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Lattice model of living polymerization. I. Basic thermodynamic properties
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A Flory-Huggins type lattice model of living polymerization is formulated, incorporating chain
stiffness, variable initiator concentrationr , and a polymer-solvent interactionx. Basic equilibrium
properties@average chain lengthL, average fraction of associated monomersF, specific heatCP ,
entropyS, polymerization temperatureTp , and the chain length distributionp(N)# are calculated
within mean-field theory. Our illustrative calculations are restricted to systems that polymerize upon
cooling@e.g., poly~a-methylstyrene!#, but the formalism also applies to polymerization upon heating
~e.g., sulfur, actin!. Emphasis is given to living polymer solutions having afinite r in order to
compare theory with recent experiments by Greer and co-workers, whereas previous studies
primarily focused on ther→01 limit where the polymerization transition has been described as a
second order phase transition. We findqualitative changes in the properties of living polymer
solutions for nonzeror : ~1! L becomes independent of initial monomer compositionfm

0 and
temperatureT at low temperatures@L(T!Tp);2/r #, instead of growing without bound;~2! the
exponent describing the dependence ofL on fm

0 changes by a factor of 2 from ther→01 value at
higher temperatures (T>Tp); ~3! the order parametertype variableF develops a long tail with an
inflection point atTp ; ~4! the specific heat maximumCP* at Tp becomes significantly diminished
and the temperature range of the polymer transition becomes broad even for small
r @r;O(1023)#. Moreover, there are three characteristic temperatures forr .0 rather than one for
r→0: a ‘‘crossover temperature’’Tx demarking the onset of polymerization, anr -dependent
polymerization temperatureTp defined by the maximum inCP ~or equivalently, the inflection point
of F!, and a ‘‘saturation temperature’’Ts at which the entropyS of the living polymer solution
saturates to a low temperature value as in glass-forming liquids. A measure of the ‘‘strength’’ of the
polymerization transition is introduced to quantify the ‘‘rounding’’ of the phase transition due to
nonzeror . Many properties of living polymer solutions should be generally representative of
associating polymer systems~thermally reversible gels, colloidal gels, micelles!, and we compare
our results to other systems that self-assemble at equilibrium. ©1999 American Institute of
Physics.@S0021-9606~99!50539-4#
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I. INTRODUCTION

The tendency toward particle clustering is a ubiquito
phenomenon in condensed matter physics. The strengt
the interparticle coupling in liquids typically ranges fro
weak van der Waals interactions to relatively strong io
associations and covalent chemical bonds. The geometr
the molecular or colloidal clusters can be networklike, strin
like, or compact, globularlike structures~e.g., thermorevers
ible gels, linear ‘‘living’’ polymers, spherical micelles, re
spectively!, depending on the geometrical form of th
molecules, the symmetry and range of the interparticle in
actions, and on the capacity of the clustering species to f
multivalent contacts. Under equilibrium conditions, the e
tent of clustering varies with temperature, electrolyte conc
tration, or other control parameters that alter the strength
the nature of the interactions responsible for particle clus
ing.

The formation of ‘‘stringlike’’ structures is a commo
mode of clustering with special significance for materi
7110021-9606/99/111(15)/7116/15/$15.00
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science. Many natural materials~wool, silk, cotton, rubber,
tendons, spider webbing, etc.! are condensation polymer
formed by chains growing one monomer unit at a time
build long molecules whose properties are governed
growth conditions.1 Synthetic polymer science is predicate
on emulating these natural processes and on manipula
the conditions of formation to control the molecular archite
ture, mass, and molecular weight distribution for materi
applications.1 Moreover, stringlike structures also arise
connection with many phase transitions in condensed ma
physics, so that the study of linear chain polymers formed
equilibrium has broad physical significance~see Sec. IV!.

The present paper develops a fairly complete theoret
description for one of the simplest examples of clustering
equilibrium, the ‘‘equilibrium polymerization’’ of monomers
to form stringlike structures. We specifically consider t
situation in which the monomer is bifunctional and where t
chain growth is initiated by a finite concentration of ‘‘initia
tor.’’ This type of system has been called a ‘‘living poly
6 © 1999 American Institute of Physics
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mer’’ system if the polymerization occurs reversibly
equilibrium.2 A lattice model approach is taken in which a
monomer and initiator molecules each occupy single lat
sites. The theory is formulated in terms of the system’s to
free energy, thereby enabling the computation of all therm
dynamic properties of these associating systems. Our mo
ing incorporates the monomer-monomer~or, equivalently,
the monomer-solvent! interparticle interactions governin
fluid miscibility ~the Floryx parameter!, so that the interplay
between phase separation and particle clustering can als
investigated. The present paper focuses on providing a
eral understanding of the equilibrium thermodynamic pro
erties of ‘‘living polymers,’’ including the average polyme
ization indexL, entropyS, fraction of monomers converte
to polymersF, and specific heatCP . Our chain model also
incorporates chain stiffness and variable initiator concen
tion since these variables are crucial to enable comparis
of the theory with recent extensive experiments by Greer
co-workers.2,3 This minimal model of living polymerization
can be generalized using the lattice cluster theory4,5 to in-
clude monomer, initiator, and solvent molecular structur
specific interactions, fluid compressibility, and the capac
to form multifunctional associations of various kinds. Sub
quent papers will emphasize the coupling that occurs
tween phase separation and polymerization and the resu
large shifts in the critical temperature and in the shape of
phase diagram of these polymerizing systems.

Previous studies have emphasized particular aspec
‘‘living polymerization.’’ 6 Early works by Tobolsky and
Eisenberg7 and Scott8 apply mean-field theory models to un
derstand the tendency of heated sulfur to form a very visc
fluid at elevated temperatures. This type of modeling
been extended to metals, such as selenium.9 Szwarc10 sum-
marizes early efforts at characterizing living polymers alo
with early theoretical models, while Greer provides an u
dated review on this topic.2,3 The recent theoretical trea
ments of living polymerization by Wheeleret al.11–18and by
Milchev et al.19–23 utilize the machinery of spin models fo
phase transitions and of Monte Carlo simulation metho
respectively, and are representative of current theoretica
forts to describe living polymerization quantitatively. Th
scaling arguments of Cates24 are also notable for the insight
they provide into the role of excluded volume interactions
the properties of living polymers. All these recent theoreti
treatments restrict attention to cases where the initiator c
centrationr is either very small or vanishing, but the prese
paper focuses instead on the case ofr .0 since this situation
arises in many physical applications of living polymeriz
tion. Greer and her co-workers2 have pioneered the invest
gation of basic thermodynamic properties of living polym
solutions~specific heat, density, scattering intensity, corre
tion length, etc.! for finite r , as in our modeling, and we
compare our theory to these measurements below.

The present investigation of living polymerization is al
stimulated, in part, by recent observation of a phenome
resembling living polymerization in molecular dynami
simulations of supercooled liquids.25 The analysis of these
simulations requires a knowledge of how the average de
of polymerizationL varies with temperature in systems th
e
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polymerize upon cooling, as well as a better understand
of how the transient clustering in living polymers influenc
the configurational entropy of the fluid as a whole. Lacking
clear exposition for these and other essential equilibri
properties of living polymers in the literature, we have u
dertaken the present theoretical treatment, in part, to pro
this information in a readily accessible form.

