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Dynamically induced loss and its implications on temperature scans
of relaxation processes
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It is demonstrated that a constant frequency measurement of a purely real property that varies due
to a change in some state varialgéeg., pressure, volume, or temperajusdth time will show a
dynamically induced loss that is not present when the variable is held constant. This conclusion is
demonstrated through both generalized arguments and by examining some specific functional forms
of time evolution equations, including one that resembles a glass transition. Our results show that
techniques such as dielectric thermal analysis, dynamic mechanical thermal analysis, and modulated
differential scanning calorimeter, which perform measurements of complex quantities while
scanning in temperature, may have some serious problems. Therefore, results obtained from these
techniques should be examined carefully before using them to prove or disprove theoretical model
predictions, especially in the neighborhood of a phase transition19€9 American Institute of
Physics[S0021-960809)51802-3

I. INTRODUCTION connected to the terminals of an automated capacitance
Many of the current thermal analysis techniques involvebrldgle that displays both capacitance and loss at the same

. . ; time. If the capacitance and loss are observed simultaneously
scanning of temperature while measuring some complex

. ) . : While the capacitance is being increased, a positive loss will
quantity (X*) at a fixed frequency. The imagina§os9 pacttan 0eing . P
) LS be observed. Similarly, if the capacitance is decreased a
component of this complex measured quantity is then used t0 . :
o ; negative loss will be observed.
determine information about such processes as the glass tran- . ; . .
o T . In conventional experiments where there is no scanning,
sition or crystallization> Some examples of instruments : .
atpe presence of loss is connected to a relaxation. In such

which perform such measurements are dielectric therm o )
i . . measurements, the relaxation is monitored over a broad fre-
analyzers(DETAs), modulated differential scanning calo- : : . .
quency range. The relaxation function that is customarily

rimeters(MDSCs, dynamic mechanical analyzefSMAS), defined as the response to a step excitation, can be connected

and dynamic mecha_nlcal ther_mal analyzém TAS). _Fur- to the observed frequency behavior by means of a Laplace
thermore, the following American Society for Testing and 7 . ! TR
transform. These relaxation functions are dissipative in na-

Materials(ASTM) standard test methods advocate scannlnq
) . ; : ; ure.
In temperature while measuring at a fixg multiple) fre- In the work that follows, we are not assuming any relax
quency: E 1640-94, D 4065-95, D 5023-95a, D 5024-95a, D ,. : " ning any
. g ation process in the material. By a relaxation process we
5096-95a, and D 5279-95The underlying assumption in all : .
. X . . mean a time dependent responsg(e.g., displacemepts a
of these scanning techniques is that the quantities that are . : .
. : result of an applied field- (e.g., force with all other state
measured are equivalent to those measured under isothermal .
" X variables held constant
steady-state conditions. We will demonstrate that a constant
frequency measurement of a purely real property that varies
due to a change in some state variatdeg., pressure, vol-

ume, temperatubew¢h time will show a dynarr_ucally_ " Therefore, a relaxation functioi(t) is the time dependent
duced losgDIL) that is not present when the variable is heldd-rect response to that fiekd

constant. This loss can be_come quite I_arge if the Measured rhis time dependent response is equivalent to a complex
property changes substantially over a single cycle of exc'tafrequency dependent responsé, =X’ —iX”, for the sinu-
tion. (Henceforth, we will designate a constant frequency, \ '

: .. ’soidally varyingF(t) =F, exp{wt) with an imaginary com-
measurement made under constant state variable Cond't'°B8nentX” (los$ that reaches a maximum at a frequency
as steady state.

corresponding to the time scale of the relaxation. #dt)
that is a constant, the losX/)) is zero.
Il. THEORY In general,®(t) is defined for a constant set of condi-

. . i . tions with F(t) a perturbation on the systefin scanning
The reality of DIL can be readily confirmed by a simple experiments, some variablé(t) is varied with X* moni-

laboratory demonstration. A low loss variable capacitor isi5req at some constant frequeney The frequency domain
equivalent of®(t) can now be written ag[ w;U(t)]. If Uis
dElectronic mail: fim@nist.gov changed, there is a resulting changeginSince ¢[ w; U(t)]

X(t)=F®(t). (1)
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is a function of bothw andU, for differentw the response to 10000
a change inJ will be different. Examples ofJ andF are
temperature and applied electric field, respectively, with 8000 1
being the dielectric constant.

