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The kinetics of size segregation in quasi-two-dimensional binary mixtures of nearly-hard-sphere colloids
were studied with video microscopy. During the transient fluid-fluid phase separation that occurs as an
intermediate step in the formation of isolated large-sphere crystallites, the structure factor of the (larger)
minority component exhibits a spinodal-like evolution, while the cluster-size distribution exhibits scaling
reminiscent of colloidal aggregation. The scaled distributions suggest a crossover from power-law (x < 1)
to stretched-exponential (x > 1) behavior, where x ) k/s is the ratio of the cluster-size index to the average
cluster size. A phenomenological explanation based on the reversible Smoluchowski equation is proposed.

I. Introduction

Colloidal aggregation can bear a striking resemblance
to phase separation in binary fluid mixtures.1 While the
former is typically associated with the flocculation of
particles and particle clusters inherently far from equi-
librium, the latter is typically associated with the time
evolution of thermodynamically unstable or metastable
states and the kinetics of partitioning between coexisting
phases.2 The segregation of a binary fluid2 and the
crystallization of a simple liquid3 are by themselves
familiar examples of first-order phase transitions; how-
ever, these two phenomena can be driven simultaneously,
for example, in mixtures whose components interact
predominantly through excluded volume via a so-called
depletion force.4,5 In a recent study of depletion-driven
self-assembly in gravitationally confined nearly-hard-
sphere mixtures,6 the crystallization of the minority
component was observed to occur via a two-stage process
governed by an initial collapse into an amorphous
metastable state, in a manner reminiscent of behavior
observed in colloid/polymer mixtures.7,8 The growth
kinetics associated with the formation of these transient
states might offer a novel glimpse into the earliest stages
of segregation in a model binary mixture, further eluci-
dating similarities that exist between conventional col-
loidal aggregation and the well studied processes of
spinodal decomposition and nucleation.

Here, the kinetics of depletion-driven size segregation
were studied with video microscopy in a quasi-two-
dimensional system as the mixtures collapse into a dense
metastable “fluid” state after shear melting. During this
initial fluid-fluid phase separation, the structure factor of

the minority component exhibits a spinodal-like evolution
while the cluster-size distribution exhibits scaling remi-
niscent of colloidal aggregation. The data suggest that
scaled distributions show a crossover from power-law (x
< 1) to stretched-exponential (x > 1) behavior, where x )
k/s(t) is the ratio of the cluster-size index, k, to the time-
dependent average cluster size, s(t), where “size” denotes
number of particles. By varying the small-sphere volume
fraction, a variety of quench depths were considered, and
a phenomenological model based on the reversible form
of the Smoluchowski equation is presented. The paper
gives a more detailed description of the work described in
ref 6. The colloidal particles used in this study are smaller
and more mobile than those used in a previous study,9
and hence a larger and more significant range of cluster
sizes is achieved.

II. Experimental Background

The mixtures consisted of monodisperse (σR/R ∼ 0.035, where
σR is the width of the radius-distribution function) polystyrene
spheres (stabilized with a charged polymer surfactant) of
diameter 2RL ) 2.9 µm (obtained from Polysciences) and 2RS )
213 nm (obtained from Seradyn) in aqueous suspensions
containing enough salt (0.01 M) to screen the electrostatic
repulsion to short range. The large-sphere volume fraction was
fixed at φL ) 0.025 for small-sphere volume fractions 0 e φS e
0.40, where (relative) volume fractions were obtained from the
measured change in mass of small amounts of sample after drying
in a vacuum oven. Quoted small sphere volume fractions had an
uncertainty of (0.01. Large-sphere suspensions (φL ) 0.025) were
separated in a centrifuge, and the solvent was drawn off and
replaced with an equal volume of filtered small-sphere suspension
(φS ) 0.30) to get stock (φS ) 0.30, φL ) 0.025) mixtures. Mixtures
with φS < 0.30 were then obtained by diluting these stock
suspensions with φL ) 0.025 solutions (0.01 M NaCl in purified
water). Small-sphere volume fractions of 0.40 were obtained via
separation of the φS ) 0.30 suspensions in a centrifuge. A
measured amount of pure solvent was then drawn off, after which
the samples were redispersed and briefly returned to the
centrifuge to remove flocs. Clean φS ) 0.40 suspension was then
drawn from the top of the sample and checked under the
microscope for purity. Mixing with the large spheres proceeded
in the same manner as for φS ) 0.30 suspensions.