Consultation with Greer26 also indicated the need fo
incorporating chain stiffness into the modeling of livin
polymerization27 since many natural living polymers~e.g.,
actin! are stiff to varying degrees.28–31The mathematical ma
chinery has been designed so that increasing complexit
the molecular modeling can be incorporated as needed u
the methods of the lattice cluster theory (1/z and high tem-
perature expansions!.4,5,31This extended modeling would al
low for the inclusion of short-range correlations along t
growing chain arising from monomer shape, nonrand
mixing, compressibility, and more complicated interactio
that must be considered in physically realistic modeling.
many points in our development, we make contact with p
ticular findings obtained previously based on a variety
formalisms~spin models of phase transitions, kinetic mode
of chain clustering, etc.!. The present free energy formula
tion of living polymerization enables the computation
thermodynamic quantities that have not been evaluated
viously and that provide basic insights into the nature
particle clustering at equilibrium. A subsequent paper w
describe the phase behavior of living polymer systems ba
on the lattice model presented in the next section.

II. LATTICE MODEL OF LIVING POLYMERIZATION

Consider a system composed ofns solvent molecules,
nm

0 monomers of speciesM , andnI molecules of the initiator
I which activates the monomers and thereby enables the
propagate into polymers. In order to compare the theory w
the recent extensive experiments of Greer a
co-workers,2,3,32,33we assume that polymerization occurs u
der conditions of chemical equilibrium and that the small
propagating species is a bifunctional dimerM2I 2 which con-
tains two molecules of the initiatorI ,

2M12I→M2I 2 , ~1!

MiI 21M
Mi 11I 2 , i 52,3,. . . ,`. ~2!

Since the reaction~1! is assumed to be irreversible, the equ
librium system may only contain unreacted monomersM ,
polymers MiI 2 ( i 52,3,...,̀ ), and solvent molecules. Th
total numbers of the former species are designated bynm and
$ni%, respectively. Conservation of mass requires thatnm and
$ni% are related to the initial~i.e., before polymerization!
numbernm

0 of monomers by

nm
0 5nm1(

i 52

`

ini . ~3!

Because all the initiator is contained in theMiI 2 ( i
52,3,. . . ,`) species, the total numbernI of initiator mol-
ecules and the total number of polymers$MiI 2% are related
by
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1

2
nI5(

i 52

`

ni . ~4!

The system is described using a minimal incompress
Flory-Huggins~FH! lattice model34 with a single site occu-
pancy constraint for all monomers, solvent molecules,
initiator molecules.~See Scott8 for a similar lattice model
formulation for the polymerization of sulfur.! Thus, the total
numberNl of lattice sites is written in terms of the numbe
for the individual species as

Nl5ns1nm1(
i 52

`

ni~ i 12!5ns1nm
0 1nI , ~5!

while the total Helmholtz free energyF for the system is
given by

F

NlkBT
5fs ln fs1fm ln fm1(

i 52

`
f i

i 12
ln f i1fsfmx

1fsx(
i 52

`

f i1(
i 52

`

f i f i , ~6!

wherefm5nm /Nl , fs5ns /Nl , and$f i5ni( i 12)/Nl% de-
note the volume fractions for the residual~i.e., unpolymer-
ized! monomers, the solvent, and polymers, respectively.x is
the monomer-solvent interaction parameter,f i is the dimen-
sionless specific free energy of ani -mer, which is composed
of i monomers and two initiator molecules, andkB is the
Boltzmann constant. The specific free energyf i is quoted
below, while the quantitiesf m and f s are taken as vanishin
identically since both solvent and monomer species
treated as entities occupying single lattice sites. The m
conservation constraints from Eqs.~3! and~4! can be conve-
niently reexpressed in terms of volume fractions as

fm
0 5fm1(

i 52

`

i
f i

i 12
, ~7!

and

1

2
f I5(

i 52

`
f i

i 12
, ~8!

wherefm
0 5nm

0 /Nl andf I5nI /Nl .
The condition of chemical equilibrium imposes the fo

lowing relation between the chemical potentials$m i%, m2 ,
andmm , where the subscriptsi , 2, andm represent, respec
tively, the i -mer MiI 2 , dimer M2I 2 , and monomer species

m i5m21~ i 22!mm , i 53,4,...,`. ~9!

On the other hand, the chemical potentialsma , (a[2,i ,m)
can be calculated directly from the free energy of Eq.~6! as,

1

kBT
~ma2cams!5

]~F/kBT!

]na
U

T,Nl ,ngÞa

. ~10!

The exchange chemical potentialma
ex5ma2cams @with ms

the solvent chemical potential and with the coefficientca

51, 4, and (i 12) for a[m,2, andi , respectively# emerges
from Eq. ~10! as a consequence of the assumed incompr
le

d

re
ss

s-

ibility of the system. After simple algebra, the equilibriu
condition in Eq.~9! takes the form in which thems terms
cancel identically,

lnF f i

f2fm
i 22G5 i 222~ i 12! f i14 f 2 , i 53,4,...,`.

~11!

The specific free energyf i ( i 52,3,...,`) is obtained
from the Flory theory for semiflexible linear polymers as,30

f i5
1

i 12
lnF 2

z~ i 12!G1
i 11

i 12
2

i

i 12
ln@11~z22!

3exp~2e/kBT!#1
i 21

i 12
D f , ~12!

where z is the lattice coordination number,e denotes the
‘‘bending’’ energy ~the energy difference betweengauche
and trans conformations!, while D f designates the free en
ergy change due to the polymerization, a feature appende
the Flory specific free energy in order to describing the l
ing polymer system. The chain stiffness factorJ[11(z
22)exp(2e/kBT) in Eq. ~12! is the sole manifestation o
chain semiflexibility in our modeling. In the completely flex
ible chain limit of vanishing bending energye→0, we have
J→z21, whereas the opposite limite→` yields J→1,
whereupon the polymers are modeled as stiff rods. Since
above free energy expressions are isotropic, we do not c
sider situations in which the semiflexible chains exhibit li
uid crystalline ordering.35,36

Combining Eqs.~11! and ~12! leads to the compact ex
pression for thei -mer volume fractionf i ,

f i5~ i 12!CAi 22, ~13!

with the quantityA given by

A[fm exp~2D f /kBT!@11~z22!exp~2«/kBT!#

5fm exp~2D f /kBT!J, ~14!

and with the prefactorC as

C[~1/4!f2 . ~15!

Substituting Eq.~13! into Eqs. ~8! and ~9! produces, after
performing all the summations, the important relation b
tweenA andC,

C5~1/2!f I~12A!, ~16!

and betweenfm
0 , f I , andfm ,

fm5fm
0 2

f I

2

~22A!

~12A!
. ~17!

The relation in Eq.~17! resembles the previously derive
mean-field formula,33,37

xm5xm
0 2

xI

2

22xmKp~T!

12xmKp~T!
, ~18!

wherexm is the mole fraction of unpolymerized monomer
xm

o is the initial mole fraction of monomers before any pol
merization or reaction with initiator, andKp(T)
5exp(2Dg/kBT) is the equilibrium constant for the polyme
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ization reaction in Eq.~2!. Equations~17! and ~18! become
identical upon the identification of the combinationD f
2kBT ln(J) with the specific single bond Gibbs free ener
Dg of polymerization in the earlier models. Because lJ
varies almost linearly withT21 over the temperature range
of interest,D f is just obtained fromDg by removing the
contributions to the enthalpy and entropy associated w
chain semiflexibility since these contributions are trea
separately in the free energy. More general descriptions, s
as those provided by the lattice cluster theory, explicitly d
scribe further aspects of the chain conformation statistics
thereby would provide somewhat different renormalizatio
of the free energy of polymerization. It will be interesting
determine whether these more molecular renormalizat
affect the molecular weight distribution or other properties
the living polymer system. Within the present mean-fie
model, semiflexibility simply modifies the magnitudes of t
enthalpy and entropy of polymerization, but does not cha
the values for the effective equilibrium constantKp(T). This
observation justifies the use of the flexible chain theory
describe semiflexible living polymers,27 whereupon the phe
nomenological free energyD f contains contributions from
conformational, packing, etc., influences.

