of shapes (ellipsoids, anchor rings, spindles, two spheres,
and lenses). These results have restricted applicability, however,
because they are limited to filler particles that have a much
higher or lower dielectric constant than the medium to which
they are added. More recent work utilizing a path-integral
calculation of the polarizability coefficients11 has allowed for
the accurate calculation of the electrical polarizability tensor
for essentially arbitrarily shaped objects, but this advance still
does not allow for the calculation of virial coefficients of
particles that have a general dielectric mismatch with the
suspending medium. Garboczi and Douglas9 introduced an
effective approximate method for calculating the leading
dielectric virial coefficient for particles of arbitrary shape and
general particle-medium dielectric mismatch by combining a
perturbative expansion6,12 about the small property mismatch
limit with information for the polarizability (electric and
magnetic) tensors of the particles. The completion of this
program to treat just the leading virial coefficient of an arbitrary
shaped particle dispersion with arbitrary property mismatch still
requires an accurate means for calculating the magnetic polar-
izability tensor for conductive particles of general shape (or
equivalently the hydrodynamic “virtual mass” tensor), but good
approximate values for this quantity can be obtained by finite
element calculations.8,9 At any rate, we now have a much
enlarged class of particles for which accurate estimates of the
leading dielectric virial coefficient exist.
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Continuum models of the properties of particle dispersions
are normally found to be accurate for particles on the order of
a µm or larger. When the length scale is decreased further to
molecular dimensions, e.g., chlorobenzene in hexane, these
continuum models have been observed to break down due to
what is commonly termed a “solvent effect”. The “solvent
effect” makes the value of the polarization obtained by
extrapolation to infinite dilution not equal to estimates obtained
by measurements of isolated molecules in the gas phase. Several
theoretical models have been put forth to explain the effect by
“self-consistent” modifications of mean-field theory13 and by
accounting for the solvent geometry.14,15 Experimental proce-
dures have been developed to minimize the errors due to the
solvent effect.16-25 This situation then brings us to an important
question. Are nanoparticles large enough to be reasonably
described by continuum theory or do these materials lead to
the same problems as found for molecular dispersions?

Many of the existing models for heterogeneous materials
assume that a continuum description is applicable and that the
properties of the dispersed particles are the same as in the bulk.
Recent measurements have indicated that the properties of very
small particles can deviate substantially from their bulk values.
Some examples in which nanometer-scale materials embedded
in a matrix behave differently from those in a “bulk” sample
include, but are not limited to, (1) the change in the glass
transition temperature (dielectric loss peak temperature) of
polymers confined in nanoporous glass as a function of pore
size,26,27 (2) the shift in the nematic/isotropic transition tem-
perature for liquid crystals confined in nanoporous glass,28 (3)
superheating of nanometer size spheres of solid argon by 480
K due to confinement in aluminum pores,29 (4) melting point
depression of approximately 600 K for gold nanoparticles,30 and
(5) the difference in the dielectric constant of buckyballs in solid
films versus isolated C60 molecules.31,32These observations raise
the additional problem of how to determineε and other
properties of nanoparticles that are required to utilize continuum
models of nanoparticle dispersions. Thus, the theoretical
description of nanoparticle dispersions is complicated by finite
particle size effects, even if continuum theory is applicable to
such small particle dispersions. There is no simple means to
determine the properties of nanoparticles and part of the
motivation of the present work is to develop such a method.
We report measurements of the dielectric properties of C60

particle dispersions and interpret the data in terms of the
continuum models. The validity of these models can then be
determined by comparing the results to those obtained by
independent molecular beam measurements32 of ε for C60.