As in a previous study,9 gravitational settling of the large
spheres restricts their motion to a plane, with the confinement
axis parallel to the optical axis of the microscope, which leads
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to approximately two-dimensional trajectories on the surface of
a smooth glass substrate. This facilitates tracking of the large
spheres and gives rise to an effective conservation law associated
with the large-sphere number. Qualitatively, a spherical shell
of volume (thickness RS) surrounds each large sphere, from which
the center of each small sphere is excluded. This implies that
when two large spheres come into contact, the effective value of
φS decreases, thereby lowering the entropic free energy by an
amount ∆.4 If ∆/kBT is large enough, the large spheres aggregate
into clusters. For the confined geometry of interest, a close-packed
triangular lattice yields the greatest reduction in excluded volume
and hence the greatest decrease in free energy. The value of φL
used in this study is below the percolation threshold, and phase
separation was only observed for φS g 0.20, in qualitative
agreement with the bulk phase diagram reported by Dinsmore
et al.5 for a comparable system in three dimensions.

The sample cell was an epoxy-sealed microscope slide and
cover slip with a 15-µm thermocouple wire as spacer. Capillary
pressure wicks the suspension into the cell, which has two small
openings at either end; the cell is then dried and completely
sealed with fast curing epoxy. All of the measurements were
carried out at an ambient temperature of (22 ( 0.5) °C. Digitized
video micrographs were collected with both 10× and 40×
objectives to obtain coarse- and fine-grained images (frame width
≈ 103 µm and 200 µm, respectively) of the evolving domain
structure during phase separation and subsequent crystallization
(Figure 1). The latter yields just over 103 large-sphere centers
per video frame, and data from around 15 frames were averaged
together for a typical measurement. This was accomplished by
recording the relaxation after repeated shear melting (Figure 1),
where the shear flow was introduced by gently compressing the
cover slip of the sample cell. Frames taken with the 40× objective

were digitized and computer-analyzed to obtain the planar
coordinates of the large-sphere centers ((100 nm). Frames taken
with the 10× objective were Fourier analyzed, averaged together,
azimuthallyaveraged,andthendividedbytheanalogousquantity
for φS ) 0, which approximates dividing out the large-sphere
form factor.

III. Experimental Results

The phase-separation kinetics were studied via the
cluster-size distribution function, nk(t), and the structure
factor, S(q,t), of the minority large-sphere component. The
radial-distribution function, g(r), exhibits a nearest-
neighbor peak at 2RL [Figure 2a], the width of which yields
a criterion for clustering.10 The distribution nk(t) gives
the probability of finding a large sphere in a cluster of size
k at time t subject to the constraint

imposed by particle conservation, where the largest
clusters observed typically contained on the order of 102

(10) The clustering criterion is set as an input parameter in the
computer code that tabulates nk from the large-sphere centers and was
chosen as the distance at which g(r) decays to 0.75 of its nearest-neighbor
value. Slight deviations from this did not significantly alter the results,
and the same criterion was used for all φS. Distributions from different
frames corresponding to the same time were normalized and then
averaged together.