Equation~17! can be solved analytically forfm ,

fm5
B2AB224~fm

0 2f I !G

2G
, ~19!

with the parametersB andG defined by

B[11@fm
0 2~1/2!f I #G, G[exp~2D f /kBT!J. ~20!

After inserting Eq.~13! and performing the summations i
Eq. ~6!, the Helmholtz free energyF for the system reduce
to the form,

F

NlkBT
5~12fm

0 2f I !ln~12fm
0 2f I !1fm ln fm

1fm~12fm
0 2f I !x1

f I

2~12A!

3F ~12A!ln
f I~12A!

z
1A ln A2~22A!ln J

1x~12fm
0 2f I !~423A!1

D f

kBT
1322AG , ~21!

which uniquely specifiesF for a given set of parametersT,
fm

0 , f I , x, e, and D f 5Dg1kBT ln(J). The concentration
fm(T,fm

0 ,f I) of unreacted monomers and the quant
A(T,fm

0 ,f I) are given by Eqs.~19! and ~14!, respectively.
The basic thermodynamic properties, such as internal en
E, specific heatCV ('CP within the FH model!, and en-
tropy S of the system follow from Eq.~21! as standard de
rivatives of the free energyF.

Other basic properties of living polymer solutions are t
extent of polymerizationF, the average chain lengthL
[^N&, and the molecular weight distributionp(N). F is
defined as the fraction of monomers converted into po
mers,
h
d
ch
-
d

s

s
f

e

o

gy

-

F[
fm

0 2fm

fm
0 5

r

2

~22A!

~12A!
, ~22!

wherer[f I /fm
0 is the dimensionless initiator concentratio

EquatingF512fm /fm
0 to zero and settingf I50 in Eq.

~19! for fm recovers the usual Dainton and Ivin equation38

for the ‘‘polymerization temperature’’Tp
(o) ,

Tp
(o)5

Dh

Ds1kB ln fm
0 , ~23!

appropriate tor 50 or r→0, with Dh andDs denoting, re-
spectively, the enthalpy and the entropy of the polymeri
tion reaction in Eq.~2!. We termTp

(o) the ‘‘ideal polymeriza-
tion temperature’’ since this transition corresponds to
idealized limit ofr→0. When the initiator concentrationr is
nonzero, wedefine Tp more generally as the temperature
which the specific heatCP has a maximum or, equivalently
at which there is an inflection point in the curveF(T) de-
scribing the extent of polymerizationF as a function of tem-
peratureT ~see next section!. The average chain lengthL is
determined from an average overall monomer containing
species in the system,

L5

fm1( i 52
` f i

i

i 12

fm1( i 52
`

f i

i 12

5
fm

0 ~12A!

~12A!fm
0 2~1/2!f I

. ~24!

Alternatively, we may introduce a definitionL̂ for the aver-
age chain length which excludes the unreacted monom
from the averaging process,

L̂5

( i 52
` f i

i

i 12

( i 52
`

f i

i 12

5
22A

12A
5

2

r
F. ~25!

Both of these definitions are considered below.
The probability distribution functionp( i ) ( i 51,2,.. .̀ )

for the chain molecular weight is represented as the frac
of polymers havingi monomers of speciesM and can be
simply evaluated to obtain

p~ i !5
ni

( i 51
` ni

5
d~ i ,1!fm1@12d~ i ,1!#Dp

N
, ~26!

wheren1[nm andd(k,l ) is a Kronecker delta function suc
that d(k,l )51 if k5 l and equals zero otherwise. The pol
meric contributionDp to thep( i ) distribution is given by

Dp5DA exp~2 i /l!, DA5~f I /2!~12A!/A2,
~27!

l521/lnA,

while the norming constantN of p( i ) is a simple function of
fm andf I ,

N5fm1~1/2!f I . ~28!

The chain lengthL can be alternatively calculated as
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L5(
i 51

`

ip~ i !, ~29!

leading to the equivalence between Eqs.~24! and~29!. Note
that the decay lengthl of the exponential part of the lengt
distribution corresponds toneither L nor L̂.

The properties of living polymer solutions defined b
Eqs.~22!–~29! do not depend on the Flory-Huggins intera
tion parameterx;1/T in Eq. ~7!, but the phase behavior i
strongly influenced byx. ~We expect that this situation ma
change within the lattice cluster theory sincex can acquire
an entropic contribution, i.e.,x has an additional constan
contribution beyond the 1/T dependence in simple Flory
Huggins theory. See Ref. 8.! Because our model assum
that all monomers in the fluid~i.e., free monomers, poly
meric segments and solvent molecules! have the same siz
and that the fluid is incompressible, this idealization does
permit predicting the variation of the density with tempe
ture nearTp without introducing unrealistic assumptions.
better theory, which distinguishes between different mo
mer structures and describes the presence of free volum
necessary for such an estimation.

III. RESULTS

While the thermodynamic relations derived in Sec. II a
rather general, the illustrative computations in this sect
are for cases in which both the enthalpy and the entrop
polymerization are negative. Under these conditions, ch
growth occurs at temperatures below a ‘‘ceiling tempe
ture’’ ~also called the ‘‘polymerization temperature’’Tp) and
for initial monomer concentrationsfm

0 greater than a tem
perature dependent ‘‘critical polymerization concentratio
fm* . Because we find almost complete insensitivity of
basic thermodynamic quantities considered in the presen
per to polymer chain semiflexibility, the factor ofJ is
dropped~i.e., setJ51 in the above formulas! and the values
Dh5235 kJ/mol andDs52105 J/~mol K! are chosen as
determined from extensive experimental investigation
poly~a-methylstyrene! living polymerization by Greer
et al.2,3,32,33 in methylcyclohexane, where sodium naphth
lide is the initiator species. The lattice coordination numbez
in all these illustrative calculations is taken asz56, appro-
priate to a cubic lattice in three dimensions.

The average chain length is perhaps the most basic
rameter describing a living polymer solution. Figure 1 d
picts L as a function of temperature for several differe
initiator concentrationsf I5rfm

0 and for an initial fixed
monomer compositionfm

0 . We observe thatL saturates at
low temperatures to a constant plateau that depends stro
on the dimensionless initiator concentrationr 5f I /fm

0 . Un-
limited chain growth at low temperatures occurs in the
sence of initiator. The inset to Fig. 1 shows that the l
temperature value of the chain lengthLp scales linearly with
r 21 as,

L~T!Tp![Lp , Lp'2/r . ~30!

Flory previously introduced the approximationLp'1/r for
the living polymerization of ethylene oxide initiated wit
ot
-

-
, is

n
of
in
-

’
l
a-

f
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-
t
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alkoxides.1,34 The additional factor of two in Eq.~30! arises
from the presence of two initiator molecules and, hence,
two active chain ends in the model. It may be shown39 that
this prefactor reduces to unity, as in Flory’s treatment,34 if
only one chain end is active in the chain growth. Figure
also exhibits the conflicting influences of the initiator up
the polymerization process. The initiator is required to i
tiate chain growth, but its presence limits the average ex
of chain growth because the initiator controls the maxim
number of chains that may form.

