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Growing Spatial Correlations of Particle Displacements in a Simulated Liquid on Cooling
toward the Glass Transition
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We define a correlation function that quantifies the spatial correlation of single-particle displacements
in liquids and amorphous materials. We show that for an equilibrium liquid this function is related to
fluctuations in a bulk dynamical variable. We evaluate this function using computer simulations of an
equilibrium glass-forming liquid, and show that long range spatial correlations of displacements emerge
and grow on cooling toward the mode coupling critical temperature. [S0031-9007(99)09452-1]
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Liquids cooled toward their glass transition exhibit re-written asg(r) = W1<N><2v=l NS+ rj —r;)). The
n}a;rkable otlynamlcal b?ha‘l’_'or_(gl]- t-trhe |n|t|taLIFsIov|\1|ng Fourier transform ofG(r) gives the static structure factor
of transport processes for liquids at temperatufese S(a) = (N-'SY SV evd—a - (6 — £,
above their glass transition temperatiieis described by (@ = ¢ 201 j=1 8X g - (ri — )]
the mode coupling theory (MCT) [2], which predicts di- \,sef| to evaluate the fluctuations of, which are re-
verging relaxation times at a dynamical critical temperay,4e4 tg the volume integral af(r) and to a thermody-
ture 7. (in real and simulated liquids, this divergence is 5 i yesponse function, the isothermal compressibility
only apparent). The dynamical singularity of MCT occurs [7]: (N — (N)P) = [dr G(r) = (n)(N)kTx, where
without a corresponding growing static correlation length, .<"5oitzmann’s constant. The convergence or diver-

associated with density or composition fluctuations [3]. ence of [ dr G(r) depends on how rapidl decavs
Yet recent studies show that in the rangeTotlescribed ?0 zZero as{ _r) m(.r)lf thg integral convergpeg%lf)r?s “sho>r/t

by MCT, simulated gIa;s—forming quuid_s exhibit spatiall_y ranged” if it divergesG (r) is “long ranged.” Near a con-
heterogeneous dynamics [4—6]. In this Letter, we defingoiiona) critical point,« diverges, macroscopic density

a correlation function that quantifies the spatial correlationy,.t,ations occur. and the behavior 61r) approaches
of particle displacements and evaluate this function for gy, ¢ 5 long rang’ed function

Lennard-Jones liquid. We find that spatial correlations of 1 develop a simple spatial correlation function for a

dispéacement arise and become long ranged on cooling 1954 gynamicalquantity in a liquid, we consider for a par-
ward 7. . . . . ticle i its (scalar) displacement; (¢, At) = |r;(r + Ar) —

_ First, we briefly review the conventlona! static C.O”e'a‘r,-(m over some interval of tima¢, starting from a refer-
tion function that describes the average microscopic StrUGshce timer. We examine the spatial correlations of these

ture of a liquid. We use a definition that will facilitate displacements by modifying the definition 6fr) so that

an extension to a new correlation function for particley,o contribution of a particlé to the correlation function
displacements. Consider a liquid in the grand canonic weighted byu,. That is, we define a “displacement-
ensemble confined to a volunié, consisting of identi- displacement” ccl).rrelation function [8,9]

To determine the behavior af(r) for large r, it is

cal particles, each with no internal degrees of freedom.

Let the position of each particle be denotedr;. In G,(r,At) = fdl‘/<[u(r'+r, t,At) — (u)]
equilibrium, the structure of a homogeneous liquid can ,

be quantified by the “density-density” correlation func- X [u(c', 1, A1) = w))), (1)

tion [7] G(r) = [dr{{n(’ + r) — (M][n() — (0)]).  whereu(r, s, Ar) =3, wi(t, A1) 8@ — 1;(1)). G (r, Ar)
Here, n(r) = Zf.vzl 8(r — r;), and({...) indicates an en- measures correlations in fluctuations of local dis-
semble average.N = [drn(r) is the number of par- placements away from their average value. We are
ticles in a given configuration. For a homogeneousconsidering an equilibrium liquid and s6, does not
liquid the densityp = (n) = (N)/V. If the liquid is depend on the choice of the reference time Simi-
isotropic, G(r) further reduces taG(r), wherer = |r|. larly, (u) = (u(r,t,At)) does not depend om; for a
G(r) measures the spatial correlations of fluctuations ohomogeneous liquid, it also does not dependronin
local density away from the average value. The pair coranalogy to the relation betweénm) and(N), we define the
relation functiong(r) conventionally presented to char- “total displacement’U(t,At) = [dru(r,t,At) and its
acterize the structure of a liquid is related @(r) ensemble averageU) = (U(z,Ar)). In a constaniv
via G(r) = (N)o(r) + (n)(N)[g(r) — 1]. g(r) can be ensemble, botHu) and (U) are readily evaluated from
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the mean displacementz = (N~! Z?’:I wi(t, Ar)):
(uy = wln) and(U) = w(N). In equilibrium, (u), {U),
andz do not depend om, but they retain a dependence
onAz.