Figure 1. Coarse-grained structure for φS ) 0.25 at (a) 2 min, (b) 60 min, and (c) 20 h after shear melting. The width of each
micrograph is 350 µm. Typical packing morphology at t ) 15 h: (d) φS ) 0.20; (e) φS ) 0.30, where the width of each micrograph
is 30 µm. Phase-separated domains (f) are easily deformed [(g) t ) 2 s after imposition of flow] and sheared apart [(h) t ) 120 s
after imposition of flow] by oscillatory shear flow (f ) 1 Hz with an amplitude such that single large spheres are displaced 20RL
in one cycle) in the direction indicated by the arrows.

∑
k

knk(t) ) 1
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large spheres. S(q,t) has higher-order peaks at fixed q >
1 µm-1 whose intensities increase with time and a
spinodal-like peak at qm(t) < 1 µm-1 that moves toward
lower q and increases in intensity with time, reflecting an
average cluster diameter R(t) ∼ 2π/qm(t). Examples of
nk(t) and S(q,t) for φS ) 0.30 are shown in Figure 2.

Figure 3a shows how the higher-order structure evolves
from φS ) 0 to φS ) 0.20. For φS < 0.20, no phase separation
was observed. Rather, this regime was characterized by
transient clustering consistent with a weak short-ranged
attraction, and structures that formed always eventually
broke apart due to thermal fluctuations. The structure
factor and cluster-size distribution for small-sphere
volume fractions within this miscible region of the phase
diagram were independent of time, in contrast to the time
evolution shown in Figure 3b for a shear quench at φS )
0.30. As shown in Figure 3a, the position of the nearest-
neighbor peak at qo (∼2π/RL) gradually evolves toward
slightly higher q with increasing small-sphere volume
fraction, suggesting that the strength of the weak at-
traction increases slightly as the phase boundary is
approached.

The aggregation is reversible, and phase-separating
mixtures initially reach a state of cluster/single-particle
coexistence. The amorphous clustering leads to a liquidlike
structure factor (Figures 3-4) with a nearest-neighbor
peak at qo ≈ 2.5 µm-1 ≈ 2π/x3RL, while nk(t) is described
by nk(t) ) no(t)exp[-R(t)kν] at large k with ν ) 0.55-0.60
for all φS [Figure 2a]. After an intermediate period of
metastability, the aggregates start to collapse into an
ordered solid.6 Fragmentation becomes less common, and
nk(t) becomes weighted toward larger k as the crystalline
domains coarsen. The sequence from shear-melted fluid

to isolated large-sphere crystallites is shown in Figure
1a-c. Crystalline ordering is evident as an increase in
the intensity of the principal Bragg peak as well as a
splitting of the second-order peak, as shown in Figure 4.
For deep quenches (φS g 0.30), the samples do not
crystallize over the course of the experiment, and for φS
) 0.40, the aggregation process is greatly slowed.

The viscosity of the host small-sphere suspension
increases with increasing φS, and it is convenient to work
with the reduced time t/τ, where τ ) 2dRL

24t/〈|4r|2〉 is a
characteristic diffusion time of an isolated large sphere.
In this expression, 〈|4r|2〉 is an ensemble average of the
mean-square displacement of a single large sphere during
an interval of time 4t, which was chosen to be 60 s for the

Figure 2. (a) nk(t) and (b) S(q,t) for φS ) 0.30 during the first
hour of phase separation, where the markers correspond to the
times after shear melting shown in the top figure. The inset in
(a) shows g(r) at t ) 60 min, and the large-k fits of nk(t) are as
described in the text, with ν ≈ 0.6. The lower figure shows the
time evolution of the low-q peak in S(q,t), and the inset shows
the higher-order structure in S(q,t) at t ) 60 min.

Figure 3. (a) Higher-order structure in S(q,t) at t ) 60 min
for φS ) 0, 0.10, and 0.20. The structure for φS ) 0 and 0.10 is
independent of time, while that for φS ) 0.20 evolves with time
after shear melting, reflecting macroscopic phase separation,
as shown in (b) for φS ) 0.30.