Figure 2 depicts the temperature variation of the aver
chain lengthL with the initial monomer concentrationfm

0 at
a given dimensionless initiator concentrationr 5f I /fm

0 .
The main effect of changingfm

0 is to shift the polymeriza-
tion transition temperature~see below!. A higherfm

0 leads to
an increasedTp , and the shift ofTp to elevated temperature
saturates to a limiting constant value asfm

0 →1. The depen-
dence ofL on fm

0 at a constantT is found to be remarkably
linear,

L~T!'11a~T!fm
0 , ~31!

over a large temperature range~i.e., T between 250 and 400
K; see Fig. 3!. ~The analytic origin of this approximation i
discussed below.! At very low temperatures (T!Tp), L ap-
proaches a constant which is independent of bothT andfm

0

~see Fig. 1!. The lines in Fig. 3 extrapolate toL→1 at the
concentrationfm* , which we term the ‘‘critical polymeriza-
tion concentration’’~cpc!. This term is motivated by the ob
servation that a minimal concentrationfm* is required for the
polymers to begin growing. Analysis of Fig. 3 indicates th

FIG. 1. Average chain lengthL of living polymers as a function of tem-
peratureT and initiator concentrationr . We utilize the same values@Greer
et al. ~Refs. 3 and 33!# of Dh5235 kJ/mol andDs52105 J/~mol K! in
Figs. 1–13, unless otherwise specified. The initial monomer concentra
fm

0 is fixed at 0.15. The inset shows that the low temperature ‘‘plate
value,’’ Lp of the chain lengthL, is inversely proportional to the initiator
concentration,Lp'2/r . Squares, diamonds, and pluses refer tofm

0 50.15,
0.05, and 0.5, respectively. The chain length does not grow monotonic
with temperature in living polymer solutions that polymerize upon heat
~Ref. 8!.
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fm* and the slopea(T) governing the temperature depe
dence of the chain growth in Eq.~31! vary in near inverse
proportionality,

fm* ~T!'1/a~T!, ~32!

FIG. 2. Temperature dependence of average living polymer lengthL for a
range of initial monomer concentrationsfm

0 and for a fixed initiator concen-
tration r 50.0044. Note that the main effect offm

0 is to alter the location of
the transition temperature.

FIG. 3. Dependence of the average living polymer lengthL on initial mono-
mer concentrationFm

0 for a range of temperaturesT and for a fixed initiator
concentrationr 50.0044. The variation withfm

0 at fixed temperatureT is
nearly linear above a critical value offm

0 at which L21 extrapolates to
zero. We term this characteristic concentration the ‘‘critical polymerizat
concentration’’~cpc! fm* ~see Fig. 4!.
while Fig. 4 demonstrates that the slopea(T) decreases ex
ponentially with temperature. The nearly Arrhenius tempe
ture dependence offm* ,

fm* 'exp~Dh/kBT!, ~33!

is apparent in the inset to Fig. 4 where2 ln fm* is plotted
versus 1/T. The logarithm of the slopea ~or 2 ln fm* ) vs 1/T
yields the valueDh5234.9 kJ/mol which nearly coincide
with the enthalpy of polymerization (Dh5235.0 kJ/mol)
assumed in our calculations. The temperature dependen
fm* in Eq. ~33! is strikingly similar to that found in recen
simulations of the critical micelle concentration by Florian
et al.40 We mention this point because many aspects of
sociating polymers seem to be insensitive to the particu
mode of association.41 This view underlies the commonali
ties between living polymerization, thermoreversible ge
tion, and micelle formation~see Sec. IV!.

The linear dependence ofL in Fig. 3 conflicts with the
commonly reported scaling19–24 L;(fm

0 )1/2 for the chain
length from the mean-field theory of living polymers. Sin
these prior treatments take the initiator concentration to
extremely small or vanishing, we have perform
calculations39 for the living polymerization model withou
initiator (r 50) to analyze this discrepancy. The scalingL
;(fm

0 )1/2 is indeed recovered in the absence of initia
when the temperature is low (T!Tp). However, this com-
putation indicates that the sloped in a plot of ln(L21) versus
ln fm

0 approaches 1/2 very slowly~e.g.,d50.4736, 0.4897,
and 0.4986 forT5220, 200, and 170 K, respectively!. The
often citedL;(fm

0 )1/2 scaling is thus restricted to a mod
for polymerization in the absence of initiator and in the lim
of long chains. Thus, the presence of initiatorqualitatively
changes the character of living polymerization at both h
and low temperatures. Recent measurements of nonionic

FIG. 4. The concentration (fm
0 ) dependence ofL is governed by the param

etera which denotes the slope of the curves in Fig. 3. The inset indica
that fm* obey an Arrhenius temperature dependence to a good approx
tion.
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celle forming liquids ~for which living polymerization is
thought to be an appropriate model! indicate a nearly linear
dependence ofL on the associating species~surfactant! con-
centrationfm

0 .42–45

The specific heat is another essential property of liv
polymer solutions which is useful for fixing the paramete
of the living polymer model. Figure 5 presents calculatio
for the constant pressure heat capacityCP as a function of
temperature for a series of values forr . First, observe tha
CP(T) is greatly rounded forrÞ0. A jump appears forr
→01, which is typical for a second order phase transition
mean-field theory.46 ~Note that the limitr→01 in Fig. 5
does not correspond to the solution of the living polymeri
tion model without initiator, but to the limit of a ‘‘very
small’’ initiator concentration@e.g.,r;O(1028)#.!

The polymerization ‘‘transition’’ is no longer a secon
order phase transition whenr is finite, although this transi-
tion appears to bear some resemblance to one ifr is suffi-
ciently small. Several works11–18 emphasize this relation o
living polymerization to a second order phase transition, a
it has been noted thatr in the spin-model description11 of
living polymers plays the role of a magnetic field that inhi
its the second order phase transition. The present paper
phasizes the commonly occurring experimental situation
which r is not ‘‘very small.’’ Since critical fluctuations as
sociated with equilibrium polymerization should be grea
suppressed for finiter , the mean-field theory should be a
increasingly good approximation. The present work th
complements previous studies11–18 emphasizing the critica
phenomena aspect of living polymerization. Our mean-fi
treatment appears to be adequate even for modest valu
r , r>O(1023) where there is no evidence for any kind
‘‘critical phenomena’’ ~i.e., measurable critical exponent
critical amplitudes, etc.!.

FIG. 5. Temperature dependence of the specific heatCP for a living poly-
mer solution over a range of initiator concentrationsr and for a fixed initial
monomer concentrationfm

0 50.15. The magnitude of the maximumCP* of
CP in the r→01 limit is independent ofDh. Observe the decrease of th
ratio dCP[CP* (r )/CP* (r→01) with increasingr .
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The maximumCP* of eachCP(T) curve in Fig. 5 defines
a polymerization temperatureTp and a measure of the
‘‘strength’’ of the polymerization transition.47 In particular,
consider the ratiodCP[CP* (r )/CP* (r→0), which ranges
between 0 and 1 as exhibited in the inset to Fig. 5. Kenn
and Wheeler18 have previously noted thatCP* (r→0) equals

CP* ~r→0!.kB@Dh/kBTp
(o)#2, ~34!

which is independentof Dh since the polymerization tem
peratureTP

(o) is proportional toDh @see Eq.~23!#. The spe-
cific heat maximum becomes very ‘‘diffuse’’ for high initia
tor concentration, and the ratiodCP provides a useful mean
of estimating how much the polymerization transition is li
a second order phase transition. The ratiodCP also provides
potentially important means of estimating the amount of i
tiator that is ‘‘active.’’ The initiator can react with impuritie
in solution to modify the effective value ofr .

