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Abstract. We examine the phenomenon of dynamical heterogeneity in computer simulations of
an equilibrium, glass-forming liquid. We describe several approaches for quantifying the spatial
correlation of single-particle motion, and show that spatial correlations of particle displacements
become increasingly long range as the temperature decreases toward the mode-coupling critical
temperature.

1. Introduction

Liquids cooled toward their glass transition exhibit remarkable dynamical behaviour [1].
The initial slowing down of many liquids at temperatures well above their glass transition
temperatureTg can be described to great extent by the mode-coupling theory [2–4], which
predicts diverging relaxation times at a dynamical critical temperatureTc despite the absence
of a diverging or even growing static correlation length [5]. At the same time, experiments
in the temperature rangeTg < T < Tc, and simulations in the rangeT > Tc, have shown
that it is possible to select subsets of particles in the liquid (or monomers in the case of
polymers) that move ‘slower’ or ‘faster’ than average on timescales less than the structural
relaxation time [6–9]. The question then arises as to whether glass-forming liquids exhibit
spatially heterogeneousdynamics, and if so, is there a growing length scale associated with
this dynamical heterogeneity?

We have employed three complementary computational approaches to address this
question:

(a) The subset approach.In this approach [10–12], we monitor the displacement of each
particle in a time window�t , rank the displacements from largest to smallest, and
examine spatial correlations within subsets of particles exhibiting either extremely large or
extremely small displacements. In this way, we have demonstrated that particles of similar
mobility form clusters that grow with decreasing temperatureT . Moreover, particles
exhibiting the largest displacements within a time window in the late-β-relaxation/early-
α-relaxation regime (‘mobile’ particles) form low-dimensional clusters that grow and
percolate at the mode-coupling transition temperatureTc.
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(b) The displacement–displacement correlation function approach.In this approach [13–15],
we monitor the displacement of each particle in a time window�t as above, and calculate
a bulk, equilibrium correlation function that measures the correlations between the local
fluctuations in the particle displacements. Because this approach does not rely on defining
subsets via arbitrary thresholds or cut-offs, it may prove more amenable to future analytical
treatment.

(c) The first-passage-time approach.In this approach [16], we monitor the first passage time
τ taken for each particle to move a distanceε, and then, for a givenε, examine spatial
correlations between the differentτ -values either by grouping particles into subsets of
similar τ , or by calculating aτ–τ correlation function using all of the particles. This
approach shows that particles taking similar first passage times to travel any distanceε

are spatially correlated. It also allows us to identify particular values ofε for which the
first passage times are most correlated, and thereby extract detailed information on, e.g.,
the cage size.

In this paper, we present results from the first two approaches outlined above, and show that
as an equilibrium Lennard-Jones liquid approachesTc, correlations between local fluctuations
in particle displacements develop, grow, become increasingly long ranged, and appear to
diverge atTc. Similar results for a simulated polymer melt are presented elsewhere [17].

2. Theory

Consider a liquid confined to a volumeV , consisting ofN identical particles, each with no
internal degrees of freedom. Let the position of each particlei be denotedri . The motion
of a particlei may be described by its displacementµi(t,�t) ≡ |ri (t + �t) − ri (t)| over
some interval of time�t , starting from a reference timet . The question of whether particle
motions in a liquid are correlated can be addressed by modifying the usual definition of the
density–density correlation functionG(r) (which measures spatial correlations of fluctuations
in local density away from the average value [18,19]) such that the contribution of each particle
i to G(r) is weighted byµi . Thus, we define a ‘displacement–displacement’ correlation
function [13–15,20]:

Gu(r,�t) =
∫

dr′
〈[
u(r′ + r, t,�t)− 〈u〉][u(r′, t,�t)− 〈u〉]〉 (1)

where

u(r, t,�t) =
N∑
i=1

µi(t,�t)δ
(
r − ri (t)

)
(2)

and where〈· · ·〉 denotes an ensemble average.Gu(r,�t) measures the correlations of fluc-
tuations of local displacements away from their average value. Since we are considering an
equilibrium liquid, and becauseGu is defined as an ensemble average,Gu does not depend on
the choice of the reference timet . For the same reasons,〈u〉 ≡ 〈u(r, t,�t)〉 only depends on
�t for a homogeneous, equilibrium liquid.