Figure 4. Late-time evolution of S(q,t) for φS ) 0.20, 0.30, and
0.40. The vertical bars show the first eight Bragg peaks for a
two-dimensional close-packed crystal with 2RL ) 2.9 µm. The
curves for t ) 15 h have been offset by 0.75 for clarity.
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mixtures described here, and d ) 2 for the confined
samples under consideration. A plot of τ(φS) is shown in
the inset to Figure 5b. Two quantities of fundamental
interest are the intensity of the principal Bragg peak,
S(qo,t), and the mass-averaged average cluster size

Examples of the relaxation of these two quantities are
shown as a function of t/τ in Figure 5. The two-stage nature
of the crystallization process6 is readily seen by following
the timeevolutionofS(qo,t) [Figure5a],where themixtures
reach an initial plateau before starting to order.11 The
morphology (Figure 1) of the intermediate (metastable)
phase suggests fractal-like structures, and some of the
larger clusters at different φS were analyzed by calculating
N(r), the number of monomers as function of the radial
distance from the cluster center of mass. The inset to
Figure 5a shows a log-log plot of the average N(r) versus
r for large clusters at different φS. The curves fall onto a
power law of the form N(r) ∼ rD with D ≈ 1.7, reflecting
the slightly open and disordered packing of the amorphous
clusters.

Figure 5b shows the time evolution of s(t) for φS ) 0.30
during the first hour of phase separation, which corre-
sponds to the evolution of S(qo,t) up to the first plateau
in Figure 5a. Similar behavior was observed for all φS
from 0.20 to 0.30, but φS ) 0.40 exhibited phase separation
on a much slower time-scale that was limited to smaller
cluster growth.6,11 The fit of s(t), as well as the fit of S(qo,t)

during the growth of the metastable phase, is an expo-
nential relaxation of the form δψ(t) ) δψo exp(-aψt/τ),
where δψ(t) ) ψm - ψ(t) is the displacement of the relevant
quantity [ψ(t) ) s(t), S(qo,t)] from its metastable value
(ψm). Other quantities that provide a somewhat coarser
measure of the phase separation, such as the probability
of finding a large sphere in a cluster and the average
domain diameter R(t) ) 2π/qm(t), can also be described by
an exponential relaxation of this form, and all of these
show a dramatic decrease in both aψ and ψm for φS > 0.30.6

Starting from the reversible form of the Smoluchowski
equation with the assumptions of scaling12 and kernel
homogeneity, Sorensen et al.13 have shown that coagula-
tion/fragmentation systems can exhibit steady-state dis-
tributions to which s(t) relaxes exponentially. With an
ensemble of around 1.5 × 104 particles, there is scatter in
nk(t) at large k [see error bar, Figure 2a]. Within this
uncertainty, nk(t), indeed, appears to scale as s2nk(t) )
G(k/s) [Figure 6a], where s typically varies from around

(11) Crystallization becomes suppressed for φS g 0.3, suggesting that
the system becomes trapped in the amorphous phase. For φS ) 0.40,
mixtures exhibit phase separation on a much slower time-scale, with
an initial plateau at t ) 10 h with S(qo,t) ∼ 1.4 that eventually progresses
to S(qo,t) ∼ 1.5 after 2 days.

(12) (a) Family, F.; Meakin, P.; Deutch, J. M. Phys. Rev. Lett. 1986,
57, 727. (b) Family, F.; Meakin, P.; Deutch, J. M. Phys. Rev. Lett. 1986,
57, 2332. (E). Corrections to this scaling ansatz have been demonstrated
[(c) Meakin, P.; Ernst, M. H. Phys. Rev. Lett. 1988, 60, 2503, and (d)
Vigil, R. D.; Ziff, R. M. Phys. Rev. Lett. 1988, 61, 1431], but these
corrections can be relatively small [(e) Elminyawi, I. M.; Gangopadhyay,
S.; Sorensen, C. M. J. Colloid Interface Sci. 1991, 144, 315].