. . L 6000 1

We shall consider a response functign which is a s

constant with respect to. Therefore, the response is directly 4000 1
proportional toF for any instant of time. The time depen-
dence of¢ is solely introduced through the time dependence 2000 -
of U, and therefore will be denoted hy{ ;U(t)]. Therefore,
time is strictly a parameter that describes the state of the 0 0 5 1'0 1'5 20

system throughJ. An example is a low frequency dielectric
constant that changes with time over the time scale of obser-
vation due to a varying temperature. This example com-
monly arises when the dielectric constant is measured at
some fixed frequency during a temperature scan. These as-
sumptions imply that the system is lossless at condtiant (t+ty)  (t+tg)? (t+tg)°

The change of the response function is solely controlled 4 -y(t+t,)]=1+ SO T )
by the scanning variableg. Therefore, this change is an in- 71 T2 73

dependent parameter with respect to the measuring ff€yherer,, r,, andr; are constants with units of time. In the

quency. For a given measurement frequency, the results wilhliowing numerical calculations, we shall assume that all
be scan rate dependent. In what follows, we will presenthree are equal to unity.

(t+ty)

FIG. 1. Plot of Eq.(2) as a function of timer;=7,= 73=0.

results as a function of a normalized frequerggand a nor- The second is an exponenti@ig. 2):

malized evolution timé,. The evolution time, is normal-

: SR —(t+1p)

ized by the scan rate. The frequengyis similarly normal- So[:U(t+15)]=1—ex 3)
ized such that the normalized time is incremented by« T

for a full period of excitation. For most scanning experi- whereris a constant with units of time and which has been

ments, the frequency is chosen to be at least the same ordgst equal to unity for numerical computation. It must be em-

of magnitude as the time scale over whighchanges. For phasized that the time evolution inside the exponential is not

the case in which the measuring frequency is high compareghat due to the excitatiof, but rather due to a change in

to the rate of evolution of the system,is greater than unity. some scanning variablé. We could arbitrarily holdJ con-

The response function will be arbitrarily normalized for am- stant after a given interval,, since it is independent of the

plitude. time behavior of the measuring varialileln that case, the
Simple energetic arguments show that an increase in theesponse function becomes a constant at its current value and

response functiogp must result in a positive imaginary com- there is no induced loss.

ponent or equivalent loss. As an example, consider electrical The third time evolution equation resembles a glass tran-

measurements. A sample is placed between a pair of elesition (see Fig. 3

trodes and measured as a capacitartédhe dielectric con-

3
stant is calculated from the capacitance and a geometric fac- (t+t30)
tor. If the dielectric constant increases with tirfdie to a ba[:U(t+1t)]= 1 (t+15)=0
temperature scarthe measuring system must supply energy s 0 (t+t)°\ |’ 0 '
to the sample, since the energy 3€V?, whereC is the Tg

capacitance an¥ is the applied voltage. To the measuring (4

circuit, this additional energy sink is a dissipation. All energy ~ ¢3l;U(t+1)]=0, (t+1) <0,
sinks are equivalent and an energy sink can always be inter-
preted as dissipation. 12
In the work that follows, we will consider specific time '
evolution functions. The frequency response of these func- 1.0 4
tions will be determined by using the mathematical equiva- 08 -
lent of an ideal phase sensitive detector. This will allow us to
guantify the induced loss term for observable conditions. © 0.6
A. Time evolution functions 0.4 1
To illustrate DIL we will consider several equations for 0.2 1
time evolution, including one that superficially resembles a 0.0 . : .
glass transition. These functions will all be expressed in 0 5 10 15 20
terms of the evolution following the current value of time (t+1t)