Gu(r,�t) can be separated into self- and distinct parts, so we can identify a
spatial correlation functiongu(r,�t) analogous to the static pair correlation functiong(r)
conventionally used to characterize the structure of a liquid [18]:

Gu(r,�t) = 〈
N

〉
µ2δ(r) + 〈u〉〈U〉[gu(r,�t)− 1] (3)



Quantifying spatially heterogeneous dynamics A287

where

gu(r,�t) = 1

〈u〉〈U〉

〈
N∑
i=1

N∑
j=1
j 	=i

µi(t,�t)µj (t,�t)δ
(
r + rj (t)− ri (t)

)〉
. (4)

Here we have defined the ‘total displacement’U as

U(t,�t) =
∫

dr u(r, t,�t)

and its ensemble average〈U〉 ≡ 〈U(t,�t)〉. We have also defined

µ̄ ≡
〈

1

N

N∑
i=1

µi(t,�t)

〉
and µ2 ≡

〈
1

N

N∑
i=1

µ2
i (t, �t)

〉
.

In a constant-N ensemble,〈u〉 and〈U〉 are readily evaluated as〈u〉 = ρµ̄and〈U〉 = Nµ̄. Note
thatgu(r,�t) is different from the distinct part of the time-dependent van Hove correlation
functiong(r, t), because it correlates information for pairs of particles using information about
the position of each particle attwodifferent times. Thusgu(r,�t) is in some sense a four-point
correlation function, whereasg(r, t) is a two-point correlation function.

A ‘structure factor’ for the particle displacements can be defined as

Su(q,�t) ≡
〈

1

Nµ2

N∑
i=1

N∑
j=1

µi(t,�t)µj (t,�t)exp
[−iq · (ri (t)− rj (t))

]〉
. (5)

The fluctuations ofU are related to the volume integral ofGu(r,�t):〈[
U − 〈

U
〉]2

〉
=

∫
dr Gu(r,�t) ≡ 〈U 〉〈u〉kT κu (6)

wherek is Boltzmann’s constant. Recall that the volume integral of the density–density
correlation functionG(r) is proportional to the isothermal compressibilityκ, which diverges
at a conventional critical point becauseG(r) becomes long ranged. Likewise, the fluctuations
in U will provide information regarding the range ofGu(r,�t). Thus, in analogy with
conventional critical phenomena, we have defined an isothermal ‘susceptibility’κu.

For a fixed choice of�t , note that if the displacement were always the same for every
particle, thengu(r,�t) andg(r) would be identical for allr (andSu(q,�t) andS(q) would
be identical for allq). Hence, it is deviations ofgu(r,�t) (or Su(q,�t)) from g(r) (or S(q))
that will inform us of correlations of fluctuations of local displacements away from the average
value that are in excess of those that would be expected on the basis of a knowledge ofg(r)

or S(q) alone.

3. Simulation details

We have measured the spatial correlations in particle displacements using data obtained [10–12]
from a molecular dynamics simulation of a model Lennard-Jones glass former. The system
is a three-dimensional binary mixture (80:20) of 8000 particles interacting via Lennard-Jones
interaction parameters [21]. We analyse data from seven(ρ, P, T ) state points that lie on
a line in theP, T plane, approaching the mode-coupling dynamical critical temperature
Tc ≈ 0.435 at a pressurePc ≈ 3.03 and densityρc ≈ 1.2 [22] (all values are quoted
in reduced units [21]). The highest- and lowest-temperature state points simulated are
(ρ = 1.09, P = 0.50, T = 0.550) and (ρ = 1.19, P = 2.68, T = 0.451), respectively.
Following equilibration at each state point, the particle displacements are monitored in the



A288 S C Glotzer and C Donati

NVE-ensemble for up to 1.2 × 104 Lennard-Jones time units (25.4 ns in argon units) for the
lowestT . Complete simulation details may be found in [12].

