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Critical comparison between time- and frequency-domain relaxation functions
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Considerable work has been performed on providing a theoretical basis for the Kohlrausch-Williams-Watts
~KWW! and Havriliak-Negami~HN! relaxation functions. Because of this, several papers have examined the
‘‘interconnection’’ of these two functions. In this paper, we demonstrate that, with achievable instrumental
sensitivity, these two functions are distinguishable. We further address the issue of the ‘‘universal’’ limiting
power laws and the ability to obtain the exponents associated with them. Finally, the stability and accuracy of
our numerical Laplace transform is demonstrated by comparison between functions with known analytical time
and frequency solutions. The stability of our algorithm indicates that the method of Alvarez and co-workers@F.
Alvarez, A. Alegrı́a, and J. Colmenero, Phys. Rev. B44, 7306 ~1991!# is an unnecessary approximation for
converting between the time and frequency domain.@S0163-1829~99!01026-7#
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I. INTRODUCTION

The nature of the glass transition has plagued researc
for over a century. There are those who believe that ther
a thermodynamic transition underlying the kinetically o
served phenomena and there are those who feel that
solely a dynamically based effect. One aspect of the g
transition that each model tries to explain is the nonexpon
tial long-time relaxation behavior. An empirical expressi
which is frequently utilized for fitting this behavior is th
Kohlrausch-Williams-Watts ~KWW! function ~stretched
exponential!1,2

FKWW~ t !512expF2S t

t0
D kG , ~1!

wheret0 is a characteristic relaxation time andk is a param-
eter that has values ranging from 0 to 1. This equation w
introduced in 1863 to describe mechanical creep in g
fibers1 and many theoretical models have been develope
reproduce this equation. DiMarzio and co-workers3,4 arrived
at this function by postulating potential wells in phase sp
in which particles become trapped. The probability distrib
tion for these wells is an exponential decay in time, but
cause of the distribution of varying depths of the wells
stretched exponential is obtained. Palmer and co-work5

and Muñoz and co-workers6 postulate hierarchically con
strained models in which slow motions are constrained b
necessity of movement of faster motions in a particular m
ner. Shlesinger and co-workers base their theory on the
istence of mobile defects~which are unidentified to keep th
model as general as possible! that diffuse anomalously an
quench localized excitations.7–13 The defects in the
Shlesinger model are commonly identified as ‘‘packets’’
free volume. Mansfield14 has developed a model of the gla
transition which incorporates these defects as well. Doug
and Hubbard15 proposed a semiempirical model, based o
time-translation kernel which was consistent with stretch
exponential behavior, that was able to reproduce a numbe
the other properties of glass formers@in this model (12k) is
a measure of the material inhomogeneity#. The above have
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been presented only for illustrative purposes and as such
a small subset of the total number of models that have
tempted to give a theoretical justification to the empiric
KWW relationship@Eq. ~1!#.

In the frequency domain, the Havriliak-Negami~HN!
equation16

fHN~v!5
1

@11~ ivt!a#b
, ~2!

is often used to model relaxation phenomena. Becaus
this, several papers have attempted to demonstrate
‘‘equivalence’’ of the Havriliak-Negami and KWW equa
tions. Lindsey and Patterson17 examined the ability of the
Cole-Davidson equation@Eq. ~2! with a51# to approximate
the Laplace transform of the KWW equation. They state t
numerical relationships could be obtained to relate the
proximation of the KWW equation to the HN equation, how
ever they state that ‘‘Such a comparison is, of course,
exact; it is presented only to ease the comparison proc
particularly between older dielectric data analyzed using
Cole-Davidson function~CD! ~introduced in 1950!, and the
more recent Williams-Watts function~used for dielectric re-
laxation measurements in 1969!.’’ 17 Additionally, they con-
cluded that while the relaxation functions~CD and KWW!
have similar shapes, their distribution functions have v
dissimilar shapes at long times.