In the present work, we employ part of the method of
Halverstadt and Kumler18 to determine the dielectric constant
of isolated C60 molecules. This method, for concentrations with
a mass fraction of solute of less than 0.01, is based on two
linear fits. The first is the measured static dielectric constant
ε12 as a function of mass fraction of solutew2,

and the specific volume (1/density)V12 as a function of mass
fraction of solute

Halverstadt and Kumler also perform the extrapolations using
mole fractions withâ and γ being replaced byâ′ and γ′,
respectively. By using these extrapolations to determine the
static dielectric constantε1 and specific volumeV1 of the solvent,

their claim is that several problems can be circumvented. First,
they state that under ordinary handling conditions, the solutions
are exposed to air longer than the solvent, which can result in
a higher moisture uptake by the solutions. Second, becauseε1

andV1 are key parameters in the determination of the polariza-
tion of the solute and are measured only once, their values are
weighted in the calculations far more heavily than any single
measurement ofε12 or V12, respectively. Additionally, the effects
of solvent polarization are eliminated by determining the static
dielectric constant of the solvent by extrapolation tow2 ) 0.
Finally, linearity in a plot ofV12 vsw2 suggests a lack of specific
interactions.

From the extrapolations cited above, Halverstadt and Kumler
then used the slopes and intercepts to calculate the molar solute
polarization at infinite dilution. In the present paper, we are
interested in examining the continuum model approach for
estimating the dielectric constant of buckyballs as a model
nanoparticle. Buckyballs are truncated regular icosahedrons,33

but they can be reasonably described as nearly spherical (see
below). We shall examine the predictions of two simple,
effective medium theories (EMT) based on spherical particle
shape: the Maxwell model for a dilute dispersion of uniform
spherical particles and a model for a dilute dispersion of
spherical shell-like particles. The equations can be expressed
in terms of a reduced dielectric constantε12(φ2)/ε1, where
ε12(φ2) is the static dielectric constant of the mixture at a given
volume fractionφ2 of particles andε1 is the static dielectric
constant of the matrix (obtainable by the method of Halverstadt
and Kumler and by dielectric measurements of the pure solvent).
The Maxwell equation forε12(φ2)/ε1 in the case of spherical
particles equals1,6

where [ε] is the leading dielectric constant virial coefficient
(“intrinsic dielectric constant”),zε is the relative dielectric
constant (dielectric mismatch) of the particle (zε ) ε2/ε1), and
O(φ2

2) indicates terms on the order of (φ2)2 which are negli-
gible for smallφ2. [A probabilistic computation11 for the virial
coefficient in the highly conducting limit (zε f ∞) for a
truncated icosahedron gives 3.0409(8) rather than the value of
3 which follows from eq 3 for the case of a sphere. The virial
coefficient for insulating particles (zε f 0) is approximately
-3/2 for nearly spherical particles. Equation 3 is accurate for
arbitrary shapes forzε = 1.] The virial coefficient in eq 3
evidently becomes insensitive to the dielectric constant of the
particle ε2 when zε is too large so that the use of eq 3 to
determineε2 is limited to suspending media in whichzε is on
the order ofz ∼ O (0.1-10). This effect can readily be seen in
Figure 1. Extension of eq 3 to complex particle shapes is
described by Garboczi and Douglas.9

More generally, the virial expansion for a dilute dispersion
of spherical shell-like particles with a core dielectric constant
εc equals34,35

whereεc is set equal to unity for vacuum in this paper.γ is a
dimensionless parameter describing the ratio of the outer to core

ε12 ) ε1 + âw2 (1)

V12 ) V1 + γw2 (2)

ε12(φ2)/ε1 ≡ 1 + [ε]φ2 + O(φ2
2) ) 1 +

3(zε - 1)

(zε + 2)
φ2 + O(φ2

2)

(3)

ε12(φ2)/ε1 )

1 + φ2{3[(εc - ε2) (2ε2 + ε1) + γ(εc + 2ε2) (ε2 - ε1)]

2(εc - ε2) (ε2 - ε1) + γ(εc + 2ε2) (ε2 + 2ε1) } +

O(φ2
2) (4)

Dielectric Constant of Nanoparticles J. Phys. Chem. B, Vol. 104, No. 47, 200011059



sphere volumes,

whereh is the shell thickness andb is the radius of the spherical
core. (Note that eq 4 reduces to eq 3 whenεc ) ε2 andh ) 0.)
For our calculations, we will use the core and shell values from
the polarization wave model of C60 introduced by Lambin and
co-workers36 (h ) 1.8 Å, b ) 2.6 Å). Equations 1 and 2 will
be used to verify the values for the dielectric constant and
specific volume obtained from measurements on the pure fluids.

