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Dynamically induced loss and its implications on temperature scans
of relaxation processes
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~Received 27 March 1998; accepted 7 October 1998!

It is demonstrated that a constant frequency measurement of a purely real property that varies due
to a change in some state variable~e.g., pressure, volume, or temperature! with time will show a
dynamically induced loss that is not present when the variable is held constant. This conclusion is
demonstrated through both generalized arguments and by examining some specific functional forms
of time evolution equations, including one that resembles a glass transition. Our results show that
techniques such as dielectric thermal analysis, dynamic mechanical thermal analysis, and modulated
differential scanning calorimeter, which perform measurements of complex quantities while
scanning in temperature, may have some serious problems. Therefore, results obtained from these
techniques should be examined carefully before using them to prove or disprove theoretical model
predictions, especially in the neighborhood of a phase transition. ©1999 American Institute of
Physics.@S0021-9606~99!51802-3#
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I. INTRODUCTION

Many of the current thermal analysis techniques invo
scanning of temperature while measuring some comp
quantity (X* ) at a fixed frequency. The imaginary~loss!
component of this complex measured quantity is then use
determine information about such processes as the glass
sition or crystallization.1–5 Some examples of instrumen
which perform such measurements are dielectric ther
analyzers~DETAs!, modulated differential scanning calo
rimeters~MDSCs!, dynamic mechanical analyzers~DMAs!,
and dynamic mechanical thermal analyzers~DMTAs!. Fur-
thermore, the following American Society for Testing a
Materials~ASTM! standard test methods advocate scann
in temperature while measuring at a fixed~or multiple! fre-
quency: E 1640-94, D 4065-95, D 5023-95a, D 5024-95a
5096-95a, and D 5279-95.6 The underlying assumption in a
of these scanning techniques is that the quantities that
measured are equivalent to those measured under isothe
steady-state conditions. We will demonstrate that a cons
frequency measurement of a purely real property that va
due to a change in some state variable~e.g., pressure, vol
ume, temperature! with time will show a dynamically in-
duced loss~DIL ! that is not present when the variable is he
constant. This loss can become quite large if the meas
property changes substantially over a single cycle of exc
tion. ~Henceforth, we will designate a constant frequen
measurement made under constant state variable condi
as steady state.!

II. THEORY

The reality of DIL can be readily confirmed by a simp
laboratory demonstration. A low loss variable capacitor

a!Electronic mail: fim@nist.gov
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connected to the terminals of an automated capacita
bridge that displays both capacitance and loss at the s
time. If the capacitance and loss are observed simultaneo
while the capacitance is being increased, a positive loss
be observed. Similarly, if the capacitance is decrease
negative loss will be observed.

In conventional experiments where there is no scann
the presence of loss is connected to a relaxation. In s
measurements, the relaxation is monitored over a broad
quency range. The relaxation function that is customa
defined as the response to a step excitation, can be conn
to the observed frequency behavior by means of a Lap
transform.7 These relaxation functions are dissipative in n
ture.

In the work that follows, we are not assuming any rela
ation process in the material. By a relaxation process
mean a time dependent response,X, ~e.g., displacement! as a
result of an applied fieldF ~e.g., force! with all other state
variables held constant

X~ t !5FF~ t !. ~1!

Therefore, a relaxation functionF(t) is the time dependen
direct response to that fieldF.

This time dependent response is equivalent to a comp
frequency dependent response,X* 5X82 iX9, for the sinu-
soidally varyingF(t)5F0 exp(ivt) with an imaginary com-
ponent X9 ~loss! that reaches a maximum at a frequen
corresponding to the time scale of the relaxation. ForF(t)
that is a constant, the loss (X9) is zero.

In general,F(t) is defined for a constant set of cond
tions with F(t) a perturbation on the system.8 In scanning
experiments, some variableU(t) is varied with X* moni-
tored at some constant frequencyv. The frequency domain
equivalent ofF(t) can now be written asf@v;U(t)#. If U is
changed, there is a resulting change inf. Sincef@v;U(t)#
6 © 1999 American Institute of Physics
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is a function of bothv andU, for differentv the response to
a change inU will be different. Examples ofU and F are
temperature and applied electric field, respectively, withf
being the dielectric constant.