Figure 6 displays the initial monomer dependence of
specific heat on compositionfm

0 . The initiator concentration
r 50.0044 is the same as in the measurements of G
et al.2,3,33 Both the polymerization temperature and t
sharpness of the polymerization transition strongly dep
on fm

0 . When fm
0 grows, Tp is shifted to higher tempera

tures, while the sharpness of the polymerization transit
~specified by the half width of theCP peak! diminishes.Tp

also coincides with the infection point in theF(T) curve
~see below!. The inset to Fig. 6 exhibits reasonable agre
ment of our calculations48 with the experimental data o
Greer et al.32 for the system with fm

0 50.118 and r
50.0032.

FIG. 6. Temperature dependence of the specific heatCP for living polymer
solution over a range of initial monomer concentrationsfm

0 and for a fixed
initiator concentrationr 50.0044. The temperature~called the polymeriza-
tion temperatureTp) corresponding to the maximum ofCP shifts to lower
temperatures with decreasingfm

0 , and the magnitude of the specific he
maximum is also affected. The inset compares the mean-field lattice m
computations~Ref. 48! with experimental data of Greeret al. ~Ref. 32! for
the living polymer system withfm50.118 andr 50.0032.
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The extent of polymerizationF, defined as the fraction
of monomers converted into polymers, represents an o
parameter type variable for living polymerization. As me
tioned above, this language is loose since there is no
phase transition associated with the polymerization for
Þ0. Figure 7 displaysF as a function of temperature fo
several different values ofr and for a fixed initial monomer
concentrationfm

0 . The curves demonstrate thatF develops a
‘‘tail’’ which becomes larger asr is increased. Starting from
Eq. ~22!, the high temperature expansion ofF is obtained as,

F tail5F~T.Tp!5F`1
r

2
@A`x1A`

2 x21 . . . #, ~35!

where the high temperature expansion variablex is defined
as

x[exp@2Dh/kBT#, ~36!

and the coefficientA` is the high temperature limit of the
parameterA in Eq. ~14!,

A`[A~T→`!5fm~T→`!exp@Ds/kB#

5~fm
0 2f I !exp@Ds/kB#. ~37!

At very high temperatures,F simply reduces to the initiato
concentrationr ,

F`[F~T→`!5r . ~38!

The high temperature expansion in Eq.~35! ~dotted line! and
the exactF are compared in Fig. 7 forr 50.1.

The inflection point ofF versusT also can be used to
define the polymerization temperatureTp . Kennedy and

FIG. 7. FractionF of monomers converted to polymers as a function
temperatureT for the fixed initial monomer concentrationfm

0 50.15 and for
a range of initiator concentrationsr . Note the increasingly large tail which
forms asr is increased. The dotted line forr 50.1 showsF tail as calculated
from the high temperature expansion in Eq.~35!. The inset considersF in
the limit of an infinitesimal initiator concentration (r→01) where a nonana-
lytic temperature dependence is approached.
er
-
ue

Wheeler18 have shown that the specific heatCP is approxi-
mately proportional to the derivative of the fraction of mon
mers converted into polymersF,

CP.Dh~dF/dT!, ~39!

and we have verified that this approximation holds ac
rately ~eight significant digit agreement! in our calculations.
Equation~39! implies that the temperature at which the sp
cific heat has a maximum~i.e., the ‘‘polymerization tempera
ture’’ Tp) coincides with theT at which theF(T) curve
exhibits an inflection point.

Figure 8~a! illustrates dependence ofF on the monomer
concentration. The main part of the figure presentsF for
representativefm

0 values and compares our calculations
the measurements of Greeret al.3,33 for poly~a-
methylstyrene! in methylcyclohexane. The measured valu
of F are denoted by squares, andfm

0 in the experimental
sample equals 0.15. Increasingfm

0 produces an increase inF
at a fixedT, as is found for the average polymer lengthL
~see Fig. 2!. The extent of polymerization is further consid
ered in a different way in the inset to Fig. 8~a!, whereF is
plotted as a function offm

0 for a range of fixed temperatures
A critical polymerization concentrationfm* is estimated by
extrapolating the linear portions of theF(fm

0 ) curves to
zero, analogous to the extrapolation ofL to unity in Fig. 3.
~Kumar and Panagiotopoulos49 use the same method to de
termine the critical gelation concentration or gelation line
simulations of associating polymers with ‘‘sticker’’ groups!
The intercepts from theF-extrapolations are denoted by3
in Fig. 9, and these estimates for the onset of polymeriza
nearly coincide with those obtained from the extrapolation
L to unity in Fig. 3~the h symbols in Fig. 9!. Notably, the
extrapolated critical polymer concentrations from theF(fm

0 )
andL(fm

0 ) curves lie very close to the ideal polymerizatio
line in Fig. 9. The cpc curve and the ideal polymerizati
line Tp

(o) seem to be identical. This finding is restricted
relatively small r , however, and for largerr , it becomes
more difficult to extrapolateF(fm

0 ) to zero to determinefm*
due to the nonlinearity of theF(fm

0 ) function.
Kumar and Panagiotopoulos also suggest that the g

tion transition in thermally reversible gels can be estima
effectively from a plot of the volume fraction of unassociat
polymer versus the initial polymer concentration.49 This cri-
terion is based on a suggested analogy between therm
reversible gelation and micelle formation. Figure 8~b! con-
siders the corresponding properties for a living polymer
lution by plotting the monomer concentrationfm versus the
initial monomer concentrationfm

0 . The figure showsfm in-
creasing linearly withfm

0 if fm
0 lies below the critical poly-

mer concentrationfm* , and fm becoming nearly indepen
dent of fm

0 for fm
0 .fm* . This phenomenon is strikingly

similar to simulations of thermally reversible gels and obs
vation and simulations of micelle formation~see Ref. 49!.

It is apparent from the discussion above that disti
transition points emerge from the specific heat maximum~or
equivalently the inflection point in the temperature depe
dence ofF! and from extrapolatingL to unity or F to zero.
The specific heat maximum is identified as the true polym
ization temperatureTp , since the maximum is a real rathe



t

s

n

ig-

ical

ly-

vis-
p-

ous

in-
all

a-
rder
a

of
t a

o
f
ta

ing

g

of

s

‘criti-
eal
ly-

po-
um

tion

o the

r-

7124 J. Chem. Phys., Vol. 111, No. 15, 15 October 1999 Dudowicz, Freed, and Douglas
than an extrapolated feature characteristic of the onse
polymerization. The polymerization linesTp(fm

0 ) in Fig. 9
depend on the initiator concentrationr , and the departure
between Tp(fm

0 ) and the ‘‘ideal polymerization line’’
Tp

(o)(fm
0 ) of Dainton and Ivin increase withr . For the initia-

tor concentrations considered by Greeret al. for poly~a-
methylstyrene!, the deviations betweenTp(fm

0 ) and
Tp

(o)(fm
0 ) should only be on the order of a few degrees a

FIG. 8. ~a! Fraction of monomers converted to polymers as a function
temperatureT for a fixed initiator concentrationr 50.0044 and a range o
initial monomer concentrationsfm

0 . Squares denote the experimental da
of Greeret al. ~Ref. 33!. Inset showsF versusfm

0 for fixed temperatures.
The 3 in Fig. 9 denote the extrapolated values offm

0 defining the onset of
polymerization.~b! Volume fraction of unassociated monomersfm versus
the initial volume fraction of monomersfm

0 . Arrows in figure indicate
critical polymerization concentration from Fig. 3. Parameter values of liv
polymerization model correspond to poly~a-methylstyrene! (r 50.0044).
The flattening of thefm(fm

0 ) curve is characteristic of other associatin
systems~see Ref. 49!.
of

d

thus difficult to resolve experimentally. However, more s
nificant deviations can be expected for larger values ofuDhu
and r , leading to a greater separation between the crit
polymerization concentration lineT(fm* ) @or equivalently
Tp

(o)(fm
0 )# and the true polymerization lineTp(fm

0 ). It will
be interesting to examine this gap between the critical po
merization line Tp

(o)(fm
0 ) and the polymerization line

Tp(fm
0 ) for other types of associating polymers.

