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In this article, we examine the ability to distinguish between relaxation functions with data over a
limited range of frequency. It is demonstrated that over these limited frequency ranges under a
variety of conditions, the Cole—Cole equation can be used to fit data generated by the Havriliak—
Negami equation. These results show that discerning between several very different broad relaxation
functions fit to data obtained over narrow time or frequency ranges is nearly impossible within
experimental accuracy. Therefore, the uniqueness of the fit parameters, and hence the ability to
verify model predictions, is brought into question. Furthermore, as this conclusion is drawn from
comparison of exact functions that experience no dispersion overlaps or instrumental systematic
errors that can mask exact fits, the true situation with experimental data is even worse. The same
conclusion can be applied to time domain da&0021-897€08)00420-4

I. INTRODUCTION nonlinear least squares techniqd®m that work, it was dis-
) ) ) , covered that when a restricted frequency range was available

In dielectric relaxation studies there are four commonlyq e o experimental conditions, the least squares routine
used llnterpolathqextrapolatlljg fun;:t|ons: the CoIeTCoIe would not reliably converge and give both exponents of the
(CC)'3 the Havriliak—Negami(HN),” the CoIe—Df\wdson HN relaxation function. However, when one of the expo-
(CD),” and the Kohlrausch-Williams—WattSWW)" equa-  nents was kept fixed, convergence was obtained. This
tions. (The first three are expressed in the frequency doma'%trongly suggested that the data were not adequate to deter-
and the last two in the time domairthere have been many oo 41l the parameters in the fit.
articles in the literature that have singled out one of these  gjnce the exponent parameters in these distributions rep-
functions and attempted to give it a physical basisThese  osent the limiting behavior at high and low frequencies as a
various theories have been used by others to extract m°|eCB'ower law, the data surrounding the maximum are quite in-
lar information from the experimental data. However often-genitive to the actual limiting slope. Therefore as a measure
times, dielectric relaxation data are obtained over a range Qft how broad a frequency range is required for adequate
3-4 decades in frequency, because of either measuremegiing of a distribution, consider the width at half height of

limitations or the presence of overlapping relaxations. In thishe cc distribution o) which is given byt
article, we will demonstrate several things. First, over a lim-

ited range of frequencies the data cannot usually be used to
distinguish meaningfully between these very different func-
tions within experimental accuracy. Consequently, the con-
clusions regarding the various theoretical models that have
been drawn from experimental data that were measured over
a narrow frequency range and fitted to these functions be-

come uncertain. Second, because of the experimental indigzhere  is the angular frequencys is the relaxation time,
tinguishability of'these 'functlon's, extrapqlatlon far beyondandX is a measure of the distribution width and is also the
the _frequency window is qL_JestlonabIe. I_:lnally, we addres?imiting exponent. Fory=1, 0.5, and 0.3, the width at half
the issue of the proper metric for comparing relaxation funcygignt is 1.14, 2.88, and 5.98 decades, respectively. There-
tions. We will not specifically look at time—domain func- ¢qre for broad distributions, data centered on the maximum
tions, but as we indicate later, similar conclusions should b, e it extremely difficult to determine these exponents un-
obtainable in the time domain. less the data are much broader than these widths. We will

We also would like to point out that these results doj,girate this point later when we show how the effective
show that as the data range is extended, different relaxatl%wer law varies as a function afr.

functions can become experimentally distinguishable. We 1 s article, we wil fit exact forms of the relaxation

will examine these questions, in a sublssequent publication, 3§ tions to each other, to within stated tolerance, without
they are now arising quite fr_equenﬂf/‘. adding any noise or dispersion overlap. We will limit our
These questions arose in practice when one of the auys,icyations to the frequency domain since analytical forms
thors was fitting relaxation data to the HN equation usingys the HN and CC functions in general are only available in
the frequency domain. Also, these forms can be quite differ-
3Electronic mail: chad.snyder@nist.gov ent and, as will be seen, the results of the fit over the full
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TABLE |. Results of Cole—Cole fit to Havriliak—Negami equation over limited frequency ranges for HN
dispersion strength of 1 and, of 0.