We shall consider a response functionf, which is a
constant with respect tov. Therefore, the response is direct
proportional toF for any instant of time. The time depen
dence off is solely introduced through the time dependen
of U, and therefore will be denoted byf@ ;U(t)#. Therefore,
time is strictly a parameter that describes the state of
system throughU. An example is a low frequency dielectri
constant that changes with time over the time scale of ob
vation due to a varying temperature. This example co
monly arises when the dielectric constant is measured
some fixed frequency during a temperature scan. These
sumptions imply that the system is lossless at constantU.

The change of the response function is solely contro
by the scanning variableU. Therefore, this change is an in
dependent parameter with respect to the measuring
quency. For a given measurement frequency, the results
be scan rate dependent. In what follows, we will pres
results as a function of a normalized frequencyv and a nor-
malized evolution timet0 . The evolution timet0 is normal-
ized by the scan rate. The frequencyv is similarly normal-
ized such that the normalized time is incremented by 2p/v
for a full period of excitation. For most scanning expe
ments, the frequency is chosen to be at least the same o
of magnitude as the time scale over whichf changes. For
the case in which the measuring frequency is high compa
to the rate of evolution of the system,v is greater than unity.
The response function will be arbitrarily normalized for am
plitude.

Simple energetic arguments show that an increase in
response functionf must result in a positive imaginary com
ponent or equivalent loss. As an example, consider elect
measurements. A sample is placed between a pair of e
trodes and measured as a capacitance.9,10 The dielectric con-
stant is calculated from the capacitance and a geometric
tor. If the dielectric constant increases with time~due to a
temperature scan! the measuring system must supply ener
to the sample, since the energy is1

2CV2, where C is the
capacitance andV is the applied voltage. To the measurin
circuit, this additional energy sink is a dissipation. All ener
sinks are equivalent and an energy sink can always be in
preted as dissipation.

In the work that follows, we will consider specific tim
evolution functions. The frequency response of these fu
tions will be determined by using the mathematical equi
lent of an ideal phase sensitive detector. This will allow us
quantify the induced loss term for observable conditions.

A. Time evolution functions

To illustrate DIL we will consider several equations f
time evolution, including one that superficially resembles
glass transition. These functions will all be expressed
terms of the evolution following the current value of timet0 .
The first time evolution equation is a cubic polynomial~see
Fig. 1!:
e

e

r-
-
at
as-

d

e-
ill
t

der

d

he

al
c-

c-

y

r-

c-
-
o

a
n

f1@ ;U~ t1t0!#511
~ t1t0!

t1
1

~ t1t0!2

t2
2 1

~ t1t0!3

t3
3 , ~2!

wheret1 , t2 , andt3 are constants with units of time. In th
following numerical calculations, we shall assume that
three are equal to unity.

The second is an exponential~Fig. 2!:

f2@ ;U~ t1t0!#512expS 2~ t1t0!

t D , ~3!

wheret is a constant with units of time and which has be
set equal to unity for numerical computation. It must be e
phasized that the time evolution inside the exponential is
that due to the excitationF, but rather due to a change i
some scanning variableU. We could arbitrarily holdU con-
stant after a given intervalt0 , since it is independent of the
time behavior of the measuring variablet. In that case, the
response function becomes a constant at its current value
there is no induced loss.

The third time evolution equation resembles a glass tr
sition ~see Fig. 3!:

f3@ ;U~ t1t0!#5

S ~ t1t0!3

t1
3 D

F11S ~ t1t0!3

t2
3 D G , ~ t1t0!>0,

~4!
f3@ ;U~ t1t0!#50, ~ t1t0!,0,

FIG. 1. Plot of Eq.~2! as a function of time:t15t25t350.

FIG. 2. Plot of Eq.~3! as a function of time;t has been chosen to be unity
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where againt1 and t2 are constants with units of time an
have been chosen to be equal to unity for numerical eva
tion. This function has asymptotic limits of 0 and 1 att
1t0)50 and (t1t0)5`, respectively, and is continuou
through the second derivative att050.