For all seven state points, a ‘plateau’ exists in both the mean square displacement and
the intermediate-scattering functionFs(q, t) as a function oft [12]. The plateau separates
an early-time ballistic regime from a late-time diffusive regime, and indicates ‘caging’ of the
particles typical of low-T , high-density liquids. The same model liquid, simulated along a
different path toward the same mode-coupling critical point, was found to be well described by
the ideal mode-coupling theory [22]. For the present (larger) simulation, theα-relaxation time
τα that describes the long-time decay ofFs(q, t) at the value ofq corresponding to the first peak
in the static structure factorS(q) increases by 2.4 orders of magnitude, and follows a power
law τα ∼ (T − Tc)

−γ , with Tc � 0.435 andγ � 2.8. The diffusion coefficientD is found to
behave asD ∼ (T − 0.435)2.13. The simulated liquid states analysed here therefore exhibit
the complex bulk relaxation behaviour characteristic of a supercooled liquid approaching its
glass transition.

4. Results

Throughout the following subsection, all quantities are calculated using all 8000 particles in
the system. Results do not change substantially if the minority particles are not included in the
analysis. In the cluster analysis in subsection 4.2, only the majority particles are included in
the analysis. However, our results do not change quantitatively when the minority particles are
included. Recall that in the mode-coupling analysis of this model liquid by Kob and Andersen,
the same mode-coupling transition temperature was found for the majority particles as for the
minority particles [22].
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Figure 1. The displacement ‘structure factor’Su(q,�t) for different values ofT . Theq = 0
values are obtained fromSu(q = 0,�t) = (µ2/µ2)ρkT κu. Inset: the static structure factorS(q)
for four different values ofT .
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4.1. The displacement–displacement correlation function

Su(q,�t) is shown for different values ofT in figure 1, calculated for a value of�t chosen to
be of the order ofτα for eachT . For intermediate and largeq, Su(q,�t) coincides with the
static structure factor

S(q) ≡
〈

1

N

N∑
i=1

N∑
j=1

exp
[−iq · (ri − rj )

]〉

(see the inset). However, forq → 0 a peak inSu(q,�t) develops and grows with decreasingT ,
suggesting the presence of increasing long-range correlations inGu(r,�t). No such growing
peak atq = 0 appears in the static structure factorS(q) (cf. the inset), indicating the absence
of long-range correlations in the particle positions. Indeed, a comparison ofgu(r,�t) and
g(r) shows that at everyT simulated, the particle displacements are more correlated than their
positions. At the lowestT , this excess correlation persists for values ofr up to six interparticle
distances [15].
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Figure 2. κu(�t) as a function of�t for different temperatures.

In figure 1�t is chosen on the timescale of theα-relaxation time. The significance of the
time interval�t can be seen by examining the ‘susceptibility’κu(�t). Here we have calculated
κu(�t) directly from the fluctuations in the total displacementU . Figure 2 demonstrates four
important points:

(i) As �t → 0, κu → 0. Note that in the limit�t → 0, µi(t,�t)/�t is equal to the
magnitude of the instantaneous velocity. Thus correlations cannot be observed by looking at a
‘snapshot’ of the system—that is, by measuring correlations in the instantaneous velocity [23].

(ii) Initially, as �t increases,κu increases. Thus the spatial correlation of particle dis-
placements develops over time.

(iii) There is a time window�t∗ during whichκu is maximum. Both the maximum value
of κu and the corresponding time window�t∗ increase with decreasingT .

(iv) As �t → ∞, κu decreases. Thus in the diffusive regime, where the particles act like
Brownian particles, there are no correlations in the particle motions.
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Figure 3. The time when the fluctuations in the particle displacements are largest, plotted versus
temperature. The solid curve is a fit to�t∗ ∼ (T − 0.435)−2.3. Inset:�t∗ versusτα , as a log–log
plot. The solid line has slope 0.81, and represents the best-fit curve through the data. The dashed
line has slope 1.0, and is not nearly as good a fit. That�t∗ does not scale linearly withτα is further
supported by the fact that an exponent less than 2.6 describing the apparent divergence ofτα with
T − Tc can be excluded.
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Figure 4. The ‘susceptibility’κu(�t∗) versus temperature. The solid and dashed curves are
power-law fits to the data, as indicated in the figure.