Maximum
Frequency T | €l\n-€cdl
range a B X 6) €. €€ x 10*
0.01-10 Hz 0.4 0.8 0.387 0.0920 0.043 09 0.9613 8.53
0.6 0.8 0.579 0.1088 0.040 20 0.9640 335
0.8 0.8 0.767 0.1184 0.035 23 0.9704 91.0
0.8 0.6 0.736 0.083 44 0.102 05 0.9069 132
0.8 0.4 0.709 0.055 39 0.231 46 0.7777 138
0.1-100 Hz 0.4 0.8 0.372 0.088 56 0.021 47 0.9979 111
0.6 0.8 0.554 0.105 89 0.017 09 1.0036 42.4
0.8 0.8 0.739 0.116 23 0.016 36 1.0028 82.8
0.8 0.6 0.671 0.07583 0.074 91 0.9882 147
0.8 0.4 0.601 0.041 34 0.122 42 0.9218 192
1-1000 Hz 0.4 0.8 0.354 0.105 53 0.008 28 1.0553 10.6
0.6 0.8 0.520 0.13090 0.004 76 1.0889 30.0
0.8 0.8 0.688 0.144 53 0.004 05 1.1145 59.8
0.8 0.6 0.571 0.11815 0.013 24 1.2097 126
0.8 0.4 0.453 0.07361 0.041 76 1.2403 175

range will not be even that close. While other forms could bewith the values listed in Table | and with=1/27 s. The
used, the conclusions will not be affected unless they diffevalues fora and 8 were chosen to represent experimentally
even more strongly than the ones we used, in which case ouealizable values as was the generated frequency rahge (
conclusions are strengthened. We will use the HN function= w/27w=0.01 Hz—10 kHz). The imaginary portiore’() of

to generate representative data, since it is so versatile andtise data was then fipver the following frequencyf ) win-
explicitly in the frequency domain. In fact, it has beendows: 0.01-10 Hz, 0.1-100 Hz, and 1-1000] zing an
unweighted Levenberg—Marquardt algorithminimizing

It should be realized that for real data sets, the requirementbie squared deviations to the following equation:

for discriminating the functions would be more difficult than

claimed that the KWW behavior can be represented b3/'it.

what we estimate, due to both experimental error and pos-

sible dispersion overlap. It should also be noted that the abil-
ity to fit one relaxation function to another over a limited

frequency range does not mean to imply that they are equivaghere ¢,-¢., is the dispersion strengtk, is the high fre-
lent. Moreover, for these functions, if the frequency range isyuency dielectric constant, and (o) is the complex fre-

broad enough or covers a suitable frequency range and thgency dependent dielectric constant:
data have readily achievable precision, we can easily dis-

criminate among them.

€ (w)— €,

€p— €Ex

=¢(w),

e (w)=€'(w)+ie(w),

We are not specifically addressing the issue of time—
temperature superposition, since relaxation functions ar@neree’ ande” are the real and imaginary components of
properly defined at a given temperature. In order to havghe complex dielectric constant, respectively. The high fre-
time—temperature superposition, a relaxation function musgyency dielectric constant was then obtained through a linear
be invariant with respect to temperature. Therefore, estalpast squares fit of the real data using the (6CD) param-
lishing time—temperature superposition over the range Ofters obtained from the fit of the imaginary portion. The

()