Alvarez, Alegrı́a, and Colmenero18,19 used a method
based on a distribution of relaxation times in order to av
what they claimed were the problems with the Fourier tra
form of the KWW function. They state that ‘‘Several meth
ods have been used to Fourier transform the KWW funct
and to interpret relaxation data from spectroscopies in
frequency domain. However, it is also well known that co
putation of Fourier transform poses numerical proble
originating from cutoff effects which yield unwanted osc
lations, especially when treating real data.’’18 Alvarez and
co-workers used the mean-square difference as a measu
the compatibility, or equivalence, of the HN and KWW fun
tions. For one of their comparisons, they claim that their l
value of 1.8931025 is very good, and state that one ca
984
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therefore assume that the two functions are ‘‘equivalen
Empirical relationships were presented in this work wh
related the parameters of the KWW equation to those of
HN equation. The intent was to allow transformation b
tween the time and frequency domain without resorting
the Laplace transform.

The statements made by Alvarez and co-workers, reg
ing the Fourier transform, are correct for a fast-Fourier tra
form. They are incorrect, however, when applied to a s
ably computed numerical Laplace transform that ta
account of the finite data window, which is the proper n
merical method for transforming time-domain data to t
frequency domain.20,21 This is evident, as one of us has su
cessfully demonstrated a numerically stable Laplace tra
form which can be used to transform a time-domain funct
~or time-domain data! to its frequency-domain equivalen
within an arbitrarily chosen tolerance.21–24

Havriliak and Havriliak,25 in a manner similar to Alvarez
and co-workers, used statistical procedures to support
claim that, for some ranges of theb parameter, the KWW
and HN functions are the same. They cited the confide
interval for the exponents as proof of this assertion; howe
unlike Alvarez and co-workers they did not give the stand
deviations of their fits. It is also stated later in their paper
apparent contradiction to their earlier statement on co
dence limits, that, because the limiting high/low-frequen
behavior of the KWW function is best described by the C
function, the KWW is not universal because Jonsche
studies26 on the limiting power-law behavior suggested th
these specific limiting exponents are not universal.

In a recent paper27 ~henceforth referred to as Paper I! we
examined the question of how unique the fit parameters
between two different representations of relaxation data o
limited frequency ranges. In that work, we also addressed
issue of equivalence of two functions and the proper mea
of the ability of one function to approximate another. In th
work, we will re-examine the ability of the HN equation t
approximate the Laplace transform of the KWW functi
over the entire range of significant variation of the loss co
ponent of the transformed data with careful consideration
the measure we presented in Paper I. In this paper, it wil
demonstrated that, with achievable instrumental sensitiv
the two functions are distinguishable, and we will point o
some logical inconsistencies in the work of Alvarez a
co-workers18,19 and Havriliak and Havriliak.25 Furthermore,
we will examine the limiting power-law behavior of thes
functions and will show how broad a frequency range m
be covered to determine this limiting behavior. From this,
can demonstrate that for a wide range of values of
KWW exponentk, empirical determination of both the low
and high-frequency power laws is very difficult.

II. PROCEDURE

A. Numerical Laplace transform and fitting of data

A time to frequency domain transformation is acco
plished through the Laplace transform:

f~v!5 lim
Re(s)501,Im(s)5v

E
0

`

exp~2st! F2dF~ t !