To evaluate the results from the solution measurements on
the C60 molecule, we can compare these estimates ofε2 to those
obtained for isolated molecules. Conveniently, a molecular beam
method has been used to determine that the electric polarizability
R of isolated C60 molecules is 76.5 Å3 ( 8.0 Å3 (converting
their value to SI units yieldsRSI ) 8.50× 10-39 ( 8.9× 10-40

C2 m2 J-1).32 From the mean-field Clausius-Mosotti relationship
for spherical particles (which is nearly the case for Buckmin-
sterfullerene), we have (in SI units)37,3

in the absence of a permanent dipole moment. The static
dielectric constant (the zero frequency limiting dielectric
constant)ε0 of isolated C60 molecules can then be obtained,
whereNA is Avogadro’s constant,M is the relative molecular
mass,κ0 is the permittivity of vacuum (8.854 pF/m), andF is
the density. Using the value forR cited above, we find a value
of ε0 ) 3.6( 0.4 for an isolated C60 nanoparticle. (It should be
noted that the experimental value cited for the polarizability of
isolated C60 molecules is in good agreement with the results of
many theoretical polarizability models.39).

2. Experimental Section

2.1. Materials. Buckminsterfullerene (98% purity),cis-
decahydronaphthalene (cis-decalin, 99% purity), anhydrous
toluene (99.8% purity), and 1,2-dichlorobenzene (99% purity)
were obtained from Aldrich Chemical Co. and used as re-
ceived.40

2.2. Sample Preparation.All samples used in this study were
prepared in the same way. Using the solubility data of Ruoff
and co-workers,41 a solution with the maximum concentration
of C60 in the respective solvents was prepared. This “master”

batch was placed in a sonicator for 7 h. Ordinarily, there was
some precipitate left in this master solution (probably containing
the 2% impurities), so the solution was decanted off. Fifteen
mL samples of the decanted solution were placed into glass
vials which had been thoroughly cleaned and dried under
vacuum. The mass of the vial prior to and after the addition of
the 15 mL was recorded, with the final mass being buoyancy
corrected against the displaced volume of 15 mL of air. This
value was used to determine the ambient density of the “master”
batch. The solvent was slowly evaporated off and after no
solvent was visible, the vial was heated above the boiling point
of the solvent and was cooled under vacuum. The mass of the
vial was then determined to obtain the concentration of master
solution. Aliquots of the master solution were then transferred
to clean dry vials and were diluted with pure solvent to prepare
solutions with modified concentrations. After combining the
master batch and the pure solvent, the vials were sonicated for
6 h each. A minimum of three samples of each concentration
was prepared. Each set of three was prepared prior to the day
in which the measurements were to be performed. The vials
were equilibrated overnight in the high precision temperature
bath described below. (N.B. For the 1,2-dichlorobenzene, all
samples were prepared under dry nitrogen conditions.)

2.3. Dielectric Measurements.All dielectric measurements
were performed in a constant-temperature bath, which had a
manufacturer’s stated temperature stability of(0.001°C. The
temperature of the dielectric cell was determined with a NIST
calibrated standard reference thermometer to be 20.188°C (
0.001 °C (an expanded standard uncertainty with a 95%
confidence level for the temperature of interest was reported in
the calibration certificate to be(0.001°C).