4

data available will be subject to similar considerations thatesiduals on the real component are comparable to the imagi-
we discuss in this article. It should be noted that in a previ-nary fit and will not be presented, as they contribute nothing
ous article by one of u¥, it was demonstrated that fitting extra to the discussion.
data over a restricted range of time or frequency gave the \ye have deliberately set our frequency ranges to be off
appearance of time—temperature superposition while enter but include the loss maximum. This is perhaps the
broader range indicated otherwise. most commonly seen situation experimentally. In addition,
from the functional forms involved, if only one wing of the
dispersion is observed, the CC function always would be
expected to fit the data no matter what the underlying relax-
ation function is like. Note that for the data generated by the
HN equation we have set the dispersion strength equal to
unity ande., equal to zero. However, in the fits these param-
@) eters were allowed to be adjustable, since for real data sets,
the dispersion width and., are not knowra priori and are

Il. PROCEDURE
A. Data generation and fitting

Data sets were generated using the HN equation:

dun(w) = [T+ (o0 P
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thus determined from the curve fits. The forms¢dgiv) used  be important. Furthermore, our comparisons are not depen-
in the above equation were the CC equafig. (1)] and the  dent on how optimally the least squares was performed.
CD equation: For real data sets that have a statistical uncertdintyif

the absolute deviation between two fitting functions is less

dep(®)= 73 (5 than o, then the standard deviation for large sets takes a
(1+iw) limiting value of o regardless of how well either function fits

the data. This should be contrasted to fitting one exact func-

B. Least squares tion to another where the computed standard deviation can

A major point of confusion is the use of least squares tddO to zero as the regions of significant difference, which may

fit one exact function to another exact functidn* Typi-  have large values, become small relative to the total interval.

cally this is done with a numeric tool kit using regression!ndeed for data where is greater than the maximum devia-

analysis which reports out both a standard deviation of fittion between the two curves, no fitting procedure will be able
and fitted coefficients with an associated estimate of theifo discriminate between the two because the change in com-
standard deviation. There even seems to be a claim of orf@itedo would be insignificant andr will approach a con-
least squares packaddeing better than another packdge. Stant. Therefore, we are using what we feel is a more suitable
We would like to point out that, for a constant set of metric related to the question of uniform convergence, the
sampling points, any procedure should produce the same r@bsolute maximum deviation between the two functions over
sults for the fitted parameters within round-off limits and the interval, a metric commonly used in numerical
numerical stability since these are exact functions. Further@Pproximatiorf.* While others can be chosen, this is in fact a
more, within these constraints, the coefficients have no starfiuite restrictive metric since any widely deviating point will
dard deviation associated with them since they are entirelfp€ viewed as a measure of poor fit. Consequently, for a mea-
defined by the functions themselves and the sampling set thgtred data set characterized by a population standard devia-
is chosen. tion greater than our metric, one will be unable to distinguish
In addition, the actual value of the reported standard’€tween them.
deviation loses any statistical meaning other than a minimi-  Just as is the case for the least squares, we are making no
zation parameter. The fit after all is not being made to a selaims as to whether our fits are the best fits for our metric.
of data that is capable of being represented by an exadtather, we are simply stating that the comparisons are at
model plus a random deviate with a sampled populationleast this good. Again, as before, better fits would only
This is the assumption, along with a constant expected varstrengthen our results.
ance at each sampled point, associated with the statistical
application of least squares. D. Effective power law exponent

For example, if two functions have the same asymptotic To better examine the functionality of the relaxation

“.m.'ts’ with a fitting range.chosen So that over most of thefunction over its range, the HN data were also locally fitted
fitting range the two functions have nearly the same values[0 the power law form:

the calculated standard deviation approaches a small number
simply because the interval over which one function differs ~ ¢p . =A+BX” (6)

significantly from the other is bounded, while the normaliza- ¢ 5 function of normalized frequenayx=w7). This was

tion is determined by the size of the sampling window. Thisyyne by choosing three points spaced as a geometric progres-

is the case for a normalized relaxation function where eacRj,n with multiplierk. For the assumed functional form, Eq.
end goes to either 0 or 1. This point is emphasized by &, with values ok, , x,, andxs equal tox,, kx;, k, the
well-known result for complete orthonormal Fourier expan-eynonenty can be evaluated as:

sions where the series expansion is allowed to differ from the

reference by an arbitrary number of fixed points, even - pL2~ PpL1 ' i )
though the expansion converges in the mean squared Sense. dpLo— dpL3 INK

where ¢p 1, ¢dpL 2, and¢p 3, are the relaxation functions
C. Criterion of fit at Xy, X,, andxs, respectively. The curves we will display

utilize ak of (3/2)*2. Numerical computations show that the

While we have employed a least squares technique tg, e of y is not changed appreciably by changiag
find a representation of one function to another, we have not

used the_computed standard deviation as a measure of goolﬂ-_ RESULTS AND DISCUSSION

ness of fit. The calculated standard deviation does not have

its usual meaning as when data, subject to a random uncer- Over the three frequency ranges and the varying values
tainty, are fit to an assumed, correct functional form. In thaof «, the CC equation always fit the generated data better
case, the computed standard deviation is a measure of tlikan the CD equation, with the exception a=0.8, 8
width of the distribution of the data points about their expec-=0.6. (The results of CC fits are shown in Table I. The CD
tation values® For our case, neither the fitted data nor theresults have been omittédBecause the generated data were
assumed forms have random deviates. Aside from the quesdefined to have unity dispersion strength, it is a normalized
tion of discrete versus continuous fitting, the calculated fit isdistribution and hence the difference between the generated
subject only to computational errors that are not believed talata and the fit data is the relative error in terms of the
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FIG. 1. de’/dT as a function of angular frequency) for a Debye relax- FIG. 3. Residual ine” for a Cole—Cole fit to the Havriliak—Negami equa-
ation at a temperatur€ of 300 K, an activation energy of 100 kJ/mol, and

unit relaxation time af. tion (e},y— €&o) over the frequency range 0.1-100 Hz.

. . . . . . dr Eu7 —E4
dispersion width. While we do not wish to make an arbitrary T RT ex RT (10
criterion for the maximum allowable value for the absolute

deviation, we consider a good fit anything less than 1%. Foand whereR is the gas constant ang=2.6x 10'' s to yield
data that are either better or worse than these values, tteeunit relaxation time at 300 K. As can be seen in Fig. 1, the
frequency range would have to be adjusted as needed. In tlegror is sharply peaked at 3.3% for a 1 °C uncertainty. Tem-
work by Havriliak and Havriliak* a maximum error of 3.5% perature controllers with control to within 0.1 °C are readily
of € is claimed to normally be unmeasurable. This isavailable, showing that the contribution from temperature
claimed to be a consequence of limited instrumental preciuncertainty can be easily less than the quoted value of 3%. It
sion as well as limitations of temperature control. However,should be realized that polymeric materials have relaxations
the uncertainty in the time domain spectromef€DS),?>  much broader than a Debye and therefore this is an overes-
which is commercially available, is less than 0.1% of thetimate of the error due to temperature as long as one is not
measured relaxation. Additionally, Havriliak and Havriliak too near a glass transition.

claimed that temperature control limits the precision of the  Thus, we have plottede{,y— €. as a function of fre-
measurements. A simple calculation shows that this is nouency(f ) in Figs. 2—4. In Table | we list the absolute value

correct. of the maximum value determined foe/{y— e¢c), where
Consider an exponential decéebye, where the time €/, and e are the dielectric loss components from the
constantr is given by an Arrhenius equation: Havriliak—Negami data and Cole—Cole fit, respectively. As
E stated previously, the Cole—Davidson fit results have been
~E, _ _ ave
=1, exp( ﬁ) (8 omitted, because in all but one case the CC function fit the

data bette). It should be noted that the highest error ob-
For a temperaturd@ of 300 K, representative activation en- served for the Cole—Cole fits was 1920 2 (with a=0.8
ergy E, of 100 kJ/mol, and unit relaxation timee”/dT is  and8=0.4) and that this value was at the edge of the fitting