dt Gdt, ~3!
’’
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whereF(t) is the time-domain response function to a u
step excitation,f(v) is the frequency-domain respons
function, ands is the complex variables5n1 iv. As a re-
sponse to criticisms of the numerical Laplace transform
time-domain measurements,28 one of us has demonstrate
the stability of the numerical Laplace transform.21–24 In this
paper, we will utilize the algorithm described in one of tho
papers24 to transform our time-domain functions into the fr
quency domain. Since this procedure is defined in terms
desired tolerance, we chose a tolerance of 131026 or less
for all of our transformed data, except fork50.1, for which
we used a tolerance of 131027. This guarantees that th
transformation error was sufficiently small so as to not s
nificantly affect any results reported in this paper. The f
quency window for the transformation, settingt51 s, was
chosen such that the loss component of frequencies ab
and below this window had negligible contributions to t
total area as a function of log10v. We would like to empha-
size the fact that although we generated data to a freque
as low as 10212 s21 we recognize that this time correspon
to an experimental timegreater than the recorded history o
civilization. These curves are generated for illustrative p
poses only. Values of 0.1, 0.3, 0.5, and 0.7 were chosen
k to represent the total range of behavior of the KWW rela
ation function.~Note that fork51.0, the KWW reduces to a
Debye function which has the known frequency-domain H
parameters:a51.0 andb51.0.! We also want to mention
that in the previous paper on the Laplace transform,24 it was
demonstrated that the algorithm was sufficient to transfo
thek51 case into the Debye function with an absolute er
of less than 131026 over the entire range when set for
tolerance of 131026.

Two sets of curve fits to the transformed data were
tained: one to the imaginary component only~fit A ! and one
simultaneously to the real and imaginary components~fit B!.
The data were treated as if they were obtained from a tim
domain dielectric spectrometer. The data obtained from
Laplace transform were in the form of the complex fr
quency dependent dielectric constante* (v)5e8(v)
1 i e9(v), wheree8 ande9 are the real and imaginary com
ponents. Therefore, curve fits were performed to the follo
ing equation:

e* ~v!5~e02e`!fHN~v!1e`5
~e02e`!

@11~ ivt!a#b
1e` ,

~4!

where (e02e`) is the dispersion strength ande` is the high-
frequency dielectric constant. Note that after (e02e`), a, b,
andt, were obtained for fit A,e0 was obtained from a linea
least squares to the real component, fixing the aforem
tioned parameters. The fits to Eq.~4! were performed with a
nonlinear least-squares routine based on the Levenb
Marquardt algorithm29 with unity weighting and double pre
cision arithmetic.

A point density (ndec) of ten points per decade was ch
sen to sample the frequency-domain data. This samp
density did not affect our ability to approximate the co
tinuum limit to the fitting of one function to the other. Thi
can be demonstrated by comparing the fit parameters f
KWW function with k50.5 obtained for data with 5, 10, an
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20 points per decade. The data were generated over a
quency range of 131024 Hz to 13109 Hz. The HN
a (b) exponents obtained for these three point densities~5,
10, and 20 points/decade! were 0.8089~0.5363!, 0.8086
~0.5367!, and 0.8084~0.5369!, respectively; the values ob
tained for x2/ndec were 3.878731024, 3.867631024,
3.861831024, respectively, wherex2 is defined as

x2[(
i 51

N

~yi2 ŷi !
2. ~5!

In the above equation,yi is the value of the function at a
frequencyf i , ŷi is the value of the model approximating th
function at the same frequency, andN is the number of data
points.

B. Choice of metric

As we pointed out in Paper I, when examining the abil
of one function to represent another function, the stand
deviations is not a good measure, especially for relaxati
functions. A relaxation function in the frequency doma
evolves from unity to zero for the real component and fro
zero to a maximum of less than 0.5 and back to zero for
imaginary component over a finite frequency range. The
fore, if a wide enough frequency range is chosen, all rel
ation functions will agree to within an arbitrary toleranc
However, theL` norm ~the maximum deviation! is not sig-
nificantly affected over a sufficiently wide frequency rang
We will demonstrate this in the discussion that follows.

Since we are examining the ability of one exact functi
to approximate another exact function, the standard devia
s loses any statistical meaning. We stress that we are
fitting to a set of data that can be represented by an e
model plus a random deviate with a sampled population.
emphasize this, henceforth in the paper we will refer tos2 as
the mean-squared deviation rather than as the variance
will define it as

s25
x2

N
. ~6!

