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Growing Spatial Correlations of Particle Displacements in a Simulated Liquid on Cooling
toward the Glass Transition
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We define a correlation function that quantifies the spatial correlation of single-particle displacements
in liquids and amorphous materials. We show that for an equilibrium liquid this function is related to
fluctuations in a bulk dynamical variable. We evaluate this function using computer simulations of an
equilibrium glass-forming liquid, and show that long range spatial correlations of displacements emerge
and grow on cooling toward the mode coupling critical temperature. [S0031-9007(99)09452-1]
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Liquids cooled toward their glass transition exhibit re
markable dynamical behavior [1]. The initial slowing
of transport processes for liquids at temperaturesT well
above their glass transition temperatureTg is described by
the mode coupling theory (MCT) [2], which predicts di
verging relaxation times at a dynamical critical tempera
ture Tc (in real and simulated liquids, this divergence i
only apparent). The dynamical singularity of MCT occur
without a corresponding growing static correlation lengt
associated with density or composition fluctuations [3
Yet recent studies show that in the range ofT described
by MCT, simulated glass-forming liquids exhibit spatially
heterogeneous dynamics [4–6]. In this Letter, we defin
a correlation function that quantifies the spatial correlatio
of particle displacements and evaluate this function for
Lennard-Jones liquid. We find that spatial correlations
displacement arise and become long ranged on cooling
wardTc.

First, we briefly review the conventional static correla
tion function that describes the average microscopic stru
ture of a liquid. We use a definition that will facilitate
an extension to a new correlation function for particl
displacements. Consider a liquid in the grand canonic
ensemble confined to a volumeV , consisting of identi-
cal particles, each with no internal degrees of freedom
Let the position of each particlei be denotedri . In
equilibrium, the structure of a homogeneous liquid ca
be quantified by the “density-density” correlation func
tion [7] Gsrd ­

R
dr0kfnsr0 1 rd 2 knlg fnsr0d 2 knlgl.

Here, nsrd ­
PN

i­1 dsr 2 rid, and k. . .l indicates an en-
semble average.N ­

R
dr nsrd is the number of par-

ticles in a given configuration. For a homogeneou
liquid the densityr ­ knl ­ kNlyV . If the liquid is
isotropic, Gsrd further reduces toGsrd, where r ­ jrj.
Gsrd measures the spatial correlations of fluctuations
local density away from the average value. The pair co
relation functiongsrd conventionally presented to char-
acterize the structure of a liquid is related toGsrd
via Gsrd ­ kNldsrd 1 knl kNl fgsrd 2 1g. gsrd can be
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written asgsrd ­
1

knl kNl k
PN

i­1

PN
j­1
jfii

dsr 1 rj 2 ridl. The

Fourier transform ofGsrd gives the static structure factor
Ssqd ­ kN21

PN
i­1

PN
j­1 expf2ıq ? sri 2 rjdgl.

To determine the behavior ofGsrd for large r, it is
useful to evaluate the fluctuations ofN, which are re-
lated to the volume integral ofGsrd and to a thermody-
namic response function, the isothermal compressibili
k [7]: kfN 2 kNlg2l ­

R
dr Gsrd ­ knl kNlkTk, where

k is Boltzmann’s constant. The convergence or dive
gence of

R
dr Gsrd depends on how rapidlyGsrd decays

to zero asr ! `. If the integral converges,Gsrd is “short
ranged”; if it diverges,Gsrd is “long ranged.” Near a con-
ventional critical point,k diverges, macroscopic density
fluctuations occur, and the behavior ofGsrd approaches
that of a long ranged function.

To develop a simple spatial correlation function for
localdynamicalquantity in a liquid, we consider for a par-
ticle i its (scalar) displacementmist, Dtd ­ jrist 1 Dtd 2

ristdj over some interval of timeDt, starting from a refer-
ence timet. We examine the spatial correlations of thes
displacements by modifying the definition ofGsrd so that
the contribution of a particlei to the correlation function
is weighted bymi. That is, we define a “displacement-
displacement” correlation function [8,9],

Gusr, Dtd ­
Z

dr0kfusr0 1 r, t, Dtd 2 kulg

3 fusr0, t, Dtd 2 kulgl , (1)

whereusr, t, Dtd ­
PN

i­1 mist, Dtd dsssr 2 ristdddd. Gusr, Dtd
measures correlations in fluctuations of local dis
placements away from their average value. We a
considering an equilibrium liquid and soGu does not
depend on the choice of the reference timet. Simi-
larly, kul ; kusr, t, Dtdl does not depend ont; for a
homogeneous liquid, it also does not depend onr. In
analogy to the relation betweenknl andkNl, we define the
“total displacement”Ust, Dtd ­

R
dr usr, t, Dtd and its

ensemble averagekUl ; kUst, Dtdl. In a constant-N
ensemble, bothkul and kUl are readily evaluated from
© 1999 The American Physical Society
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the mean displacementm ; kN21
PN

i­1 mist, Dtdl:
kul ­ mknl and kUl ­ mkNl. In equilibrium, kul, kUl,
and m do not depend ont, but they retain a dependenc
on Dt.