given by: window. Much lower errors were observed towards the cen-
q ter of the fit window. To better present the nature of the fits,
L (0—w37) o we have plotted in Figs. 5, 6, and 7, the best, average, and
d_f _ dT ) worst fits obtained for the Cole—Cole equation, respectively.
dT  (1+w?m)? It is apparent from Fig. 7 that the data can be distinguished
o ) from either a Cole—Cole or Cole—Davidson and is therefore
whered7/dT is given by:

fit only by a Havriliak—Negami.
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1000 4| = =06, p=0.8
- - 0=0.8, f=0.8 %
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FIG. 2. Residual ine” for a Cole—Cole fit to the Havriliak—Negami equa- FIG. 4. Residual ire” for a Cole—Cole fit to the Havriliak—Negami equa-
tion (e}, — €¢o) over the frequency range 0.01-10 Hz. tion (e}jn— €¢o) over the frequency range 1-1000 Hz.
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FIG. 5. € vs frequency for a Cole-Cole fit to data generated by theFIG. 7. ¢ vs frequency for Cole-Cole and Cole-Davidson fits to data
Havriliak—Negami equation witkk=0.4 and8=0.8 over a frequency range generated by the Havriliak—Negami equation witk 0.4 andg=0.8 over
of 0.01-10 Hz. a frequency range of 0.1-100 Hz.

Furthermore, Table | clearly illustrates that the disper-
sion strength and.. obtained by the Cole—Cole fits are rea- for the high frequency limit. As can be seen in Tablg s
sonable values. Trends are readily observable as well. Forglways greater thamg, but as the frequency window is
given frequency windowwith 3 fixed), asa is increasedy shifted to higher frequencieg, decreases towardsg, thus
increasesas does the dispersion strengthherease,, de-  Properly approaching the asymptotic limit. o
creases. As the frequency window is shifted to higher fre- We have added an additional plot with rather unrealistic
quencies, for a fixed value af and 8, x decreasegas does Parameters(@=0.099 and=0.309. These values were
e..), and the dispersion strength increases. If there were godgh0sen because Havriliak and Havriftdkjuote these values
grounds to rule out such trends, these trends could be used @8 the fit values to the KWW equation with an exponent of
an indicator that the assumed functional form is not adequat@-04. To display the entire relaxation, Havriliak and Hauvril-
to represent the entire relaxation process. iak showed that a frequency range of #8-10* Hz was

These results indicate several things. First, over limited'ecessary. This range is experimentally inaccessible. The
frequency ranges and for a wide range of conditions, thénost that could be observable is a small portion of such a
Cole—Cole equation reproduces the Havriliak—Negami gentelaxation, if the relaxation exists. Using their HN param-
erated data with reasonable values far the dispersion €ters, data were generated for the frequency range from
strength, ande... Second, because of this ability to repro- 0-001 Hz to 10 kHz and fit to the Cole—Cole function. As
duce the data with reasonable fit parameters, it is impossib/g2n be seen in Fig. 8, the Cole—Cole fit represents the data
to distinguish between the HN and CC equations over limextremely well, with a maximum deviation of>610 °—a
ited frequency ranges within experimental uncertainty. FurValue that under ordinary circumstances cannot be resolved
thermore, if we cast the HN equation in the form of the ccby experimental techniques. Even a linear fit to the data

or CD equations we obtain the following: yields only a 7< 10~ * maximum deviation. This supports the
statement we made in Sec. I. If the relaxation is broad
B = 1 enough, it is nearly impossible to determine the exponents
oIy 4 (jwr) ™R since, within experimental error, a curve with=0.099 and

B=0.306 is indistinguishable from a curve with=0.086

= _;aﬁ andB=1 even over a much wider range of frequencies than
(1t+iwT) used above.
1 As a further example, we have computed the apparent