B. Ideal phase sensitive detector

For a measurement in the frequency domain, the co
plete answer includes both an amplitude and phase a
relative to the excitation. Experimentally, this is acco
plished by using a phase sensitive detector that allows
simultaneous measurement of the in-phase and quadr
components of the signal relative to the excitation. Th
detectors take the signal, multiply it by a reference sig
defined in phase by the excitation, and average over s
period. The in-phase and quadrature responses can be
sured simultaneously by using two detectors in parallel.

In what follows, we will define our responses in terms
an ideal phase sensitive detector. Consider an excita
cos(vt) where we assume a normalized excitation. Ideal
eraging requires an integral number of half cycles; in t
paper we will usep/v. This leads to the response bein
defined as

X85
2v

p E
0

p/v

F~ t !cos~vt !dt ~5!

for the real component and

X95
2v

p E
0

p/v

F~ t !sin~vt !dt ~6!

for the imaginary component, whereX* 5X82 iX9 is the
complex quantity being determined andF(t) is the signal
being measured.

Note that for a componentF(t) that isp/2 radians out of
phase with either reference, the integrals become:

2v

p E
0

p/v

sin~vt !cos~vt !dt50. ~7!

This establishes the ideality of the baseline. It should
realized that the period ofp/v is the minimum period tha
can be used to establish orthogonality by the fundame

FIG. 3. Plot of Eq.~4! as a function of time. Note the glass transition-lik
shape of the curve:t15t250.
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properties of sine and cosine. The basis for this minim
period can be easily understood by considering the in
grand:

sin~x!cos~x!5
sin~2x!

2
, ~8!

wherex is a ‘‘dummy’’ variable. It is obvious that this is a
symmetric function aboutp/2 radians and is 1/2 the perio
of the original signal. Except for the trivial solution, a perio
of p radians is the minimum period to guarantee a ze
There is only one region that is of positive sign and o
equal region that is of negative sign.

III. RESULTS AND DISCUSSION

Consider a response function that changes slowly w
respect to sin(x). We can represent the response for our lo
less system asA(x)•cos(x). In the interval from 0 top, we
can arbitrarily takeA(x) and force it to be an increasin
function of positive sign, with no loss of generality as th
other cases are easily established. Then the integral@Eq. ~6!#
becomes:

X95
2

p E
0

p

A~x!cos~x!sin~x!dx. ~9!

In the interval from 0 top/2, the integrand is positive an
less in magnitude than the integrand fromp/2 to p, where it
is always negative. Therefore, the integral no longer vanis
and is negative. For a complex susceptibility, defined as

x* ~v!5X* /F,
~10!

x* ~v!5x82 ix9,

wherex9 conventionally represents the loss term, an app
ent loss will be observed. This can be observed visually
Fig. 4 for A(x)5x.

In what follows, we will consider the three specific tim
evolution functions that we presented earlier. As stated
Sec. I, these functions are not to be considered relaxa
functions, but rather quantities that evolve in time while u

FIG. 4. Illustration of dynamically induced loss. The upper curves are a
of sinx cosx ~dashed curve! and x sinx cosx ~solid curve! vs x ~wherex
ranges from 0 top!, where cosx is the excitation signal, sinx is the refer-
ence signal for the out-of-phase component, andx represents a linearly
changing response. The lower curves are the corresponding partial are
the upper curves as a function ofx. Note that a simple linear increase in th
property with time causes a nonzero loss, i.e., the area does not inters
zero after a single half period ofp.
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der observation. These functions specify lossless syst
since they are expressed in terms of real variables. Re
that the instantaneous response toF can be written as
f@ ;U(t)#cos(vt). Then Eqs.~2!–~4! will be substituted into
the following forms:

X85
2v

p E
0

p/v

f@ ;U~ t !#cos~vt !cos~vt !dt ~11!
of
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for the real component and

X95
2v

p E
0

p/v

f@ ;U~ t !#cos~vt !sin~vt !dt ~12!

for the imaginary component.
Substitution of Eq.~2! into Eq. ~12! and integration

yields:
X95
~2t2

2t3
3v216t1t2

2t0
2v214t1t3

3t0v216pt1t2
2t0v12pt1t3

3v12p2t1t2
223t1t2

2!