Gusr, Dtd can be written so as to identify a spatial co
relation functiongusr, Dtd analogous togsrd: Gusr, Dtd ­
kNlm2 dsrd 1 kul kUl fgusr, Dtd 2 1g, where

gusr, Dtd ­
1

kul kUl

*
NX

i­1

NX
j­1
jfii

mist, Dtd mjst, Dtd

3 dfr 1 rjstd 2 ristdg

+
. (2)

The mean squared displacementm2 is defined asm2 ;
kN21

PN
i­1 m

2
i st, Dtdl, and also depends onDt. The

Fourier transform ofGusr, Dtd gives a “structure factor”

Susq, Dtd ­

*
sNm2d21

NX
i­1

NX
j­1

mist, Dtdmjst, Dtd

3 exph2ıq ? fristd 2 rjstdgj

+
. (3)

In analogy to the fluctuations ofN , the fluctuations ofU
are related to the volume integral ofGusr, Dtd via

kfU 2 kUlg2l ­
Z

dr Gusr, Dtd ; kul kUlkTku . (4)

We have defined the generalized, time-dependent sus
tibility ku in analogy tok. Hence, as forGsrd, we can
determine the larger behavior ofGusr, Dtd from the fluc-
tuations of a bulk quantity,U.

To evaluate these quantities we use data obtai
[4] from a molecular dynamics simulation of a mod
Lennard-Jones glass former. The system is a thr
dimensional binary mixture (80:20) of 8000 particle
interacting via Lennard-Jones interaction parameters [1
We analyze data from sevensr, P, T d state points on
a line in the P, T plane approachingTc ø 0.435 at a
pressureP ø 3.03 [11]. (In the remainder of this paper
all values are quoted in reduced units [10].) The high
and lowestT state points simulated aresr ­ 1.09, P ­
0.50, T ­ 0.550d and sr ­ 1.19, P ­ 2.68, T ­ 0.451d.
Following equilibration at each state point, the partic
trajectories are monitored in theNVE ensemble (E is
the total energy) for up to1.2 3 104 Lennard-Jones time
units (25.4 ns in argon units) for the coldestT . Complete
simulation details may be found in [4]. All quantitie
presented here are calculated using all 8000 particle
the liquid. Our results do not change when the minor
particles are excluded [12].

For all seven state points, a “plateau” exists in bo
m2 and the intermediate scattering functionFsq, td as
a function of t [11]. The plateau separates an ea
time ballistic regime from a late time diffusive regime
and indicates “caging” of the particles typical of low
T , high r liquids. Thea-relaxation timeta describes
the decay of the self partFssq, td to zero at the value
of q corresponding to the first peak inSsqd. Over the
e
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range ofT studied,ta and the self-diffusion coefficient
D follow power laws withsT 2 Tcd, with Tc ­ 0.435,
but with different exponents [11] (gt ø 2.8, gD ø 2.13
[13]). The simulated liquid states analyzed here th
exhibit the complex bulk relaxation behavior characterist
of a supercooled liquid approaching its glass transitio
Both gsrd and Ssqd for this liquid have been calculated
previously [11], and it has been shown that asT decreases,
no long range structural correlations due to density
composition fluctuations occur.

In Fig. 1 we showgusr, Dtd as a function ofr for T ­
0.451, and withDt chosen to be on the order ofta . gsrd
for the sameT is also shown. For a fixed choice ofDt, note
that if the displacement were always the same for eve
particle, thengusr , Dtd andgsrd would be identical for all
r. Hence, it is deviations ofgusr , Dtd from gsrd that will
inform us of spatial displacement correlations in exce
of those that would be expected based on a knowledge
gsrd alone. We find that for this choice ofDt, gusr , Dtd is
appreciably higher thangsrd for values ofr up to several
interparticle distances. This excess correlation is ma
clearer in the inset of Fig. 1, where we show the functio
Gsr, Dtd ; fgusr, Dtdygsrdg 2 1.