The first time evolution equation is a cubic polynomis¢e
Fig. D: FIG. 2. Plot of Eq.(3) as a function of timey has been chosen to be unity.
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FIG. 4. lllustration of dynamically induced loss. The upper curves are a plot
FIG. 3. Plot of Eq.(4) as a function of time. Note the glass transition-like Of sinx cosx (dashed curyeandx sinx cosx (solid curvg vs x (wherex
shape of the curvet;=7,=0. ranges from O tar), where cox is the excitation signal, sixis the refer-
ence signal for the out-of-phase component, ancepresents a linearly
changing response. The lower curves are the corresponding partial areas of
the upper curves as a functionxfNote that a simple linear increase in the
where againr; and 7, are constants with units of time and property with time causes a nonzero loss, i.e., the area does not intersect at

have been chosen to be equal to unity for numerical evalugero after a single half period of.
tion. This function has asymptotic limits of 0 and 1 at (
+15)=0 and {+ty)=0o0, respectively, and is continuous

through the second derivative &t=0. properties of sine and cosine. The basis for this minimum

period can be easily understood by considering the inte-
grand:

B. Ideal phase sensitive detector sin(2x)

Sin(x)cosX) = ——, ®

For a measurement in the frequency domain, the com-
plete answer includes both an amplitude and phase angle

relative o the excitation. Experimentally. this i m Wherex is a “dummy” variable. It is obvious that this is a
eative 10 he excriation. perimentally, this IS acco symmetric function aboutr/2 radians and is 1/2 the period
plished by using a phase sensitive detector that allows th

. . 6f the original signal. Except for the trivial solution, a period
simultaneous measurement of the in-phase and quadratu ® — radians is the minimum period to guarantee a zero.

components of the $|gnal relat_|ve '.{O the excitation. T.hesel'here is only one region that is of positive sign and one
detectors take the signal, multiply it by a reference signal . . . .
) ) N equal region that is of negative sign.
defined in phase by the excitation, and average over some
period. The in-phase and quadrature responses can be mea-
sured simultaneously by using two detectors in parallel. ?ﬁl RESULTS AND DISCUSSION
In what follows, we will define our responses in terms of Consider a response function that changes slowly with
an ideal phase sensitive detector. Consider an excitatiorespect to sin{). We can represent the response for our loss-
cos(t) where we assume a normalized excitation. Ideal aviess system aé(x) - cos). In the interval from O tom, we
eraging requires an integral number of half cycles; in thiscan arbitrarily takeA(x) and force it to be an increasing

paper we will usen/w. This leads to the response being function of positive sign, with no loss of generality as the

defined as other cases are easily established. Then the intggcpl6)]
2 / becomes:
w mlw
X'=— f F(t)coq wt)dt (5) 2 (n
™ Jo X'=— f A(X)cog X)sin(x)dx. (9)
0

for the real component and
2 , In the interval from 0 tom/2, the integrand is positive and
w W . . . H
X'=_—— f F(t)sin(wt)dt (6) less in magnitude than the integrand frem? to 7, where it
™ Jo is always negative. Therefore, the integral no longer vanishes
for the imaginary component, whei¢* =X’ —iX” is the  and is negative. For a complex susceptibility, defined as:

complex quantity being determined afdt) is the signal x* (0)=X*/F,

being measured. . (10
Note that for a componefft(t) that is#/2 radians out of X (0)=x"—ix",

phase with either reference, the integrals become: where y” conventionally represents the loss term, an appar-
20 (7o ent loss will be observed. This can be observed visually in
o |, Sinetcogwt)dt=0. (7)  Fig. 4 for A(x)=x.