Dielectric measurements were performed for each sample on
a Hewlett-Packard 4284A LCR meter over a frequency range
(f) of 100 Hz to 1 MHz and on an Andeen-Hagerling 2500A 1
kHz Ultra-Precision Capacitance Bridge, the latter of which had
been recently calibrated to a relative capacitance value of 40×
10-6 against a NIST calibrated General Radio model 1404-CSI
Reference Standard Capacitor. The 4284A measurements were
performed at 1 V and the 2500A measurements were performed
at 1.5 V. (These measurements were compared to measurements
performed on the 4284A at 0.1 V and were within the
experimental uncertainty, suggesting that Ohmic heating was
not a problem. Therefore, the higher voltage was utilized to
decrease the experimental uncertainty. Furthermore, measure-
ments on the most concentrated solution incis-decahydronaph-
thalene of the conductivityGs as a function of frequency (from
100 Hz to 1 MHz) was no greater than that of the empty
dielectric test cell, which was on the order of 1× 10-10 S.)
The cell constant (or geometric capacitance)Cg,

was determined from the measured capacitance by calculating
the dielectric constant of the airεair in the cell using the data
reduction techniques described by one of us in an earlier paper
and measurements of ambient temperature, barometric pressure,
and relative humidity.42 The cell constant (capacitance in a
vacuum) was determined, prior to measurement of the solutions,
on each day after the cell had been cleaned, dried, and
reequilibrated in the temperature bath. The average value
determined forCg was 11.521 pF( 0.002 pF.43 The variation
in Cg was on a day to day basis (after cleaning and drying)
which indicates that the mechanical stability of the dielectric

Figure 1. “Intrinsic dielectric constant” [ε(zε)] as a function of the
dielectric mismatch. The range over which the virial coefficient satu-
rates depends on the particle shape.9

γ )
(b + h)3

b3
(5)

ε0 - 1

ε0 + 2(MF ) )
NA

3κ0
RSI (6)

Cg )
Cmeas

εair
(7)
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cell was such that the relative reproducibility of capacitance
measurements was on the order of 2× 10-4. This was
substantiated by further measurements on the solvents used in
these studies.

The liquid dielectric test cell was a small-volume (10 mL)
three-terminal, guarded concentric cylinder fixture with gold-
plated electrodes based on the small-capacity cell for referee
tests and research investigations described in American Society
for the Testing of Materials (ASTM) Test Method D 924-92.

2.4. Density Measurements.The density measurements were
performed by measuring the period of oscillation of a vibrating
sample cell with a sample volume of 0.7 mL. The sample density
F is related to the periodt by the following relation

whereA andB are contain the spring constants of the oscillator,
the empty oscillator’s mass, and the volume of the sample that
undergoes oscillation. Calibration of the density meter can be
performed by measurement of the period of two substances of
known density and the density differenceF1-F2 equal to

Calibration of the density meter was performed using air and
ultrapure water. The density of dry air as a function of
temperatureT and pressureP is given by

The density of water as a function of temperature was obtained
by a fourth-order polynomial fit to the 400 data points (between
0 and 40°C) provided in the manual. The fitted quadratic equals

This expression has a maximum relative residual of 3× 10-6

(A1 ) -4.67337× 10-10 g cm-3 °C-4, A2 ) 7.70894× 10-8

g cm-3 °C-3, A3 ) -8.75500× 10-6 g cm-3 °C-2, A4 )
6.59869× 10-5 g cm-3 °C-1, A5 ) 0.99842 g cm-3).44 The
manufacturer’s specified accuracy for the system is(1.5× 10-6

g/cm3.

3. Results and Discussion

3.1. Static Dielectric Constant Determination.The static
dielectric constantε0 is determined by extrapolation of the
frequency dependent dielectric constantε*(ω) to zero angular
frequency (ω ) 0,whereω ) 2πf). For ordinary low viscosity
liquids, ε*(ω) measured at frequencies as high as 1 MHz is
commonly referred to as the static dielectric constant.37 How-
ever, the addition of the C60 molecule makes it desirable to
further demonstrate that the measured dielectric constant is equal
to the static dielectric constant.

The frequency dependent dielectric constant can be obtained
by a bridge type capacitance measurement which can be used
to determine the complex frequency dependent dielectric
constantε* defined as

where ε′ is the real component,ε′′ is the imaginary (loss)
component, andi ) x-1. If no time dependent changes are

occurring over a time scale comparable toω (such as a
relaxation process) and no conductivity is present, thenε′′ is
zero andε′ can be extrapolated to low frequencies. However,
if a loss is present (ε′′ * 0) then the extrapolation is less trivial.