However, the question arises as to how to select t
value of Dt. We find that the behavior of the liquid
itself suggests a unique choice forDt. To demonstrate
this, we show in Fig. 2 the total excess correlationA ;R

dr Gsr , Dtd as a function ofDt. We find that there is a
value ofDt ­ Dtp at whichA is a maximum and that both
the maximum values ofA andDtp increase with decreasing
T . Hence for eachT the spatial correlation of particle
displacements is most prominent atDtp. Moreover, all
curves forT # 0.525 collapse onto a single master curv
when t is scaled byDtp and A is scaled byAsDtpd,
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FIG. 1. gusr , Dtd and gsrd versus r at T ­ 0.451. Dt is
chosen on the order ofta . Inset:Gsr , Dtd versusr. The error
in our evaluation ofgusr , Dtd and gsrd is of the order of the
line thickness.
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FIG. 2. (a)A versusDt for different T . (b) ku as a function
of Dt for the sameT as in (a).

suggesting thatDtp is a characteristic time for this liquid.
In the remainder of this Letter, all quantities are therefo
evaluated forDt ­ Dtp. Figure 3 shows thatDtp follows
a power law withT : an excellent fit [14] to the formDtp ,
sT 2 Tcd2g is obtained whenTc ­ 0.435, and yieldsg ­
2.3 6 0.2. This value forg is different from the exponent
found forta , but (within our numerical uncertainty) canno
be distinguished from the exponent governing the appar
vanishing ofD atTc. In any case, the proposal of a powe
law divergence is preliminary, until the data are extend
over several decades ofT 2 Tc.

If A is largest atDtp, then we might also expect
ku to be largest atDtp, since ku quantifies the total
magnitude (integrated over space) of the displacem
correlations quantified byGusr, Dtd. We evaluateku from
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FIG. 3. Dtp plotted versusT . The solid curve is a power law
fit to the data. Inset: Log-log plot ofDtp versusT 2 Tc, and
the power law fit to the data.Tc ­ 0.435.
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the fluctuations ofU (Fig. 2b) and confirmku exhibits the
same behavior asA: ku goes to zero at short and long times
and has a maximum at aT -dependentDtp [15].

In Fig. 4 we show theT dependence ofku for Dt ­
Dtp. We find that kusDtpd grows monotonically with
decreasingT , indicating that the range of the correlatio
measured byGusr , Dtpd is growing with decreasingT .
We find that a power lawkusDtpd , sT 2 Tcd2g fits
well to the data whenTc ­ 0.435, and givesg ­ 0.84,
although as for Fig. 3, to firmly establish a power la
divergence requires further data. Thusku exhibits an
apparent divergence at aT that is within numerical
error of Tc, demonstrating thatGusr, Dtpd is becoming
increasingly long ranged asT ! Tc. We note that on
closer approach toTc, beyond the range of the presen
simulations, this divergence may be shifted to lowerT ,
like that of other quantities associated with MCT.

To estimate a correlation length associated with the
displacement correlations, we evaluateSusq, Dtpd for dif-
ferentT (Fig. 5). For intermediate and largeq, Susq, Dtpd
coincides withSsqd. However, forq ! 0 a peak devel-
ops and grows with decreasingT , again demonstrating the
presence of long range dynamical correlations. No gro
ing peak atq ­ 0 appears in the static structure factorSsqd
(Fig. 5, inset). To extract the correlation length, we a
tempted to fitSusq, Dtpd using an Orstein-Zernike form,
Susqd ~ 1ys1 1 j2q2d, wherej is the correlation length.
Although this form fits well to the data at the highestT , it
fails at lowerT , making the interpretation of the fittedj
values ambiguous.

Nevertheless, it was shown previously for this syste
that highly “mobile” particles form clusters whose mea
size diverges atTc [4]. These clusters contribute to the
growing range ofGusr, Dtpd, and thus give an estimate
of the length scalej over which particle motions are
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FIG. 4. kusDtpd plotted versusT . The solid curve is a power
law fit to the data. Inset: Log-log plot ofkusDtpd versus
T 2 Tc, and the power law fit to the data.Tc ­ 0.435.
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FIG. 5. Susq, Dtpd versusq for different T . The values at
q ­ 0 are obtained from the fluctuations inU via the relation
Susq ­ 0, Dtpd ­ m2rTkusDtpdym2. Inset: Static structure
factor Ssqd for four differentT ’s.

correlated. AtT ­ 0.451, j exceeds 3 particle diameters
and the largest cluster exceeds the size of our simulat
box (ø19 particle diameters on a side.)

We emphasize that the growing length scale identifi
here is dynamic rather than static as in conventional cr
cal phenomena. We note that a growing dynamical c
relation length may also be calculated within Maxwell
viscoelastic theory [17,18]. It may be possible to calcula
the displacement-displacement correlation function with
the mode coupling framework, allowing the relationship
these two dynamical lengths to be explored. Experime
tally, the measurement of the new quantities defined h
presents a challenge [19]. One possibility is to calcula
them for a glass-forming colloidal suspension, in whic
particle trajectories may be directly followed using confo
cal microscopy [20]. However, more analysis is require
to connect them to quantities readily measured for atom
and molecular liquids. In this paper, we have also iden
fied a bulk dynamical variableU whose fluctuations appea
to diverge atTc. Hence,U is behaving much like a static
order parameter on approaching a second-order phase
sition. Our analysis therefore suggests that an extensio
dynamically defined quantities of the framework of ord
nary critical phenomena may be useful for understand
the nature of supercooled, glass-forming liquids.
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