The growth of initiated polymer chains aboveTp should
be reflected in changes of transport properties, such as
cosity, collective diffusion coefficient, etc., since these pro
erties are generally sensitive to fluid heterogeneity. Previ
measurements for sulfur and poly~a-methylstyrene! solutions
identifiy the polymer transition temperature by a sharp
crease in the viscosity as measured by a falling b
viscometer.50,51 The initiation probability~the analog of ini-
tiator concentration! in sulfur solutions is extremely small2,3

~yielding one of the few cases where the living polymeriz
tion transition has the appearance of a real second o
phase transition!. While the viscometric method provides
reasonable estimate for the polymerization temperature
sulfur solutions, we expect the polymerization to initiate a

f

FIG. 9. Transition temperatures of living polymer solutions as a function
initial monomer concentrationfm

0 . The upper ‘‘crossover temperature’’ line
denotes the loci where the fractionF of monomers converted into polymer
is 5% greater than its high temperature limiting valueF(T→`)5r . Solid
line is the ‘‘ideal polymerization transition’’ line in ther→01 limit, and the
squares and crosses represent estimates of the transition line from the ‘
cal polymerization concentration’’ in Figs. 3 and 9, respectively. The id
polymerization line thus coincides with the curve defining the critical po
merization concentration. The dot-dash and long-dash lines denote the
lymerization transition temperatures at which specific heat has a maxim
for r 50.0044 and 0.1, respectively. The ‘‘saturation line’’Ts(fm

0 ) corre-
sponds to temperatures where the entropy of the living polymer solu
approaches to within 5% of its limiting low temperature valuesSo . We
observe that the ratios of the crossover and saturation temperatures t
polymerization temperatures are nearly constant and equal toTx /Tp51.21
60.04 and Tp /Ts51.2260.02, respectively.r is varied in the range
~0.0011, 0.0176! which is a factor of four larger and smaller than the refe
ence valuer 50.0044.
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higher ‘‘crossover’’ temperatureTx when the initiator con-
centration is larger. The viscometric determination of the
lymerization line must be performed very carefully.

The ‘‘crossover temperature’’Tx is defined as the tem
perature at which the polymerization process first becom
detectable, and this definition, of course, depends somew
on the method of measurement. Nevertheless, a good
mate forTx may be obtained by considering the magnitu
of uncertainty in the measurement process and by specif
the temperature where deviations emerge beyond this un
tainty. We therefore consider a criterion in which the fracti
of polymerized monomerF is taken as 5% greater than i
high temperature limitF(r ,T→`)5r as a reasonable orde
of magnitude detection limit for polymeric clustering.~This
criterion is in the spirit of the Ginzburg criterion for th
breakdown of homogeneity in a critical fluid mixture.52! The
resulting ‘‘crossover curve’’Tx is displayed in Fig. 9 as a
function of fm

0 and surprisingly is nearlyindependentof the
initiator concentration for r in the range r
P(0.0011,0.0176). Moreover, the concentration (fm

0 ) de-
pendence ofTx is similar to that forTp or Tp

(o) . The ratio
Tx /Tp51.2160.04 forfm

0 P(0.01,0.99) implies that a goo
estimate ofTx can be obtained from a knowledge ofTp .
Thus, the crossover temperatureTx can occur well aboveTp

~see the example in Fig. 9!, and therefore great caution mu
be exercised in deducing51 Tp from viscometric or other
transport measurements.

Living polymer solutions with initiator exhibit anothe
characteristic temperature that does not exist for polyme
ing systems without initiator. As discussed above, ch
growth becomes limited at low temperatures, and the ave
chain lengthL ‘‘saturates’’ to Lp52/r for T!Tp . The en-
tropy S of the living polymer solution also drops precip
tously upon cooling and likewise ‘‘saturates’’ at a tempe
ture comparable to that whereL ceases to vary withT. ~The
temperature dependence ofS and its relation toL are de-
scribed below.! Figure 9 presents the locus of saturation te
peraturesTs at which S becomes 5% greater than its lo
temperature limitSo . The saturation temperatureTs is al-
most independent of the initiator concentration forr in the
range r P(0.0011,0.0176), and its definition is similar
spirit to the definition of the Kauzmann temperature53 in
glass-forming liquids where the excess entropy is forma
extrapolated to zero. Thus, living polymers systems with
tiator have an onset temperatureTx ~which can be well above
Tp) where the polymers begin to grow, a ‘‘transition’’ tem
peratureTp where they grow rapidly and the system exhib
a specific heat maximum, and a ‘‘saturation’’ temperatureTs

where they cease to grow and the entropy saturates, res
tively. These three characteristic temperatures are essent
understanding the properties of living polymer systems.

In addition to the average chain lengthL and the order
parameterF, the molecular weight distributionp(N) is im-
portant for characterizing living polymers. Unfortunate
there have been few measurements54 of p(N). ~There happen
to be measurements of the molecular weight distribution
actin living polymers where the individual molecules can
directly observed by microscopy.55! The Flory-Huggins
model produces purely exponential tails for this distributi
-

s
at
ti-

g
er-

z-
n
ge

-

-

y
-

ec-
l to

r

of chain lengthN, as illustrated in Fig. 10 for a few tempera
tures but for constantfm

0 50.15 andr 50.0044. The inset to
Fig. 10 shows howp(N) changes with initiator content whe
fm

0 50.15 andT5270 K. The probabilityp(N51) for the
monomers is not presented in both figures since it is off sc
unless r is unreasonably large. For instance,p(N51,T
5270 K)50.9935, 0.9870, and 0.9635 forr 50.0044,
0.0088, and 0.025, respectively. When the temperature is
creased, the distribution becomes more steep, and the larN
tail of p(N) diminishes. A simple example illustrates th
variation. The average chain lengthL, as estimated from Eq
~29! by taking a finite lengthi * as the upper limit in the sum
over i , converges slowly to theL of Eq. ~24!, especially at
low temperatures. ForT5250 K, fm

0 50.15, and r
50.0044, we obtainL57.46, 9.74, 10.10, and 10.14 whe
i * 51000, 2000, 3000, and 4000, respectively. This exam
demonstrates that chains composed of a few thousand m
mers are still statistically relevant even whenL is fairly
small. As already noted, the presence of initiator limits po
mer growth, so the variation ofp(N) with initiator concen-
tration is similar to that produced by a change in tempe
ture. The examples ofp(N) are restricted to temperature
greater than the critical temperature for phase separationT
.Tc). Two molecular weight distributions exist forT,Tc,
one for each coexisting phase.39

In order to ascertain the sensitivity of the molecu
weight distributionp(N) to the polymerization mechanism
additional calculations39 have been performed for the mod
in which the propagating speciesM1I 1 has onlyoneinitiator
molecule. The resulting distributionsp(N) for chains having
one and two initiator molecules are found to be nearly id
tical numerically provided that the number of growing chai

FIG. 10. Chain lengthN distributionp(N) for living polymer solutions over
a range of temperaturesT and for fixed initial monomerfm

0 50.15 and
initiator concentrationsr 50.0044. The curves exhibit the increase in cha
length upon cooling. The inset depicts the variation ofp(N) with r for fixed
temperatureT5270 K and initial monomer concentrationfm

0 50.15. The
values ofp(N51) are not indicated in both figures since they lie off sca
unlessr is unreasonably large. The interaction parameterx is taken asx
5121/T, so the polymerization occurs in the one-phase region.
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is the same. The latter constraint implies that the initia
concentrationr in the single initiator molecule per polyme
system must be half of that for solutions with two initiat
molecules per polymer.