To demonstrate the reason whys is not a good measure, w
consider the mean-squared deviations2 of two functions,
with f (v) being the larger of the two functions.~For sim-
plicity, we are settingt51 s in the discussion that follows.!
The upper bound ons2 is then given in the continuum limi
to be

s25

E
v1

v4
f ~v!2dv

~v42v1!

5

E
v1

v2
f ~v!2dv1E

v2

v3
f ~v!2dv1E

v3

v4
f ~v!2dv

~v42v1!
, ~7!

where the three integrals on the right-hand side of Eq.~7!
refer to the low-frequency tail, central region of the disp
sion peak, and the high-frequency tail. It is clear that
integral for the central region is bounded for a relaxat
re-
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process. If we then treat the tails by their limiting power-la
behaviors through suitable choices forv2 andv3, we obtain
the following for the low-frequency limit~for g.0, v1
,v2!1):

lim
v1→0

E
v1

v2
vgdv

~v42v1!
5

~v2!11g

~v4!~11g!
>0, ~8!

and for the high-frequency limit~for d.0, v4.v3@1):

lim
v4→`

E
v3

v4
v2ddv

~v42v1!
, ~9!

which is given ford51 by

lim
v4→`

ln~v4 /v3!

~v42v1!
50, ~10!

and fordÞ1 by

lim
v4→`

~v4!12d2~v3!12d

~v42v1!~12d!
50. ~11!

Therefore, ifv2 is chosen to be sufficiently small andv3 is
chosen to be sufficiently large so that the power-law appro
mation is reached and that there is a negligible contribut
to the total relaxation, then the upper bound ons2 is given
by

s25

E
v2

v3
f ~v!2 dv

~v42v1!
. ~12!

Therefore,s2 can be made arbitrarily small by the approp
ate choice of frequency window. The same conclusion can
applied to the real component by replacing the lo
frequency error term in Eq.~8! by (12vg/2)2.

The difference between the maximum deviationDmax
~whereDmax5supu f 22 f 1u, with f 1 and f 2 the two functions
being compared! and s2 will be further demonstrated by
fitting the HN function to the KWW transformed data over
frequency range sufficient to describe the relaxation, a
then increasing the frequency range and refitting the dat
will be shown that the data with the smaller frequency ran
has approximately the same parameters and the same m
mum deviations, however the standard deviation of the
creased frequency range is smaller.

III. RESULTS AND DISCUSSION

A. Introductory remarks

Following our discussion in Sec. II B as to whyDmax is a
better measure thans2 of how well the KWW function is
approximated by the HN function, we consider a fit of t
HN equation to the imaginary component of the transform
KWW data for k50.5 for two different frequency range
(131026 s21 to 13108 s21 and 131024 s21 to 1
3107 s21). The value fors2 decreases from 3.4831023 to
3.0731023 while Dmax stays constant at a value of 7.4
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31023, indicating that whiles2 would indicate a better fit,
Dmax indicates no change in the ‘‘goodness’’ of fit. As fu
ther confirmation of our above discussionx2 is unchanged
by the addition of 30 square residuals.

This, and our discussion in Paper I on the inapplicabi
of statistics to numerical approximations, demonstrates s
of the crucial flaws in the analyses performed by Alvarez a
co-workers and by Havriliak and Havriliak. Their conclu
sions regarding the goodness of fit derived from the l
values ofs, are incorrect for the reasons we have dem
strated. In the following section, using a properly sensit
measure, we will critically analyze the ability of the H
function to approximate the KWW function.

Before presenting the results from our curve fitting, w
wish to make a few comments about the transformed KW
data. In Fig. 1 we have plotted a typical loss curve for
transformed KWW data. To demonstrate the smoothnes
the data we have used a straight line interpolator between
data points. It is readily apparent that the data sufficien
describe the function. This is in accord with Ref. 24 whe
the Cole-Davidson function forb50.5 was compared with
the known analytic answer and the maximum error was
31026 for a specified tolerance of 131026.