Figure 3 shows that the time�t∗ at which the fluctuations in the particle displacements
are a maximum follows a power law withT : an excellent fit to the form�t∗ ∼ (T − Tc)

−γ is
obtained whenTc = 0.435± 0.005, and yieldsγ = 2.3± 0.3, where the highest value ofγ is
obtained with the lower bound onTc. Our estimated value forγ differs from that describing
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the divergence atTc of the structural relaxation timeτα (γ � 2.8), but (within our numerical
uncertainty) cannot be distinguished from the exponent governing the apparent vanishing of
the diffusion coefficientD (γ � 2.1 ± 0.1).

In figure 4 we show theT -dependence ofκu(�t∗). We find thatκu(�t∗) grows mono-
tonically with decreasingT , indicating that the range of the correlation measured bygu(r,�t

∗)
is growing with decreasingT . The data can be fitted extremely well with a power law
κu(�t

∗) ∼ (T − Tc)
−γ with Tc = 0.435, which yieldsγ = 0.84. (As shown in the figure, a

larger (closer to Curie–Weiss-type) exponent can be obtained by fitting the data with a power
law that diverges at a slightly lower value ofTc.) Thus the previously determined mode-
coupling critical temperature coincides, within our numerical error, with the temperature at
whichGu(r,�t) becomes long ranged.

Figure 5. Particles exhibiting the 5% largest (light) and 5% smallest (dark) displacements in�t∗
starting from an arbitrary time origin, atT = 0.451. The clustering of particles of similar mobility
is evident in the figure.

The displacement–displacement correlation function measures the tendency for particles
of similar mobility to be spatially correlated (cf. figure 5). To extract a correlation length from
the data, we have attempted to fitSu(q,�t∗) using an Orstein–Zernike form,Su(q,�t∗) ∝
1/(1 + ξ2q2). This form assumes thatGu(r,�t

∗) is asymptotically proportional to e−r/ξ /r,
whereξ is the correlation length [19]. We find that this form fits well at the highestT but fails
to fit the data on approachingTc. The data can instead be fitted at allT using the more general
form Su(q,�t

∗) ∝ 1/(1 + (ξq)η). The best fit givesη = 1.99 and 3.54 for our highest and
lowestT , respectively. However, becauseη depends onT , ξ does not show a definite trend
with temperature, giving values of roughly three particle diameters. Larger simulations may be
required to accurately determine the correct functional form forSu at smallq. Nevertheless, the
data show unambiguously that asT → Tc, spatial correlations between the displacements of
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particles arise and grow and become long ranged atTc. To obtain further evidence for a growing
dynamical length scale, we turn now to the subset method described in the introduction [24].

4.2. Cluster analysis of mobile particles

Examination of the distribution of particle displacements (the self-part of the usual time-
dependent van Hove correlation function [18]) immediately shows the problems inherent in
defining subsets of particles of extremely low mobility. Over the time range coincident with
the plateau in the mean square displacement, this function exhibits a narrow peak containing
most of the particles, and a long tail to large distances containing a small percentage of the
particles. The non-Gaussian parameterα2(t) has been used to identify a time when this tail
is most pronounced [10]. At that time, approximately 95% of the particles are contained in
the peak, and about 5% are contained in the tail, regardless of temperature. Because of this
tail, the most mobile particles in the liquid ‘distinguish’ themselves from the bulk, while it is
more difficult to define a threshold with which to identify particles exhibiting extremely small
displacements (‘immobile’ particles).

By examining themaximumdisplacement achieved by a particle in a time window�t , a
somewhat better definition of immobility can be achieved. It was shown in reference [12] that
particles exhibiting the smallest displacement defined in this way are spatially correlated, and