G,(r,At) can be written so as to identify a spatial cor-
relation functiong, (r, Ar) analogous tg(r): G,(r, At) =
(N)u? 8(r) + (u)(U)[gu(r,At) — 1], where

1 N N
(u){U) < Z Z wi(t, At) wi(t, At)
i=1J=1
>- )

X 8[r + r;j(t) — ri(1)]
The mean squared displacemer is defined asu? =
<N‘IZ§V:1,LL%(t,At)>, and also depends on:s. The
Fourier transform of5,(r, At) gives a “structure factor”
N N

<(NP)1 DN wilt, Aouj(r, Ar)

i=1 j=1
>. 3)

gu(r,Ar) =

Su(q, Ar) =

X exp{—iq - [ri(r) — r;(H)]}

In analogy to the fluctuations a¥, the fluctuations ot/
are related to the volume integral 6f,(r, Ar) via

[ - (WP = f dr Gu(r, Ar) = (W) (UNKT k. (4)

range ofT studied,r, and the self-diffusion coefficient
D follow power laws with(T — T.), with 7. = 0.435,

but with different exponents [11hf( = 2.8, yp = 2.13
[13]). The simulated liquid states analyzed here thus
exhibit the complex bulk relaxation behavior characteristic
of a supercooled liquid approaching its glass transition.
Both g(r) and S(g) for this liquid have been calculated
previously [11], and it has been shown thaTadecreases,
no long range structural correlations due to density or
composition fluctuations occur.

In Fig. 1 we showg,(r, Ar) as a function of- for T =
0.451, and withAr chosen to be on the order of. g(r)
forthe samd’ is also shown. For afixed choice &f, note
that if the displacement were always the same for every
particle, theng,(r, Ar) andg(r) would be identical for all
r. Hence, it is deviations of,(r, At) from g(r) that will
inform us of spatial displacement correlations in excess
of those that would be expected based on a knowledge of
g(r) alone. We find that for this choice &ft, g,(r, At) is
appreciably higher thag(r) for values ofr up to several
interparticle distances. This excess correlation is made
clearer in the inset of Fig. 1, where we show the function
[(r,At) = [gu(r,A1)/g(r)] — L.

However, the question arises as to how to select the
value of Ar. We find that the behavior of the liquid

We have defined the generalized, time-dependent susceijtself suggests a unique choice far. To demonstrate

tibility «, in analogy tokx. Hence, as foiG(r), we can
determine the large behavior ofG,(r, Ar) from the fluc-
tuations of a bulk quantityt/.

this, we show in Fig. 2 the total excess correlatibr=
[drT(r,At) as a function ofAr. We find that there is a
value ofAr = Ar* at whichA is a maximum and that both

To evaluate these quantities we use data obtainethe maximum values of andA¢* increase with decreasing

[4] from a molecular dynamics simulation of a model
Lennard-Jones glass former.
dimensional binary mixture (80:20) of 8000 particles
interacting via Lennard-Jones interaction parameters [10
We analyze data from seve(p, P,T) state points on

a line in the P,T plane approachind’. = 0.435 at a

pressureP = 3.03 [11]. (In the remainder of this paper,

all values are quoted in reduced units [10].) The highest 3

and lowestT state points simulated afgp = 1.09,P =
0.50,7 = 0.550) and (p = 1.19,P = 2.68,T = 0.451).
Following equilibration at each state point, the particle
trajectories are monitored in th¥VE ensemble K is
the total energy) for up td.2 X 10* Lennard-Jones time
units (25.4 ns in argon units) for the coldgst Complete
simulation details may be found in [4]. All quantities

The system is a threaisplacements is most prominent &t*.