Figure 2 is a Cole-Cole plot of the Laplace transform
the KWW functions for values ofk ranging from 0.1 to 1.0.
Several things can be observed from this plot. Ask is de-
creased, the maximum loss is decreased. The characte
relaxation time is shifted from«850.5 at k51.0 to «8
50.6 atk50.1 ~in the plot, we have put a cross wherevt is
equal to unity!. The number of decades required to descr
the entire relaxation process increases with decreasing e
nent ~in the plot, we have put a symbol on the curve f
every decade!. Finally, it should be noted that ask is de-
creased from 1.0 to 0.1,vt at the loss maximum is shifte
from 1.0 to 0.6 Hz. This demonstrates that the use of
method of Alvarez and co-workers18,19 to perform a time to
frequency domain transform is unnecessary because o
stability of our numeric Laplace transform.

B. Equivalence of the HN and KWW functions

Table I shows the results of our fits of the HN equation
the transformed KWW data. Our parameters are close

FIG. 1. Plot of imaginary component for the Laplace tran
formed KWW function withk50.5. Note that the line that is show
connecting the data points consists of straight line segments.
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those of Havriliak and Havriliak25 except for those obviously
in error ~in their Table I they have two headings fork51.0,
both of which are obviously not fork51.0) and agree rea
sonably well with those of Alvarez and co-workers.18,19 The
differences between the parameters can be attributed to
ferences in the ways in which the functions were genera
how the sampling density was chosen, and the range of
data. We examined the method of transformation of Hav
iak and Havriliak30 for the KWW function, Cole-Davidson
function, and a series of discrete exponentials. In all ca
the Havriliak-Havriliak transform had larger errors on th
low-frequency side of the relaxation. This is consistent w
the discrepancies observed between our HN parameters
theirs, which is observed in their higher values fora. None
of these discrepancies, however, affect our conclusions.

In Fig. 3, we have plotted the residualsD5(«KWW9
2«HN9 ) as a function of angular frequencyv for the fits to
the imaginary portion of the transformed KWW data only~fit

- FIG. 2. Cole-Cole plot of the Laplace transformed KWW fun
tion for values ofk50.1, 0.3, 0.5, and 0.7. The symbols on the p
correspond to the beginning of a decade, whereas the line is pa
through all 10 points per decade. The cross is placed atvt equal to
unity.

FIG. 3. ResidualsD5(«KWW9 2«HN9 ) as a function of angular
frequency for the fits performed to the imaginary component of
Laplace transformed KWW data.
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TABLE I. Results of fits to the Laplace transformed KWW data with the Havriliak-Negami equatio

k Frequency range e` (e02e`) a b t(s) x2 Fit a

0.1 10212–1029 s21 20.0145 1.03 0.229 0.342 180 6.6331024 i
20.00471 1.02 0.221 0.383 63.8 7.6831023 ri

0.3 1026– 1012 s21 20.0125 1.03 0.595 0.404 6.46 1.5131023 i
20.00382 1.01 0.594 0.428 5.32 6.0031023 ri

0.5 1026– 108 s21 20.0106 1.02 0.810 0.516 2.73 1.2731023 i
20.00311 1.01 0.816 0.528 2.58 3.8831023 ri

0.7 1026– 106 s21 20.00679 1.01 0.924 0.673 1.68 5.4931024 i
20.00207 1.00 0.929 0.680 1.65 1.6031023 ri