The relation between the decay lengthl of the molecular
weight distributionp(N),

p~N!;e2N/l, N→`, ~40!

in Eq. ~26! and the equilibrium chain lengthsL and L̂ is not
obvious at first glance from Eq.~26!. Intuitively, l should be
more closely related toL̂ since the tail of thep(N) distribu-
tion refers exclusively to the distribution of the polymer
species. Inspection of Eqs.~26!–~28! implies thatl equals
neitherL nor L̂. However,A may be expressed in terms ofL
through Eq.~24!,

A512
r

2

L

L21
, ~41!

so that subsequent expansion of lnA as

ln A5 lnF12
r

2

L

L21G' r

2

L

L21
, ~42!

leads to a representation of the decay lengthl in the form,

l521/lnA'
2

r

L21

L
'Lp

L21

L
, ~43!

whereLp is the saturation value ofL at low temperatures
Lp'2/r . Note that the approximationl'Lp(L21)/L holds
only for smallr . To our surprise,L̂ is also found to be well
approximated by

L̂'Lp~L21!/L, ~44!

thereby indeed yielding the approximationL̂'l. Moreover,
Eqs. ~25! and ~44! may be combined to produce the no
trivial relations,

F'
L21

L
or L'

1

12F
, ~45!

between the average chain lengthL and the extent of poly-
merizationF. The exact relation betweenL andF is readily
shown to be

L5
1

12F1r /2
, ~46!

which demonstrates that the applicability of Eq.~45! is re-
stricted to smallr . At high temperatures (T.Tp), the extent
of polymerization is small, and inserting the high tempe
ture expansion from Eq.~35! into Eq. ~46! gives,

L'11
r

2
@11A` exp~2Dh/kBT!#1O~r 2!, ~47!

whereA`;fm
0 exp@Ds/kB#1O(r2). Equation~47! is also re-

stricted to relatively high temperatures since Eq.~35! is a
high temperature expansion. A similar scaling with tempe
ture appears also in Eq.~31!, which describesL for a broad
range of temperatures in the vicinity ofTp and higher. Figure
11 comparesL̂ and l for r 50.0044 and demonstrates th
r

-

-

the approximationL̂5l holds very well providedT,Tp
(o) .

Equations~43!–~47! provide a method for estimatingL ~or
F! from data for the molecular weight distribution of livin
polymers.

Excluded volume interactions within and between t
polymers lead to deviations from the mean-field result in E
~26! for dilute polymer solutions. Scaling arguments24,56 in
this case predict that the exponential tail of the molecu
weight distribution is multiplied by a factorNg21, whereg
is the ‘‘susceptibility’’ exponent of self-avoiding walks56,57

g(d53)51.16. Simulations19–23 for living polymerization
~with r 50) confirm these scaling arguments. Thus, an i
proved estimate ofp(N) can be obtained by incorporatin
these corrections to mean-field theory when excluded v
ume corrections are required.

One question posed by recent simulations of cooled
uids is how the existence of transient particle clustering
fects the entropy of a liquid.25 In particular, an inverse rela
tion has been suggested between the dynamic cluster m
~which corresponds toL for living polymers! and the entropy
of glasses.58 Thus, we analyze the existence of a possi
relation betweenL and the entropyS of a living polymer
fluid. The entropy of the living polymer solution decreas
sharply to a saturation valueSo at low temperatures, and th
entropy also approaches a constantS(T→`) at high tem-
peratures. This saturation valueSo is found to be propor-
tional to the initial monomer concentrationfm

0 and to the
absolute value of the polymerization entropyuDsu for
poly~a-methylstyrene! andr 50.0044. We then define an ex

FIG. 11. Relation between the decay lengthl of the molecular weight

distribution p(N) and the average polymer lengthL̂ of a living polymer
solution. The initial monomer concentration isfm

0 50.15, while the initiator
concentration isr 50.0044. The monomers are not included in the averag

to calculate the chain lengthL̂, and thus this average tends to be larger th

L. L̂ approachesL in the low temperature limit, however. The main figur

shows thatl is very well approximated byL̂, providedT,Tp5287.2 K. On

the other hand, the inset demonstrates that the deviation betweenL̂ ~dash
curve! andL ~solid curve! can be appreciable forT.Tp .
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cess entropy59 DS relative to the low temperature ‘‘residua
entropy’’ So , so thatDS5S(T)2So becomes very small a
low temperatures, and we further normalize the entropy
dividing DS by its high temperature value to obtain a ‘‘no
malized excess entropy’’dS[DS/DS(T→`) which varies
between 0 and 1. Figure 12 shows thatdS decreases sharpl
with T where the transition temperature depends onfm

0 . Fig-
ure 13 exhibits the cluster mass (L) as varying in inverse
proportion todS, and this relation is nearly independent
the initiator concentrationr . This scaling arises because pa
ticle clustering has the general effect of reducing the entro
an effect that has potential importance for understanding
significance of the general sharp drop in the entropy near
glass transition of cooled liquids.25,47,53,58

IV. DISCUSSION

Our lattice model, mean-field theory calculations for li
ing polymer solutions indicate many important properties
these associating systems. Chain stiffness is found to ha
marginal effect on these properties within the present me
field theoretical framework. It is then quite justified to em
ploy flexible chain models to semiflexible associati
polymers.27 In order to compare with recent experiments
Greer and co-workers,2,3,32,33emphasis is placed here on liv
ing polymer solutions with afinite initiator concentrationr .
This contrasts with previous studies11–18that primarily focus
on ther→01 limit where the polymerization transition ha
previously been interpreted as a second order phase tr
tion. When initiator is present (r .0), L is found to vary
linearly with the initial monomer volume fractionfm

0 , and

FIG. 12. Temperature dependence of the excess entropydS[DS/DS(T
→`) of the living polymer solution for a range of initial monomer conce
trationsfm

0 at a fixed initiator concentrationr 50.0044. The primary influ-
ence of varyingfm

0 is to shift the transition temperature. The excess entro
dS is defined relative to the residual entropyDS of the polymer solution at
low temperatures, and the excess entropy is normalized by its high tem
ture limit, so thatdS[DS/DS(T→`) is a dimensionless number rangin
between 0 and 1.
y

y,
e
e

f
a

n-

f

si-

the slopea of this linear variation follows an Arrhenius re
lation over a wide temperature range. The intercept in p
of L21 versusfm

0 defines a ‘‘critical polymerization con
centration’’ fm* '1/a at which polymerization initiates. In
contrast, when initiator is absent and when the temperatu
well below the polymerization temperatureTp , we find that
L dependsnonanalyticallyon initial monomer concentration
as L;Afm

0 . The nonanalytic concentration dependence
commonly cited as a general property of living polymer s
lutions in mean-field theory, but this scaling is demonstra
here as actually having a restricted applicability. Thus,
presence of initiator induces aqualitative changein the prop-
erties of living polymer solutions.~Recent experiments42–45

for micellar ‘‘living polymers’’ produce a near linear depen
dence onfm

0 , suggesting that initiation or some effect lik
initiation is important for these systems as well.! The pres-
ence of initiator also enhances the chain growth at eleva
T, but limits the growth at lowT whereL becomesindepen-
dentof both fm