Figure 6. A large cluster of mobile particles found atT = 0.451, at two different times. Pink
denotes the particles att = 0 and blue denotes the particles at time�t later, where�t is slightly
less than�t∗. The small black lines connect the same particle at the two times. Thus between
t = 0 and�t , each particle shown has moved almost one interparticle distance. This cluster can be
decomposed into a number of elementary ‘cooperatively rearranging strings’, defined as minimal
groups of particles that follow one another [11].
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form relatively compact clusters. Using this definition of maximum displacement, which for
the most mobile particles gives the same results as the simple definition of displacement used
above, we find that highly mobile particles also cluster. These clusters are very ramified, and
are composed of smaller ‘strings’ of particles that follow one another (cf. figure 6).
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Figure 7. The mean cluster sizeS plotted versusT , for subsets containing 3% (circles), 5%
(squares), and 7% (diamonds) of the most mobile particles atT = 0.451. The lines are power-law
fits,S ∼ (T − Tp)

−γ . The best-fit parameters areTp = 0.440, 0.431, and 0.428, respectively, and
γ = 0.397, 0.687, and 0.741, respectively. Inset: the distribution of the sizen of clusters of mobile
particles for four different values ofT .

In this subsection, we are interested in the growth of clusters of highly mobile particles
with decreasing temperature. To this end, we have constructed clusters of nearest-neighbour
particles whose maximum displacement in a time window�t ∼ �t∗ falls within the top 3%,
5%, and 7% of all displacements [12]. The distribution of clusters of sizen constructed using
the top 5% of the particles is shown in the inset of figure 7 for four different values ofT . Also
shown in figure 7 is theT -dependence of the mean cluster sizeS = ∑

n2P(n)/
∑
nP (n) for

each subset [25]. We find that for each subsetS ∼ (T − Tp)
−γ , with Tp = 0.440, 0.431, and

0.428, all close toTc. (Note that as the number of particles contained in the subset increases,
Tp decreases.) For the subset containing 5%, the data fall on a straight line when given as a
log–log plot againstT − Tc. Thus, we conclude thatTc appears to coincide with a percolation
transition of the most mobile particles in the liquid.

The presence of clusters of mobile particles whose size grows with decreasing temperature
contributes to the growing range of the displacement–displacement correlation function. Thus
we can use the mean cluster size to give a rough estimate of the length scale on which particle
motions are correlated. In our coldest simulation, the mean cluster size is approximately ten
particles. Since the clusters have a fractal dimension of approximately 1.75 [12], that implies
a mean radius of gyration larger than three particle diameters. The largest cluster observed at
T = 0.451 contains over 100 particles, and thus has a radius of gyration that exceeds the size
of our simulation box at thatT .

It is important to note that while the mean size of clusters of mobile particles appears
to diverge atTc, the smaller, cooperatively rearranging ‘strings’ that make up these clusters
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also grow with decreasingT , but are still finite atTc [11]. In the temperature regime studied
here, the distribution of string lengths is exponential, and the mean string length appears to
diverge at a temperature substantially lower thanTc. Thus while the mode-coupling transition
may coincide with a percolation transition of clusters of highly mobile particles, our data are
compatible with the idea of Adam and Gibbs that the ideal glass transition atT0 < Tc is
associated with the growth and possible divergence of the minimum size of a cooperatively
rearranging region (‘strings’ in the present simulation). This idea will be further explored
elsewhere.

5. Discussion

In this paper, we have defined a bulk correlation function that quantifies the spatial correlation
of single-particle displacements in a liquid, and we have examined spatial correlations within
subsets of highly mobile particles. While the first approach has the advantage of allowing
a direct calculation of spatial correlations in local particle motions without one having to
define arbitrary subsets, the second approach has the advantage of permitting a geometrical
analysis of clusters of highly mobile and highly immobile particles. Using both approaches,
we have shown in computer simulations of an equilibrium Lennard-Jones liquid that the
displacements of particles are spatially correlated [26] over a range and a timescale that
both grow with decreasingT as the mode-coupling transition is approached. While mode-
coupling theory currently makes no predictions concerning a growing dynamical correlation
length, calculation of the vector analogue of the displacement–displacement correlation
function should be tractable within the mode-coupling framework. Finally, the displacement–
displacement correlation function has allowed us to identify a fluctuating dynamical variable
U whose fluctuations become longer ranged and appear to diverge atTc. In this regard,U
is behaving much like a static order parameter on approaching a second-order static critical
point, suggesting the possibility that we can obtain insights into the nature of glass-forming
liquids using an extension to dynamically defined quantities of the framework of ordinary
critical phenomena.
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