In what follows, we will consider the three specific time
This establishes the ideality of the baseline. It should besvolution functions that we presented earlier. As stated in
realized that the period of/w is the minimum period that Sec. I, these functions are not to be considered relaxation
can be used to establish orthogonality by the fundamentdlunctions, but rather quantities that evolve in time while un-
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der observation. These functions specify lossless systenfer the real component and
since they are expressed in terms of real variables. Recall
that the instantaneous response Rocan be written as X,,:Z_“’ m)d)['U(t)]cos{wt)sin(wt)dt 12
¢[;U(t)]cost). Then Egs(2)—(4) will be substituted into 7T Jo ’
the following forms:
) , for the imaginary component.
X,:%}J’ wd)[;U(t)]COS{wt)COE{wt)dt (11) yieIdSsubstitution of Eg.(2) into Eq. (12) and integration
0 :

(27'%7'%(1)24— BTlrgtgw2+4fl7'§tow2+ 6777'17'§t0w+ 2777'17'2(1)4— 27727'17'2— 37'11'%)

X 47'17'372(1)3 (13
|
while substitution of Eq(3) and integration yields: excitation, then there would be a constant changX [see
g ~(mtow) Eq. (1)]. If this were interpreted as a time-dependent re-
- exp(— —exl{ —> sponse to the excitation, the Laplace transform of the con-
X' = 2077 T wT (149 Stant 1#, would be taken giving"=1/(r,w). This com-

T (1+40%7%) ' puted result is twice the response due to DIL and of the same

The integrated form of Eq4) can be expressed in terms of sign. However, the assumptiong necessary for the use of the
known functions, however it is extremely long and can bel-@Place transform are clearly V|c_)latéd. o

evaluated using a commercial software package such as !0 lllustrate further the practical application of H45),
MathSoft' SMATHCAD 7.0 softwarel! For this paper, the func- consider the Clausius—Mosoti equatidn:
tion was integrated numerically using the same software e—1 47N g

package. The numerical results for all of these functions are SV T3
€

(16)
shown in Figs. 5, 6, and 7, respectively.
It is apparent that all three equations have a nonzerqnheree is the dielectric constant, is the molar volumeN ,

measured loss. For the first functipiig. (2)] which is al- g Avogadro’s number, andg is the polarizability. The mo-
ways increasing with time, as is its derivative, the 10Ss comyay yolume in Eq.(16) can be written asy=vo+ av,T

ponent increases ag increases from zero. If only the linear (yherey,, is the molar volume at an initial temperatuteis
term was present in Ed2), then only the first term in the the yolume coefficient of thermal expansion, afids the
numerator of Eq(13) would be present and therefore the (omperature measured from the initial valuBurthermore,

loss would be given by: we can introduce the scanning feature by settifvgr (t
1 +1,), wherer is the scanning rate. To first order, we obtain
X"= T’ (15  the following for the dielectric constant:
It should be realized that the above equation is the high ~  vot87Naag/3  4mNaagavor (t+ty). (17
frequency limit for any smoothly changing. This can be € vo—4mNpag/3 (vo—4mNpag/3)? o
shown by a simple Taylor series expansionpoNote that as o o ) )

Equation(15) is the response to a slowly varyingfor a  given by:
sinusoidal excitation. For comparison, if the measurement
was performed in the time domain with a constant applied

FIG. 5. X" as a function of angular frequen¢y) and observation timet{) FIG. 6. X" as a function of angular frequen¢y) and observation timet )
for EqQ. (2). for Eq. (3).
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A. State variable lagged systems

In the previous development, we have explicitly stated
that @[ ;U(t)] follows U. For a thermally driven system, this
requires no thermal lags. However, in the previous develop-
ment, the variabldJ never explicitly appears and only the
instantaneous value a@f[;U(t)] is required. Therefore, the
above results can readily be extended to systems that do not
directly follow U and there is no induced lag with respect to
F, the excitation variable. This consideration specifically ex-
cludes the case where the scanning variable is the same as
FIG. 7. X" as a function of angular frequenéy) and observation timet{) the excitation variable and where state variable lag can lead
for Eq. (4). to additional consideration$.