(13) Sorensen, C. M.; Zhang, H. X.; Taylor, T. W. Phys. Rev. Lett.
1987, 59, 363.

Figure 5. (a) S(qo,t) versus t/τ, where the fits up to the first
plateau are as described in the text. The inset shows N(r) vs
r at t/τ ∼ 20 for some of the larger clusters. (b) Average cluster
size, s(t), vs t/τ for φS ) 0.30 during the first hour of phase
separation, where the fit is as described in the text. The inset
shows τ(φS).

s(t) ) ∑
k

k2nk(t)

Figure 6. (a) s2nk(t) vs x ) k/s(t) in the regime of amorphous
growth, where the dashed curve is a large-x fit of the data, the
solid line is a power law that describes the data for x < 1, and
the solid curve is a stretched-exponential decay that describes
the data for x > 1, as outlined in the text. (b) The same plot as
(a) but with the distributions truncated at k ) 20 to eliminate
scatter in the data at large k.
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2 at t ) 0 to around 30 in the first plateau of S(qo,t). Some
of the scatter inherent to this type of scaling plot can be
eliminated by truncating the distributions14 at k ) 20, as
shown in Figure 6b. The asymptotic fits (solid curves) of
the scaled data in Figure 6 are G(x) ∼ x-1.53 for 0 < x <
1 and G(x) ∼ exp(-3.5x0.6) for 1 < x < ∞.15 A power law
for x f 0 is reminiscent of reaction-limited aggregation,16

which is interesting, as the particles do not necessarily
bond upon contact when the aggregation is reversible. An
exponential decay has been suggested for large x,17 and
we cannot rule out the possibility that the actual behavior
is in fact something more complicated, such as a power-
law times an exponential decay that happens to be well
approximated by a stretched exponential decay over the
range of x in question. The data presented here suggest
that a stretched-exponential decay might give an ap-
propriate description, and thus a possible explanation for
this is given in the following section.

Figure 7a shows nk versus k as a function of φS, where
the distributions for φS g 0.20 again correspond to the
first plateau in Figure 5a, or roughly 1 h after shear

melting, while those for φS < 0.20 are independent of time
and correspond to the continuous formation and breakup
of small transient clusters. The asymptotic large-k fits
are again stretched exponential, with a stretching expo-
nent (ν) that varies from ν ≈ 0.50 for φS < 0.20 to ν ≈ 0.60
for φS > 0.20. As shown in Figure 7b, the distributions
appear to exhibit the same scaling exhibited by the
distributions in Figure 6, with the asymptotic fits x-1.45

(x < 0.8) and exp(-3.6x0.6) (x > 0.8). As before, the
distributions have been truncated at k ) 20 to eliminate
scatter in nk(φS) at large k, and the data are plotted
semilogarithmically as a function of [k/s(φS)]0.6 to empha-
size the stretched-exponential-like quality at large k;
however, itmustbeemphasizedagain that thismaysimply
turn out to be an approximate representation of a more
complicated expression.

IV. Phenomenological Model
In the theoretical approach adopted here, a description

of the phase separation process up to and including the
first plateau in Figure 5a starts with the reversible form
of the Smoluchowski equation:

where Kij and Fij are coagulation and fragmentation
kernels, respectively.2 One can make general arguments
based on eq 1 that, although far from rigorous, might offer
insight into a more detailed theoretical description of the
clustering observed in this type of quasi-two-dimensional
phase-separation phenomena, and it is hoped that the
description given here will help motivate such work. For
k f ∞, a dominant growth mechanism is the gain and loss
of smaller clusters. Assuming a coagulation kernel of the
form

where γi f 0 for large i,18 the k f ∞ limit gives Kki ∼ iyγiky

with y ) 1 - 1/D, somewhat reminiscent of Becker-Döring
theory.2 Equation 2 simply approximates the kernel as
the product of a ballistic term, (γk