A sample plots ofε′ versusf is shown in Figure 2 for the
most concentratedcis-decahydronaphthalene solution. The error
bars, obtained from the manufacturer’s specifications, are a
function of impedance, loss, cable length, instrument temper-
ature, integration time, and frequency. Similar behavior was
observed for toluene and 1,2-dichlorobenzene solutions. Because
ε′ is frequency independent over the entire range of measured
frequencies, a single measurement ofε′ by the higher accuracy
2500A bridge at 1 kHz will be used to determineε0 in the
following analyses.

3.2. Dielectric Constant and Specific Volume of the Pure
Liquids. To verify the values for the specific volumeV1 and
static dielectric constant of the pure solventε1, the method of
Halverstadt and Kumler described previously, was used for
comparison with values obtained by measurements on the pure
liquids. In Figures 3-5 we have plotted the specific volume
fraction of the mixture (V12) as a function of weight fraction of
C60 (w2). Because of the variability in the literature regarding
the definitions of mass fraction and volume fraction, we wish
to explicitly define our use of these terms. Mass fractionw2 is
defined as

where m1 and m2 are the masses of components 1 and 2,
respectively. Similarly, the volume fraction of the second

t2 ) AF + B (8)

F1 - F2 ) 1
A

(t1
2 - t2

2) (9)

Fair(T,P) )
(1.7238× 10-1 g cm-3 Pa-1)P

[1 + (3.67× 10-3 °C)T]
(10)

FH2O
) A1T

4 + A2T
3 + A3T

2 + A4T + A5 (11)

ε* ) ε′ - iε′′ (12)

Figure 2. ε′ as a function of measurement frequencyf for C60 in cis-
decahydronaphthalene at 20.118°C. The error bars were obtained from
the manufacturer’s specifications.45

Figure 3. Specific volumeV12 versus mass fractionw12 for C60 in cis-
decahydronaphthalene at 20.1°C.

w2 )
m2

m1 + m2
(13)
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componentφ2 is defined as

where V1 and V2 are the volumes of components 1 and 2,
respectively. Figures 6-8 are the corresponding plots of static
dielectric constantε12 versus mass fractionw2. The results of
the analyses of Figures 3-8 are shown in Table 1.

It should be apparent that all of the extrapolated values for
V1 andε1 are in excellent agreement with the measured values,
with the exception of the dielectric constant of toluene. However,
in both cases (i.e., measured and extrapolated values forε1),

the relative difference between the measured and extrapolated
values is less than 5× 10-4. In anticipation of our final results,
we shall assume that a difference of this magnitude can be
neglected. It is notable that because the value forε1 obtained
by extrapolation is greater than the measured value for toluene,
it is possible that some moisture uptake has occurred. As stated
previously, the amount appears to be very small. With the
exception of the specific volume of ODCB, the literature values
listed in Table 1 lie within the experimental uncertainty of all
values forV1 andε1.

3.3. Dielectric Constant of Isolated C60 Molecules.Figures
9-11 are plots of the reduced dielectric constant [ε12(φ)/ε1] as
a function of volume fraction of C60 (φ2). (In calculating the
reduced dielectric constant, we used the value forε1 obtained
by eq 1.) The slope of the plots were analyzed according to eqs
3 and 4. The results of these analyses are given in Table 2. In
examining the effectiveness of our solution measurements in
obtaining the correct value for the dielectric constant of the
isolated C60 particle, we will split the results into each of the
model predictions. In the spherical particle model (Maxwell
model) the results incis-decahydronaphthalene agree within the
experimental uncertainty with the value obtained from molecular
beam measurements, but disturbingly, the values for toluene
and ODCB do not. This might lead one to the conclusion that
an induced dipole moment is present in systems where there is
a polar solvent, since toluene and ODCB have a permanent
dipole moment with toluene having a dipole moment of 1.2×
10-30 C m (0.36 D) and 1,2-dichlorobenzene having a dipole
moment of 8.3× 10-30 C m (2.50 D).cis-Decahydronaphthalene
has a very small dipole moment, and this solvent is “nonpolar”.46

Rough estimates of the apparent dipole momentµ can be

Figure 4. Specific volumeV12 versus mass fractionw12 for C60 in
toluene at 20.1°C.