In this case, for a system that has a delayed response to
the scanning variabl®e, there will still be an average, mac-
—(vo— AN pag/3)? roscopic value fowp, suitably defined in terms of the macro-
= (18 scopic measurement. Thea|;U(t)] will still be time de-
pendent but different than if there were no lag. Since we only
which demonstrates that an ideal nonpolar fluid will show aneed the value ofé[;U(t)] at a given time interval
negative DIL caused by the expansion of the liquid with(t+ty), the above results still hold except that the valué&of
increasing temperature. for a given {+1t,) can be used only in some average sense

In Sec. I, we gave the example of changing a low-lossand does not directly refer to the scanning variable.
variable air capacitor at a constant rate as a demonstration of
E)IL. Wher_1 a varlaple 100_pF capacitor with no measurabl % CONCLUSIONS

ss had its capacitance increased at a constant rate of

pF/s, the observed loss was 0.600.0002 pF, as measured We have demonstrated that a system that evolves in time
at 1 kHz on a Hewlett—Packard HP4284A precisionwill have a DIL regardless of whether or not there is an
inductance-capacitance-resistarit€R) meter':'3 This is  imaginary component. It is important to consider the impli-
in agreement with the value calculated by Ef5) of X” cations of these results regarding the common use of tem-
=0.0008 pF. Since Eq15) is normalized, the value of; perature scans. It is inappropriate to use nonisothermal runs
was set equal to 0.1 s/pF, which corresponds to the inverge quantitatively characterize the molecular behavior of a
rate of change of the capacitance. system unless the underlying relaxati¢or evolution is

With the validity of Eq.(15) having been established, we known to proceed at a far lower frequency than the probe
can demonstrate the possible magnitude of DIL in ongoindrequency. There is not just a simple tracing of the behavior
experiments. We examined the data of Schidwa tempera- as a function of temperature as it would be measured isother-
ture modulated DSC of polystyrene at the glass transitiommally.

(their Fig. 1. By graphically approximating the maximum It is additionally important to note that severe problems
slope of the glass transition scdourve 1, Cz) with a  will be encountered in the neighborhood of a phase transition
straight line, we obtain a value for 4/ of approximately or relaxation. This can be understood by consideration of the
6.7x10 % Jl(g K 5+1.0x10 % J(g K 9). This gives an esti- integrals obtained if the time evolution function has both a
mate for the maximum amplitude for the loss componenteal and imaginary component. If the response function is
(DIL) of X"=C"=0.034 J(g K)*x0.010 (g K). The ob- not a purely real quantity, then the quantiti¥$ and X"
served loss max component is approximatel@” measured under steady state conditions will fold into each
=0.04 J(g K) above the baseline, which suggests that DILother in a nonsteady state experiment. This can be readily
could account for all of the loss peak within the uncertaintyseen by observing that E¢L2) is the cross-correlation term
estimate. and can be applied 8’ as well, if X" is substituted forp.

For the exponential formEg. (3)], which approaches a Hence, it is our conclusion that, for accurate analysis of
constant monotonically, the loss decays to zero at long timethe molecular dynamics of relaxation processes, only steady-
and for a given frequency has a maximumg@equal to zero.  state experiments be performed. If scanning must be per-
While there is a shallow maximum nearequal to unity, the formed, the following suggestion is offered. The maximum
loss decreases as increases. It should be noted that evenslope of the real component can be substituted into(Eg).
when the time evolution equation has decayed to 0.05 wheand an approximate magnitude of the DIL can be obtained.
tp=3, at w=10 it still has a significant nonzero loss. The An experimental diagnostic is to scan up and down in the
simulated “glass transition’[Eq. (4)] shows a loss peak on state variable. However, it should be realized that in general
both the evolution timé, and frequency scalas. Note that  this would not allow cancellation due to effects such as lags
the “glass transition” has been defined such th#&f in-  or underlying material changes. We emphasize that these re-
creases with time. This can be inverted for a similar event fosults must be considered when data obtained from DETA
a physical system. As an example, if this were the system’¢scanning and DMTA experiments as well as modulated
Young’s modulus there would be a decrease as temperatul2SC at high scanning rates are presented to support model
was increasedf This would change the sign of the loss. predictions. We have not displayed the distortions on the real

1=
1 8mNpapavr
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