4t1t2
2t3

3v3 ~13!
re-
on-

me
f the

in
while substitution of Eq.~3! and integration yields:

X95
2v2t2

p
•

FexpS 2t0

t D2expS 2~p1t0v!

vt D G
~114v2t2!

. ~14!

The integrated form of Eq.~4! can be expressed in terms
known functions, however it is extremely long and can
evaluated using a commercial software package such
MathSoft’sMATHCAD 7.0 software.11 For this paper, the func
tion was integrated numerically using the same softw
package. The numerical results for all of these functions
shown in Figs. 5, 6, and 7, respectively.

It is apparent that all three equations have a nonz
measured loss. For the first function@Eq. ~2!# which is al-
ways increasing with time, as is its derivative, the loss co
ponent increases ast0 increases from zero. If only the linea
term was present in Eq.~2!, then only the first term in the
numerator of Eq.~13! would be present and therefore th
loss would be given by:

X95
1

2t1v
. ~15!

It should be realized that the above equation is the h
frequency limit for any smoothly changingf. This can be
shown by a simple Taylor series expansion off. Note that as
the frequency~v! becomes large, the DIL (X9) vanishes.

Equation~15! is the response to a slowly varyingf for a
sinusoidal excitation. For comparison, if the measurem
was performed in the time domain with a constant appl

FIG. 5. X9 as a function of angular frequency~v! and observation time (t0)
for Eq. ~2!.
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excitation, then there would be a constant change inX @see
Eq. ~1!#. If this were interpreted as a time-dependent
sponse to the excitation, the Laplace transform of the c
stant 1/t1 would be taken givingX951/(t1v). This com-
puted result is twice the response due to DIL and of the sa
sign. However, the assumptions necessary for the use o
Laplace transform are clearly violated.7

To illustrate further the practical application of Eq.~15!,
consider the Clausius–Mosotti equation:12

e21

e12
v5

4pNAaE

3
, ~16!

wheree is the dielectric constant,v is the molar volume,NA

is Avogadro’s number, andaE is the polarizability. The mo-
lar volume in Eq. ~16! can be written asv5v01av0T
~wherev0 is the molar volume at an initial temperature,a is
the volume coefficient of thermal expansion, andT is the
temperature measured from the initial value!. Furthermore,
we can introduce the scanning feature by settingT5r (t
1t0), wherer is the scanning rate. To first order, we obta
the following for the dielectric constant:

e5
v018pNAaE/3

v024pNAaE/3
2

4pNAaEav0r

~v024pNAaE/3!2 ~ t1t0!. ~17!

Substitution of this into Eq.~12! results in Eq.~15! with t1

given by:

FIG. 6. X9 as a function of angular frequency~v! and observation time (t0)
for Eq. ~3!.
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t15
2~v024pNAaE/3!2

8pNAaEav0r
, ~18!

which demonstrates that an ideal nonpolar fluid will show
negative DIL caused by the expansion of the liquid w
increasing temperature.

In Sec. I, we gave the example of changing a low-lo
variable air capacitor at a constant rate as a demonstratio
DIL. When a variable 100 pF capacitor with no measura
loss had its capacitance increased at a constant rate o
pF/s, the observed loss was 0.00160.0002 pF, as measure
at 1 kHz on a Hewlett–Packard HP4284A precisi
inductance-capacitance-resistance~LCR! meter.11,13 This is
in agreement with the value calculated by Eq.~15! of X9
50.0008 pF. Since Eq.~15! is normalized, the value oft1

was set equal to 0.1 s/pF, which corresponds to the inv
rate of change of the capacitance.

With the validity of Eq.~15! having been established, w
can demonstrate the possible magnitude of DIL in ongo
experiments. We examined the data of Schawe14 on tempera-
ture modulated DSC of polystyrene at the glass transi
~their Fig. 1!. By graphically approximating the maximum
slope of the glass transition scan~curve 1, Cb) with a
straight line, we obtain a value for 1/t1 of approximately
6.731024 J/~g K s!61.031024 J/~g K s!. This gives an esti-
mate for the maximum amplitude for the loss compon
~DIL ! of X95C950.034 J/~g K!60.010 J/~g K!. The ob-
served loss max component is approximatelyC9
50.04 J/~g K! above the baseline, which suggests that D
could account for all of the loss peak within the uncertain
estimate.