1.0 1024– 104 s21 22.9831028 1.00 1.000 1.000 1.000 2.26310212 i
5.4131028 1.00 1.000 1.000 1.000 6.65310212 ri

ai indicates a fit to the imaginary component only, while ri indicates a fit to both the real and imag
components.
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A!. A similar plot is shown in Fig. 4 for the fits performe
simultaneously to the real and imaginary portions of
transformed KWW data~fit B!. The summary of these plot
can be found in Table II, where we listDmax for each value
of k. ~N.B. For each of the twoD plots, the line is a spline to
the data and the symbols are plotted for every fourth d
point.! From this data, it is apparent that the lowest value
Dmax is 3.0231023, excluding the case wherek51, for
which the HN function has a known analytical solution (a
51 and b51). This difference is resolvable by the tim
domain spectrometer,22 which has a relative sensitivity o
less than 131023 of the total dispersion strength, and fo
commercially available inductance-capacitance-resista
bridges. Therefore, the conclusion of Alvarez a
co-workers18,19and Havriliak and Havriliak,25 that under cer-
tain circumstances the two functions are indistinguishable
incorrect.

As a further demonstration of our results, we consider
case of an exponential decay (k51) which is exactly repre-

FIG. 4. ResidualsD5(«KWW9 2«HN9 ) as a function of angular
frequency for the fits performed simultaneously to the real a
imaginary components of the Laplace transformed KWW data.
e

ta
r

ce

is

e

sented by both the HN and KWW functions~see Tables I and
II for the fitting results!. In this case, fitting one to the othe
should give an exact fit, however, there will be significa
residuals due to round off errors that will act as a rand
deviate. Our computed value fors2, the mean-squared de
viation, is 231027 with Dmax5531027. These are expecte
values for the truncation error for six digit representatio
The computed exponentsa andb are equal to unity as ex
pected.

C. Limiting power-law behavior

To examine the ability to determine the limiting exp
nents, using the method of Paper I, we locally fit the ima
nary portion of the transformed KWW function to the fo
lowing power-law equation as a function of normalize
frequencyx (x5vt):

d

TABLE II. Maximum absolute value of the residualuDmaxu as a
function of KWW exponentk.

k vmin (s21) vmax (s21) Dmax vDmax
(s21) fit a

0.1 1310212 131029 3.0231023 1.031028 i
3.8831023 1.531024 ri

0.3 131026 131012 6.9831023 1.231023 i
1.0131022 4.031022 ri

0.5 131026 13108 7.4731023 0.15 i
1.1031022 0.12 ri

0.7 131026 13106 5.5231023 0.25 i
7.7331023 0.25 ri

1.0 131024 13103 4.831027 0.4 i
5.131027 1.5 ri

ai indicates a fit to the imaginary component only, while ri indicat
a fit to both the real and imaginary components.
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e9~x!5A1B xg, ~13!

with A and B in the above equation being constants. Th
points were spaced as a geometric progression with m
plier k. If Eq. ~13! has values ofx1 , x2, andx3 equal tox1 ,
kx2, andk2x1, then the limiting exponentg can be evaluated
as

g5 lnS e292e39

e192e29
D 1

ln~k!
, ~14!

wheree i9 corresponds to the loss at a normalized freque
xi . The results of these fits are shown in Fig. 5. As w
expected from asymptotic evaluation of the Fourier tra
form, the limiting low-frequency exponent was unity for a
four values ofk examined and the limiting high-frequenc
exponent was2k. Havriliak and Havriliak25 showed this for
the case ofk50.5.

Several things need to be noted from this. The first, is t
since the limiting exponents for the HN equation area and
2ab, for the low- and high-frequency limits, respectivel
for equivalence of the two functions with respect to limitin
power-law behavior,a51 and b5k. For k50.5 and k
50.7, b is close to, but not equal to,k. For k50.1 andk
50.3, b is very different fromk. Furthermore, in none of the
four cases isa51. Therefore, it is clear that the two func
tions arenot equivalent.