= m (11 exponent as a function of frequency for our test cases using

0.35 0.024
0.30 1 0.022 4 g i
0.25 1 g
0.020 A
. 0.20 1
“w % 0.018 1
0.15

0.10 0.016 1 o HN 0=0.099, p=0.306

« HN 0=0.8, p=0.8

0,05 - = Cole-Cole fit 0.014 ¥ - C.()le—Cole fit
+ Linear fit
0.00 —t—r—rrrreY vy —r—rrrr 0.012 T T T T T
0.1 1 10 100 0.001 0.01 0.1 1 10 100 1000
f (Hz) f (Hz)

FIG. 6. € vs frequency for a Cole—Cole fit to data generated by theFIG. 8. €” vs frequency for Cole—Cole and linear fits to data generated by
Havriliak—Negami equation witr=0.8 andB= 0.8 over a frequency range the Havriliak—Negami equation witkr=0.099 andB=0.306 over a fre-
of 0.1-100 Hz. quency range of 0.001-1000 Hz.
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3 termination of any relaxation function more difficult and can
= Debye o= =0.99, =1 . . .

5] 095, pul  ~=0=08, B0.d result in parameters that are quite different from those ob-
=07, B=l  Ha=06, B=0.6 tained with no overlap present. For systematic errors, such as

1 =04, B=]  >-0=04, B=0.8 those due to deviations from an assumed calibration curve

faeanes sty near the ends of a frequency range, the deviations need not

A% even follow any expected relaxation function. While a relax-
ation function always obeys the Kramers—Kigrelations**
these latter deviations need not.

We are leaving open the question of how well any func-
tion can represent the other. It is clear just from elementary
-3 M 3 2 1 (') 1 2 3 "‘ 5 considerations that the KWW, HN, CC, and CD functions

are quite different, especially in their limiting behavior.
Since it is now possible to directly measure accurate time
FIG. 9. Apparent power law exponefy) as a function of loggr) for and frequency data, we have to address this issue in another
various values ofr and S. article.
For all of these reasons, the ultimate appeal must be
. - made to the measured data and how well they can be fitted. If
€' with Egs. (6) and (7). If the variation of the exponent the data are not fit by a given form then the issue disappears.

along a pair of functional curves is similar, the two should beHowever, it is entirely likely that the data can be fit to more
able to be made to resemble each other over that frequencEMan one in which case the issue should be properly left

range. From Fig. 9 and our results from direct fitting, it can .,
be seen that this is indeed the case. For this comparison, we It should be remembered. however. that whatever form

display onlye” ase” has a change in sign for the exponent;g cposen it must be used in both the time and frequency
near the maximum. Otherwise, away from the maximum, they,\ains at the same time. The time and frequency responses
results are similar. are connected by transforms that require the transform pair to

| Thl.JS the low frgguincy limit O?’ IS a, thebreforedany be uniquely related and using one functional form in one
relaxation curves with the same value fcan be made 10 jomain does not alter the use of another in the other. Sig-

resemble each other at low frequencies. Similarly, the higrh
frequency limit ofy is the a8 product and hence any relax-
ation curves with the sameg product can be made to re-
semble each other at high frequendisse Fig. 9 for the two

curves:a=0.6, 3=0.6 anda=0.4, 5=0.8). in this approximation the instantaneous current at ttris
A final additional point worth noting is the power law .,nqjgered to be proportional &(w)/t. It has been more

dependence approaching these limits. Power laws are ofteQ oy demonstrated in the development of time—domain
imputed by measuring slopes on data that do not get to?echniques to determine the frequency response of
close to the end due to experimental limitations. However jiajactrics222527 |n that work. small deviations in one do-

these slopes are assumed to be signifi€ant. main imply corresponding deviations in the other as the in-

In Fig. 9, maxima are observed for limiting values of the 4o 5| transform is dominated by behavior at the center of the
exponent greater than 0.5 and most clearly for values greatql, \sformation matrix

than 0.7. This surprising result can be understood by observ-

ing that for a Debye_ function, the limiting slope is 2 and nOtACKNOWLEDGMENT
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