For the exponential form@Eq. ~3!#, which approaches a
constant monotonically, the loss decays to zero at long tim
and for a given frequency has a maximum att0 equal to zero.
While there is a shallow maximum nearv equal to unity, the
loss decreases asv increases. It should be noted that ev
when the time evolution equation has decayed to 0.05 w
t053, at v510 it still has a significant nonzero loss. Th
simulated ‘‘glass transition’’@Eq. ~4!# shows a loss peak o
both the evolution timet0 and frequency scalesv. Note that
the ‘‘glass transition’’ has been defined such thatf3 in-
creases with time. This can be inverted for a similar event
a physical system. As an example, if this were the syste
Young’s modulus there would be a decrease as tempera
was increased.15 This would change the sign of the loss.

FIG. 7. X9 as a function of angular frequency~v! and observation time (t0)
for Eq. ~4!.
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A. State variable lagged systems

In the previous development, we have explicitly stat
thatf@ ;U(t)# follows U. For a thermally driven system, thi
requires no thermal lags. However, in the previous devel
ment, the variableU never explicitly appears and only th
instantaneous value off@ ;U(t)# is required. Therefore, the
above results can readily be extended to systems that do
directly follow U and there is no induced lag with respect
F, the excitation variable. This consideration specifically e
cludes the case where the scanning variable is the sam
the excitation variable and where state variable lag can l
to additional considerations.16

In this case, for a system that has a delayed respons
the scanning variableU, there will still be an average, mac
roscopic value forf, suitably defined in terms of the macro
scopic measurement. Then,f@ ;U(t)# will still be time de-
pendent but different than if there were no lag. Since we o
need the value off@ ;U(t)# at a given time interval
(t1t0), the above results still hold except that the value oU
for a given (t1t0) can be used only in some average sen
and does not directly refer to the scanning variable.

IV. CONCLUSIONS

We have demonstrated that a system that evolves in t
will have a DIL regardless of whether or not there is
imaginary component. It is important to consider the imp
cations of these results regarding the common use of t
perature scans. It is inappropriate to use nonisothermal
to quantitatively characterize the molecular behavior o
system unless the underlying relaxation~or evolution! is
known to proceed at a far lower frequency than the pro
frequency. There is not just a simple tracing of the behav
as a function of temperature as it would be measured isot
mally.

It is additionally important to note that severe problem
will be encountered in the neighborhood of a phase transi
or relaxation. This can be understood by consideration of
integrals obtained if the time evolution function has both
real and imaginary component. If the response function
not a purely real quantity, then the quantitiesX8 and X9
measured under steady state conditions will fold into e
other in a nonsteady state experiment. This can be rea
seen by observing that Eq.~12! is the cross-correlation term
and can be applied toX8 as well, if X9 is substituted forf.

Hence, it is our conclusion that, for accurate analysis
the molecular dynamics of relaxation processes, only stea
state experiments be performed. If scanning must be
formed, the following suggestion is offered. The maximu
slope of the real component can be substituted into Eq.~15!
and an approximate magnitude of the DIL can be obtain
An experimental diagnostic is to scan up and down in
state variable. However, it should be realized that in gen
this would not allow cancellation due to effects such as la
or underlying material changes. We emphasize that these
sults must be considered when data obtained from DE
~scanning! and DMTA experiments as well as modulate
DSC at high scanning rates are presented to support m
predictions. We have not displayed the distortions on the



h
e

f
on
ta
s
iv
io
.

bl
dg
oc

R

r in
does
nal
ms

stan-

1111J. Chem. Phys., Vol. 110, No. 2, 8 January 1999 C. R. Snyder and F. I. Mopsik
part in the work above, which are similar in magnitude to t
computed DIL. The extra term, when a complex respons
present, will distort both terms even more.

From our results it is apparent that a combination o
low frequency with a high scanning rate are the most pr
to DIL. It is therefore recommended that the experimen
parameters~frequency and scan rate! suggested by source
such as Refs. 17, 18, and 19 be utilized only for qualitat
results. We emphasize again that no quantitative conclus
should be made without estimating the magnitude of DIL
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