Further important information is obtainable from Fig.
Jonscher has postulated a universal dielectric response b
on a limiting exponent law.26,31From our plot, we can deter
mine how low or high a frequency must be measured for
limiting behavior to be reached. Table III is a listing of th
information. It is readily apparent that fork50.1 the limiting
low-frequency power law is unattainable, since a time on
order of 13106 y would be required for the low-frequenc
limit, and the high-frequency limit falls in the ultraviole
region of the spectrum. The other exponents are theoretic
attainable with commercially available instruments, or
combinations of several commercially available instrumen
However, if both exponents are desired, 11, 9, and 6, dec
must be obtainable fork50.3, 0.5, and 0.7, respectively

FIG. 5. Apparent exponentg as a function of normalized fre
quency.
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This is unlikely to be achievable under normal experimen
conditions. Also, over these required ranges in frequency
is expected that there will be other relaxations that will a
pear and ‘‘corrupt’’ the limits of the relaxation process
interest. Therefore, the utility of a universal power law b
comes suspect in these cases.

D. Implications on theories of relaxation

In the above discussions, we have examined the ability
the HN function to approximate the KWW function withou
any discussion of the underlying physics. The ability, or
ability, of one of these functions to approximate the othe
behavior does not discount their use as interpolating fu
tions; their utility should be considered individually for eac
case examined. Although theories have been put forth to
dict the functional forms of both the KWW and HN func
tions, the ‘‘true’’ function is uncertain and could lie else
where. Furthermore, it should be realized th
microscopically based theories which predict one or both
these macroscopic functional forms are not necessarily v
proof of the ‘‘correctness’’ of a given form. The differenc
between the observable macroscopic relaxation and the lo
microscopic relaxation behavior has been the subject
much discussion, starting with Debye32 and his model for
rotational diffusion. A more modern development is that d
to Fulton,33,34 who references much of the early work th
went beyond Debye. All of these results indicate that th
can be significant differences between the macroscopic
microscopic behavior, at least as comparable to those sh
between the KWW and HN functions in this work.

IV. CONCLUSIONS

We have demonstrated, contrary to earlier conclusions
Alvarez and co-workers18,19 and Havriliak and Havriliak,25

that the KWW and Havriliak-Negami equations are distinc
different functions, which are distinguishable under achie
able experimental conditions. It has been shown that
maximum residualDmax is a far more sensitive measure
the ability of one function to approximate another thans.
Additionally, it has been stressed that it is improper to us
statistical analysis to compare two exact functions; this
not been an analysis of the ability of one function to
experimental data with a corresponding random deviate.

We would like to point out, however, that the results
this paper were similar to those in Paper I. In that work,
demonstrated that two distinct functions could be made
resemble each other under the appropriate conditio
Clearly, if the experimental data are obtained with uncerta

TABLE III. Approximate high- and low-frequency limits for
limiting power-law behavior as a function of the KWW paramet
k.

k Low vt limit High vt limit Decades

0.1 1310214 131016 30
0.3 131024 13107 11
0.5 231023 13106 9
0.7 131022 13104 6
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ties greater thanDmax, then the two functions will be indis
tinguishable. However, if the uncertainty is greater th
Dmax, then in addition to the difficulties which we mentione
about obtaining the limiting power-law exponents, it is a
parent that any values obtained for these exponents wil
questionable as the limits of the KWW and HN are qu
different. To reiterate a point which we made in Paper I,
final appeal must be made to the measured data and th
sociated uncertainties. If one of these two functions can
fit the data, then the issue of the difference between the fu
tions disappears, otherwise extreme care must be take
comparing the results of the fits and conclusions should
based on proper estimates of the total uncertainty.

The utility of the KWW and HN equations as interpola
ing functions is not being disputed by this work. However
should be recalled that both the HN and KWW equations
.
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s.
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e

e
as-
ot
c-
in
e

t
e

empirical functions, and the fact that a given theory rep
duces their behavior does not necessarily indicate that
theory is correct, or that these functions are natural laws.
we stated in Sec. III D, a microscopic theory which repr
duces these functions may not be valid due to the differe
between the microscopic and macroscopic responses.

As a final point, we have shown the stability of our n
meric Laplace transform for the KWW function for a wid
range of values ofk, and hence the use of the approximatio
of Alvarez and co-workers and that of Havriliak an
Havriliak30 is unnecessary.
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