Figure 5. Specific volumeV12 versus mass fractionw12 for C60 in 1,2-
dichlorobenzene at 20.1°C.

Figure 6. Static dielectric constantε12 versus mass fractionw12 for
C60 in cis-decahydronaphthalene at 20.118°C.

φ2 )
m2V2

m1V1 + m2V2
)

V2

V1 + V2
(14)

Figure 7. Static dielectric constantε12 versus mass fractionw12 for
C60 in toluene at 20.118°C.

Figure 8. Static dielectric constantε12 versus mass fractionw12 for
C60 in 1,2-dichlorobenzene at 20.118°C.
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obtained using the Debye-Langevin equation (in SI units)

wherekB is Boltzmann’s constant. The value forRSI used in
the above equation was that obtained from the dielectric constant
of C60 which, in turn, was determined from measurements in
cis-decahydronaphthalene and eq 6. The apparent dipole mo-
ments calculated using eq 15 were 7× 10-30 ( 1 × 10-30 C
m (2.2( 0.3 D) for C60 in toluene and 7× 10-30 ( 2 × 10-30

Cm (2.0( 0.6 D) for C60 in 1,2-dichlorobenzene. Within the
expanded standard uncertainty of the measurements, there is
no statistical difference between these two dipole moments. The
concept of an induced dipole moment in the case of toluene is
easily disproved, since measurements similar to those presented

in this paper were performed for toluene at 15°C and 30°C.
The result was that there was no temperature dependence which
could be attributed to a dipole moment. This finding indicates
that we should model the geometry of the buckyballs more
realistically, before rejecting the validity of the continuum model
description of the dielectric constant of these dispersions. We
then model the buckyballs as hollow spherical particles and
assume that the core has a dielectric constant equal to that of
vacuum. Notablyε of dry air differs from that of vacuum by
approximately 0.05% (εair = 1.0005 at 20°C).

Using the spherical shell model, the static dielectric constant
of isolated C60 molecules measured incis-decahydronaphthalene
and toluene agree within the experimental uncertainty with those
measured by the molecular beam technique. There still is a large
discrepancy between the molecular beam estimate of the
dielectric constant for C60 and the virial estimate for the highly
polar solvent, 1,2-dichlorobenzene, however. (Toluene is only
slightly polar, so that induced polarization effects should be
weak.47) It is noted that the ODCB data set exhibits a much
higher degree of scatter than the other measurements which leads
to the possibility that other effects may complicate these
measurements. For example, clustering has been reported for
C60 in other solvents48-50 and we strongly suspect that this might
be occurring in the ODCB solution. Light scattering measure-
ments as in previous studies48,49 on benzene solutions of C60

could help to resolve this possibility. The ODCB solutions

TABLE 1: Density and Specific Volume of the Solvents

cis-decalin toluene 1,2-dichlorobenzene

V1 measured (cm3/g) 1.11489( 0.00003 1.15350( 0.00003 0.76567( 0.00002
V1 extrapolated (cm3/g) 1.11494( 0.00002 1.15351( 0.00003 0.76563( 0.00002
V1 lit. valuea (cm3/g) 1.115 1.154 0.76640
ε1 measured 2.1818( 0.0004 2.3873( 0.0005 10.177(0.002
ε1 extrapolated 2.1812( 0.0004 2.3883( 0.0003 10.177( 0.005
ε1 lit. value 2.176b (0.006 2.391c ( 0.004 10.3( 0.3d

a The specific volumes listed are for 20.0°C and were obtained from the density data in theCRC Handbook.51 b The dielectric constant for
cis-decahydronaphthalene at 20.0°C ( 0.1 °C and 505 kHz was obtained from the work of Bird and Daly.52 c The dielectric constant of toluene
was determined at 20.1°C by linear extrapolation of data at 10 kHz obtained at several temperatures from the work of Mopsik.43,47 d The dielectric
constant of 1,2-dichlorobenzene was determined at 20.1°C by linear extrapolation of data obtained at several temperatures for two sets of dielectric
data, one by Curry and Gilkerson at 10 kHz and one by Flaherty and Stern at an unspecified frequency.43,53,54

Figure 9. Reduced dielectric constantε12(φ2)/ε1 as a function of volume
fraction of Buckminsterfullerene for C60 in cis-decahydronaphthalene
at 20.118°C.