2 + γi
2)1/2, that models the

mobility of the clusters and is related to their root-mean-
square velocities, and a cross-sectional term, (k1/D + i1/D)D-1,
that models the increased probability for large clusters to
be struck by smaller clusters due to their increased
perimeter, where the “circumference” is assumed to scale
as rD-1. If the first plateau in Figure 5a is viewed as a
transient steady state of eq 1, the condition of detailed
balance2 offers a relation between the two kernels and
the metastable-fluid cluster-size distributions, denoted
by (nk)m. Specifically, the fragmentation kernel can be
written as

(14) Although the distributions are truncated at k ) 20 in Figure 6b,
the values of s(t) used to reduce the data are calculated from the entire
distribution.

(15) Distributions tabulated by hand directly from the images
exhibited the same behavior as those tabulated by computer. A visual
clustering criterion is not precise, however, while the computer algorithm
misses some large spheres due to contrast variations. As a consequence,
the former is weighted toward larger k and yields slightly higher
moments.

(16) (a) Broide, M. L.; Cohen, R. J. Phys. Rev. Lett. 1990, 64, 2026.
(b) Weitz, D. A.; Lin, M. Y. Phys. Rev. Lett. 1986, 57, 2037.

(17) (a) Meakin, P.; Deutch, J. M. J. Chem. Phys. 1985, 83, 4086. (b)
Elminyawi, I. M.; Gangopadhyay, S.; Sorensen, C. M. J. Colloid Interface
Sci. 1991, 144, 315.

(18) For this kernel to be homogeneous requires that γi exhibit a
power-law decay in i. As in a previous study,9 the cluster center-of-
mass diffusion coefficient decreases dramatically above a cutoff cluster
size, which in the present study is around 10-20. Large (k > 100) clusters
would typically only diffuse on the order of one large sphere diameter
during a time interval on the order of several hours.

Figure 7. (a) Steady-state cluster-size distribution for different
small-sphere volume fractions, where the data for φS ) 0.20
and 0.30 correspond to t ) 60 min after shear melting, and the
fits are as described in the text. The data for φS ) 0 and 0.10
are independent of time and reflect the presence of transient
liquidlike clustering. (b) Semilogarithmic plot of the scaled
cluster-size distribution, s2nk(φS) vs x0.6, where x ) k/s and the
distributions have again been truncated at k ) 20. The
asymptotic fits are x-1.45 for x < 0.8 and exp(-3.6x0.6) for x >
0.8.

n̆k )
1

2
∑
i)1

k-1

(Ki,k-inink-i - Fi,k-ink) -

∑
j

(Kkjnknj - Fkjnk+j) (1)

Kki ) (a/τ)(k1/D + i1/D)D-1 (γk
2 + γi

2)1/2 (2)

Fkj ) Kkj(nk)m(nj)m/(nk+j)m (3)
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Substituting eq 3 into eq 1 and expanding terms of the
form fk(i to leading order in a Taylor series (assuming i
, k) as

we arrive at the following approximate partial-differential
equation for nk(t), valid in the limit of large k:

where y ) 1 - 1/D,

and

In general, higher-order terms in eq 5 are not negligible,
and eqs 1 and 5 for ni(t) and nk(t), respectively, are
nonlinearly coupled. With x ) k/s, the scaling relation
n(x,t) ) s-2G(x) implies that terms other than ∂n/∂t must
scale as s̆/s, and a phenomenological solution can be
obtained by truncating the expansion to leading order in
i/s and replacing Γ(t) with cs̆/s, where c is a constant.
Equation 5 is then separable in x and t in a manner that
is consistent with scaling and yields the ordinary dif-
ferential equation

with the solution

A large-x fit to this expression (c ) 1.2 and Go ) 7) is
shown as a dashed curve in Figure 6 with ν ) 1/D ≈ 0.6.
For x f 0, which is an inappropriate limit for the above
arguments, eq 9 gives x-0.4, which is significantly less than
the observed exponent of around 1.5.