T. Hence for eacll’ the spatial correlation of particle
Moreover, all
curves forT = 0.525 collapse onto a single master curve
Wwhen ¢ is scaled byAr* and A is scaled byA(Ar?),

Sp—

presented here are calculated using all 8000 particles in ; |
the liquid. Our results do not change when the minority
particles are excluded [12].

For all seven state points, a “plateau” exists in both

u? and the intermediate scattering functidi(g, ) as

a function of ¢+ [11]. The plateau separates an early 0 1 2 3 4 5 6
time ballistic regime from a late time diffusive regime, r
and indicates “caging” of the particles typical of low FIG. 1. g,(r. A7) and g(r) versusr at T — 0451, A is

T, high p liquids. The a-relaxation timer, describes
the decay of the self park,(q,r) to zero at the value
of g corresponding to the first peak $Xg). Over the

chosen on the order of,. Inset:I'(r, At) versusr. The error
in our evaluation ofg,(r, At) and g(r) is of the order of the
line thickness.
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0.4 : : the fluctuations ot/ (Fig. 2b) and confirmk, exhibits the
@ @ 7=0.550 same behavior a&. «, goes to zero at short and long times,
03 [ mT=0.525 ] and has a maximum at®&dependentA:* [15].
P In Fig. 4 we show thel’ dependence ok, for Ar =
<027 «T=0.462 ] Ar*. We find that,(Ar*) grows monotonically with
01 & ¥ 7=0.457 ] decreasing’’, indicating that the range of the correlation

> 7=0.451 measured byG,(r, Ar*) is growing with decreasing'.

We find that a power lawk,(At*) ~ (T — T.)~7 fits
well to the data wherf, = 0.435, and givesy = 0.84,
although as for Fig. 3, to firmly establish a power law
divergence requires further data. Thug exhibits an
apparent divergence at & that is within numerical
error of T., demonstrating thaG,(r, At*) is becoming
increasingly long ranged a8 — T.. We note that on
closer approach t@., beyond the range of the present
simulations, this divergence may be shifted to lower

At like that of other quantities associated with MCT.
FIG. 2. (a)A versusAt for different7. (b) , as a function ‘To estimate a corrglation length associated with these
of At for the sameT" as in (). displacement correlations, we evaluatgq, Ar*) for dif-

ferentT (Fig. 5). For intermediate and large S, (g, At¥)

suggesting thaA+* is a characteristic time for this liquid. coincidcejzs WithS(q.t)H dHoweV(_ar, forq_—>d0 a pe?k SevetzL—
In the remainder of this Letter, all quantities are therefor®PS and grows with decreasidg again demonstrating the

evaluated fors = As*. Figure 3 shows thai* follows presence of long range dynamical f:orrelations. No grow-
a power law withT: an excellent fit [14] to the form* ~ N9 Peakay = 0 appears in the static structure facsy)

(T — T,)"7 is obtained wheff, = 0.435, and yieldsy = (Fig. 5, inset). To extract the correlation length, we at-
23 + 02. This value fory is different from the exponent tempted to fitS, (g, Ar") using an Orstein-Zernike form,

23 ; )
found forr,, but (within our numerical uncertainty) cannot SLI’(;I) ochl/[(]l J; ¢ qf_), Whﬁreff tge correAatlr(])_nAength.
be distinguished from the exponent governing the appare though this form fits well to the data at the highastit
vanishing ofD atT,. In any case, the proposal of a power ails at lowerT, making the interpretation of the fittefl

law divergence is preliminary, until the data are extended’alues amb|guou§. . .
over several decades Bf — T.,. Nevertheless, it was shown previously for this system

If A is largest atAs*, then we might also expect that highly “mobile” particles form clusters whose mean
x, to be largest atAs*, since k, quantifies the total SIZ€ diverges af. [4]. These clusters contribute to the

magnitude (integrated over space) of the displacemerﬂ;ot"r‘:'ngI rarlge Of(l;“(r ALY, e;]r)dhthust_gllve ant.estlmate
correlations quantified b@,(r, A7). We evaluates, from ©f the length scaleg over which particle motions are
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FIG. 3. Ar* plotted versug'. The solid curve is a power law FIG. 4. «,(At*) plotted versug'. The solid curve is a power
fit to the data. Inset: Log-log plot aks* versusT — T., and law fit to the data. Inset: Log-log plot ok,(Ar*) versus
the power law fit to the dataT. = 0.435. T — T., and the power law fit to the datal. = 0.435.
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