Figure 10. Reduced dielectric constantε12(φ2)/ε1 as a function of
volume fraction of Buckminsterfullerene for C60 in toluene at 20.118
°C.

P ) ε - 1
ε + 2(MF ) )

NA

3κ0
(RSI + µ2

3kBT) (15)

Figure 11. Reduced dielectric constantε12(φ2)/ε1 as a function of
volume fraction of Buckminsterfullerene for C60 in 1,2-dichlorobenzene
at 20.118°C.

TABLE 2: Static Dielectric Constant of the Isolated C60
Molecule

solvent ε2 (eq 3) ε2 (eq 4)

molecular beam32 3.6( 0.4
cis-decahydronaphthalene 3.6( 0.8 2.9( 0.7
toluene 7.9( 0.8 3.8( 0.4
1,2-dichlorobenzene 7( 2 13( 4
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are also potentially sensitive to moisture contamination, even
though we endeavored to maintain dry conditions. It is then
premature to ascribe a precise cause to the deviant estimate for
ε in this solvent. Further studies of our method of estimatedε

of nanoparticles, especially in the case of polar solvents, seems
to be warranted. A greater understanding of the origin of the
nanoparticle clustering phenomena in various solvents is also
evidently needed.

There are several implications of these measurements as they
pertain to nanoparticle suspensions. We have demonstrated (at
least for the case of the two solvents with a relatively small
dielectric mismatch between solvent and nonpolar particle) that
the dielectric constant of the isolated nanoparticle can apparently
be determined using a continuum model and the results compare
favorably with independent molecular beam measurements.
There is no appreciable “solvent effect” under these conditions.
We do find complications in the case of the highly polar solvent
ODCB. This finding indicates that we must examine the
applicability of continuum models to estimate the properties of
nanoparticles in greater detail, especially in the case of polar
solvents or suspending media. There are several complications
found in these polar solvents (water uptake, “solvent effect”,
etc.) that need to be examined further before our methodology
can be applied to estimating the dielectric constant of nano-
particles reliably. In the future, we plan to perform measure-
ments on buckytubes incis-decahydronaphthalene and toluene
to examine the effect of particle asymmetry on the virial
coefficient for buckytubes in solution and to systematically
explore the impact of particle clustering on the solution dielectric
properties of solutions of nanoparticles such as C60.

4. Conclusions

We have presented the results of our measurements on the
specific volume and static dielectric constants of Buckminster-
fullerene (C60) solutions. It has been demonstrated that con-
tinuum model predictions are successful in predicting the
dielectric properties of nonpolar nanoparticles in a matrix with
a low dielectric mismatch.

We have shown that solution measurements minimize the
normal problems inherent in determining the dielectric properties
of C60 films, such as dissolved oxygen, interfacial impurities,
etc.31 Preliminary measurements have indicated large deviations
of molecular beam and solution measurements of the dielectric
constant of C60 in the case of a highly polar solvent, ODCB.
These solutions are subject to a number of complications and
it is not yet clear where fundamental modifications of the
continuum model are necessary. It is clear that the polar solvents
must be made very pure and the complication of water
contamination is a general concern when highly polar solvents
are utilized in this type of study.

A great deal of further experimentation will be necessary to
determine whether continuum models can successfully predict
bulk material properties of nanoparticle filled materials based
upon the appropriate parameters for the matrix and the inclu-
sions. However, we feel that this work does suggest that careful
choice of a matrix will allow for determination of the dielectric
properties of nanometer-scale objects. It should also be possible
to extend this approach to many other properties of interest9

(shear modulus, refractive index, magnetic permeability, etc.)
so this simple method promises to have wide applicability.
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