V. Conclusions

The scaling in Figure 6 suggests that changes in the
kinetics with quench depth (φS) are contained in the
moment s(t), while the scaling form itself appears to be
independent of quench depth. This is interesting, in light
of the recent demonstration by Crocker et al.19 that the
hard-sphere liquid structure of the host small-sphere
suspension gives rise to oscillations and barriers in the
effective pair potential between adjacent large spheres.

The scaling would seem to suggest that the complicated
spatial structure of the depletion attraction, although
coarsely limiting the equilibration rate through the
coefficient aψ(φS), does not grossly affect the analytic form
of the distribution nk(t). This is somewhat reminiscent of
critical phenomena, where the details of the molecular
interaction are irrelevant to the details of the universal
collective behavior, which depend only on the spatial
dimension and symmetry of the system.

The dispersed cluster morphology of the amorphous
metastable phase and the apparent exponential relaxation
of the average cluster size are no doubt intimately linked
to the confinement of the large spheres and the greatly
reduced mobility of the larger clusters.18 This limiting
factor is relatively easy to model in the present phenom-
enological approach (which assumes a priori the existence
of a transient steady state) since it is contained in the
cluster mobility γi. The reversible nature of the depletion
interaction and the reduced mobility of larger clusters
would seem to be the dominant physical factors governing
the formation of the observed steady-state morphology.
An alternative approach would be one more conventional
to spinodal decomposition and nucleation in binary fluids,
with some type of macroscopic driving force linked to the
free energy of the mixture. The limited mobility of the
large-sphere clusters could then be modeled, for example,
with an order-parameter dependent kinetic coefficient.

It is important to note, however, the limited role played
by any interfacial tension between coexisting domains of
large-sphere rich and large-sphere poor phases. In a sense,
this reflects the kinetic arrest at a morphology that is
really not macroscopic in nature but corresponds more to
the earliest stages of segregation in a binary fluid. As
such, an approach based on eq 1 seems particularly well
suited. Under different quench conditions, the dense
metastable fluid phase should grow via nucleation,20 which
is of practical relevance to such things as the promotion
of crystallization in solutions of globular proteins.21 One
could envision using much smaller particles, for example,
so that a crossover from aggregation-type behavior to
surface-tension limited regimes of coarsening via spinodal
decomposition and nucleation might be accessed. Experi-
ments designed to address these differences will be carried
out in the future.

Acknowledgment. The author is indebted to B.P. Lee
for useful discussions regarding the theory of eq 1 and
assistance with the cluster-tabulation code, R.K. Hobbie
for assistance with the structure-factor code, and J.C.
Crocker for advice on materials, sample cells and digital-
video microscopy in general. Certain commercial materials
are identified in this article in order to adequately specify
the experimental procedure. Such identification does not
imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply
that these materials are the best available for the purpose.

LA990397O

(19) Crocker, J. C.; Mateo, J. A.; Dinsmore, A. D.; Yodh, A. G. Phys.
Rev. Lett. 1999, 82, 4352.

(20) (a) Evans, R. M. L.; Cates, M. E. Phys. Rev. E 1997, 56, 5738.
(b) Evans, R. M. L.; Poon, W. C. K. Phys. Rev. E 1997, 56, 5748.

(21) ten Wolde, P. R.; Frenkel, D. Science 1997, 277, 1975.

fk(i ≈ fk ( i
∂fk

∂k
+ ... (4)

∂nk(t)
∂t

≈ Γ(t) ∂

∂k
[kynk(t)] + ... (5)

Γ(t) ) (a/τ)∑
i

iγiδni(t) (6)

δni(t) ) (ni)m - ni(t) (7)

d(xyG)
dx

) -2G
c

(8)

G(x) ) Gox
-(1-1/D) exp(-2Dx1/D/c) (9)
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