0 andT, L(T!Tp)'2/r . The transient clus-
tering of monomers into polymers upon cooling cause
precipitous drop in the entropyS of the living polymer solu-
tion, as found in glass-forming liquids. In particular, the e
cess entropyDS relative to its residual valueSo at low T
varies inversely with the chain lengthL;DS(T→`)/DS to
a very good approximation. The magnitude of the maxim
CP* in CP and the temperature (Tp) at which this maximum
occurs are both dependent onr , the transition becoming
more rounded with increasingr . This rounding is also ap-
parent in the order parameterlike variableF. ~Strictly speak-
ing, no second order polymerization phase transition ex
for r .0.) While a unique transition temperatureTp

(o) may be

y

ra-

FIG. 13. Relation between the excess entropydS and the average chain
lengthL of a living polymer solution for a range of initiator concentration
r and a fixed initial monomer concentrationfm

0 50.15. The excess entropy
dS is defined as in Fig. 12.L is nearly proportional to 1/dS over almost the
entire range of definition ofL and dS. The inset shows that the invers
proportionality holds particularly well at more elevated temperatures clo
to Tp .
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defined for living polymers without initiator, the presence
initiator leads to threecharacteristic temperatures: a ‘‘cross-
over temperature’’Tx where polymers first begin to form,
‘‘polymerization temperature’’Tp where the specific hea
has a maximum, and a ‘‘saturation temperature’’Ts whereS
nearly saturates toSo and the polymers cease to grow. Th
analogy of this behavior of the entropy with that of sup
cooled liquids has important ramifications for understand
the transport properties of both living polymers and sup
cooled liquids.25,47,53,58

The molecular weight distributionp(N) of living poly-
mers also exhibits notable features. The distribution funct
in Eq. ~26! consists of two parts—the monomer contributi
plus an exponentially decaying contribution governing
polymerized species. The decay lengthl of the exponential
tail of p(N) has no obvious mathematical relation to t
average chain length, but we have obtained the useful
proximation l'Lp(L21)/L'LpF, where Lp'2/r is the
low temperature plateau value ofL. This relation should
allow the experimental determination ofL or F from data for
p(N) of living polymers. We also find a near equivalen
betweenp(N) for chains with one or two growing ends if th
distributions are compared for conditions with the sa
number of growing chains.

The rich behavior of living polymer solutions arise
from a competition between the free energy of associatio
monomers and the entropy loss due to the formation of p
mers. As the temperature is lowered, the energetic gain o
comes the entropic loss, thereby providing the physical
gin of polymerization upon cooling. At very low
temperatures, the association energy completely domin
the behavior of the system, and, consequently, the ave
polymer molecular weight depends only on the amount
initiator present. However, for high temperatures the entro
contribution exerts a larger effect, and a balance between
entropy loss and the energetic gain determines the exac
ture of the molecular weight distribution. The competitio
between energetic gain upon ‘‘clustering’’ and the entro
loss upon reducing the number of particles in the system
common to many equilibrium aggregating systems, includ
amphiphilic micelle formation and the clustering observed
supercooled liquids.

The ubiquitous nature of equilibrium associations41 im-
plies that many of our findings for end-associating~‘‘liv-
ing’’ ! polymers apply more generally to associating po
mers and self-assembling particle clusters of other kinds.
example, the temperature dependence of the ‘‘gelation’’ l
for thermoreversible gels formed by associating polym
appears to be very similar to the temperature dependenc
the polymerization line for living polymers,60 and this corre-
spondence is also apparent in the calculations of Coni
et al.61,62 based on a mean-field model of polyfunction
chain association combined with solvent mediated polym
polymer interactions. Recent lattice model simulations
Kumar and Pangiotopoulis49 of polymer chains with associ
ating ‘‘sticker’’ groups dispersed along the chain yield a g
lation line that increases sharply with associating group c
centrationfm

0 , a mass distributionp(N) of clusters having
an exponential tail,63 a linear increase of cluster mass wi
f
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fm
0 , and other features in common with living polyme

~e.g., an upward shift of upper critical solution temperatu
associated with the sticking interactions!. It would be inter-
esting to determine the extent to which these phenom
quantitativelycompare. The formation of spherical micelle
from small amphiphile molecules also has features in co
mon with living polymerization.41 The ‘‘critical micelle con-
centration’’ exhibits an Arrhenius temperature dependenc40

and ‘‘polymerization’’ ~micelle formation! can occur either
upon lowering or raising temperature, just as in ordinary l
ing polymers. It is not clear yet whether the micelle ma
increases linearly with the concentration of surfacta
~monomer!, but simulations do indicate a gradual mass
crease with the surfactant concentration.40 Aqueous living
polymers commonly associate upon heating27 ~e.g., actin! or
for concentrations above a critical micelle concentration,64,65

and this situation also appears to occur in micelle form
systems,40 suggesting a common tendency toward asso
tion with a positive entropy of association arising from ‘‘hy
drophobic’’ polymer interactions in water.65–67

The phenomenon of ‘‘living polymerization’’ has a sig
nificance in condensed matter physics that transcends
synthesis of polymers with a broad molecular weight dis
bution. Stringlike structures occur at equilibrium in assoc
tion with many condensed matter phase transitions68–93 and
in the stationary states of important nonequilibriu
systems.94–97 The study of living polymers also provides in
sights into these transitions. For example, the Feynm
model83–85,98 of the l-transition in 4He is a model with a
living polymerization transition involving the proliferation o
particle exchange loops in low temperatures in bos
fluids.83–87 The isotropic-nematic transition in certain liqui
crystalline fluids75–77 and the superconducting transition
type II superconductors71,72 also involve polymerlike excita-
tions, and indeed these transitions are largely driven by th
‘‘defect’’ structures.74 Current cosmological models79 and
models of particle generation68–70 in high energy physics
both reduce to living polymerization models in a mean-fie
approximation, and much of the existing theoretical literatu
of living polymerization belongs to this context.

Recent molecular dynamics simulations25 provide the
first unambiguous evidence for the ‘‘cooperative rearrang
regions,’’ hypothesized by Adam–Gibbs58 to exist in super-
cooled liquids. These stringlike clusters of enhanced part
mobility ~compare to Feynman’s model of th
l-transition!83–85 are observed to have a mass distributi
with an exponential tail,25 a characteristic feature of living
polymerization. The present paper demonstrates that the
erage length~mass! of living polymers scales inversely with
the excess entropyDS of the living polymer solution. This
finding accords with the formal arguments presented
Adam and Gibbs58 for glass-forming liquids. Donatiet al.25

argue that the barrier height for collective particle motion
glasses is proportional to the average string length of
mobile particle, which is consistent with the prior argume
by Adam and Gibbs58 that the barrier height for collective
motion is governed by the mass of the ‘‘cooperatively re
ranging regions.’’ The growth of polymer chains shown
Fig. 1 provides a natural mechanism for the large increa
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in the apparent activation energies of polymer liquids,
increase which is also a conspicuous property of ‘‘fragil
glass-forming liquids. Note also that the tendency ofL to
saturate to a constant value at low temperatures corresp
to the general tendency for the relaxation in supercooled
uids to return to Arrhenius temperature dependence at
temperatures.99 Further implications of this promising mode
of transport in glass-forming liquids will be discussed els
where.
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