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Limitations on distinguishing between representations of relaxation data
over narrow frequency ranges

Chad R. Snydera) and Frederick I. Mopsik
National Institute of Standards and Technology, Polymers Division, Gaithersburg, Maryland 20899

~Received 19 February 1998; accepted for publication 13 July 1998!

In this article, we examine the ability to distinguish between relaxation functions with data over a
limited range of frequency. It is demonstrated that over these limited frequency ranges under a
variety of conditions, the Cole–Cole equation can be used to fit data generated by the Havriliak–
Negami equation. These results show that discerning between several very different broad relaxation
functions fit to data obtained over narrow time or frequency ranges is nearly impossible within
experimental accuracy. Therefore, the uniqueness of the fit parameters, and hence the ability to
verify model predictions, is brought into question. Furthermore, as this conclusion is drawn from
comparison of exact functions that experience no dispersion overlaps or instrumental systematic
errors that can mask exact fits, the true situation with experimental data is even worse. The same
conclusion can be applied to time domain data.@S0021-8979~98!00420-4#
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I. INTRODUCTION

In dielectric relaxation studies there are four commo
used interpolating~extrapolating! functions: the Cole–Cole
~CC!,1 the Havriliak–Negami~HN!,2 the Cole–Davidson
~CD!,3 and the Kohlrausch–Williams–Watts~KWW!4 equa-
tions. ~The first three are expressed in the frequency dom
and the last two in the time domain.! There have been man
articles in the literature that have singled out one of th
functions and attempted to give it a physical basis.5–11 These
various theories have been used by others to extract mol
lar information from the experimental data. However ofte
times, dielectric relaxation data are obtained over a rang
3–4 decades in frequency, because of either measure
limitations or the presence of overlapping relaxations. In t
article, we will demonstrate several things. First, over a li
ited range of frequencies the data cannot usually be use
distinguish meaningfully between these very different fun
tions within experimental accuracy. Consequently, the c
clusions regarding the various theoretical models that h
been drawn from experimental data that were measured
a narrow frequency range and fitted to these functions
come uncertain. Second, because of the experimental in
tinguishability of these functions, extrapolation far beyo
the frequency window is questionable. Finally, we addr
the issue of the proper metric for comparing relaxation fu
tions. We will not specifically look at time–domain func
tions, but as we indicate later, similar conclusions should
obtainable in the time domain.

We also would like to point out that these results
show that as the data range is extended, different relaxa
functions can become experimentally distinguishable.
will examine these questions, in a subsequent publication
they are now arising quite frequently.12–15

These questions arose in practice when one of the
thors was fitting relaxation data to the HN equation us
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nonlinear least squares techniques.16 In that work, it was dis-
covered that when a restricted frequency range was avail
due to experimental conditions, the least squares rou
would not reliably converge and give both exponents of
HN relaxation function. However, when one of the exp
nents was kept fixed, convergence was obtained. T
strongly suggested that the data were not adequate to d
mine all the parameters in the fit.

Since the exponent parameters in these distributions
resent the limiting behavior at high and low frequencies a
power law, the data surrounding the maximum are quite
sensitive to the actual limiting slope. Therefore as a meas
of how broad a frequency range is required for adequ
fitting of a distribution, consider the width at half height o
the CC distribution (fCC) which is given by:1

fCC~v!5
1

11~ ivt!x , ~1!

wherev is the angular frequency,t is the relaxation time,
andx is a measure of the distribution width and is also t
limiting exponent. Forx51, 0.5, and 0.3, the width at hal
height is 1.14, 2.88, and 5.98 decades, respectively. Th
fore, for broad distributions, data centered on the maxim
make it extremely difficult to determine these exponents
less the data are much broader than these widths. We
illustrate this point later when we show how the effecti
power law varies as a function ofvt.

In this article, we will fit exact forms of the relaxatio
functions to each other, to within stated tolerance, with
adding any noise or dispersion overlap. We will limit o
calculations to the frequency domain since analytical for
of the HN and CC functions in general are only available
the frequency domain. Also, these forms can be quite dif
ent and, as will be seen, the results of the fit over the
1
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TABLE I. Results of Cole–Cole fit to Havriliak–Negami equation over limited frequency ranges for
dispersion strength of 1 ande` of 0.

Frequency
range a b x

t
~s! e` e0-e`

Maximum
ueHN9 -eCC9 u

3104

0.01–10 Hz 0.4 0.8 0.387 0.0920 0.043 09 0.9613 8.53
0.6 0.8 0.579 0.1088 0.040 20 0.9640 33.5
0.8 0.8 0.767 0.1184 0.035 23 0.9704 91.0
0.8 0.6 0.736 0.083 44 0.102 05 0.9069 132
0.8 0.4 0.709 0.055 39 0.231 46 0.7777 138

0.1–100 Hz 0.4 0.8 0.372 0.088 56 0.021 47 0.9979 11.1
0.6 0.8 0.554 0.105 89 0.017 09 1.0036 42.4
0.8 0.8 0.739 0.116 23 0.016 36 1.0028 82.8
0.8 0.6 0.671 0.075 83 0.074 91 0.9882 147
0.8 0.4 0.601 0.041 34 0.122 42 0.9218 192

1–1000 Hz 0.4 0.8 0.354 0.105 53 0.008 28 1.0553 10.6
0.6 0.8 0.520 0.130 90 0.004 76 1.0889 30.0
0.8 0.8 0.688 0.144 53 0.004 05 1.1145 59.8
0.8 0.6 0.571 0.118 15 0.013 24 1.2097 126
0.8 0.4 0.453 0.073 61 0.041 76 1.2403 175
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range will not be even that close. While other forms could
used, the conclusions will not be affected unless they di
even more strongly than the ones we used, in which case
conclusions are strengthened. We will use the HN funct
to generate representative data, since it is so versatile a
explicitly in the frequency domain. In fact, it has bee
claimed that the KWW behavior can be represented by it.12,13

It should be realized that for real data sets, the requirem
for discriminating the functions would be more difficult tha
what we estimate, due to both experimental error and p
sible dispersion overlap. It should also be noted that the a
ity to fit one relaxation function to another over a limite
frequency range does not mean to imply that they are equ
lent. Moreover, for these functions, if the frequency range
broad enough or covers a suitable frequency range and
data have readily achievable precision, we can easily
criminate among them.

We are not specifically addressing the issue of tim
temperature superposition, since relaxation functions
properly defined at a given temperature. In order to h
time–temperature superposition, a relaxation function m
be invariant with respect to temperature. Therefore, es
lishing time–temperature superposition over the range
data available will be subject to similar considerations t
we discuss in this article. It should be noted that in a pre
ous article by one of us,17 it was demonstrated that fittin
data over a restricted range of time or frequency gave
appearance of time–temperature superposition while
broader range indicated otherwise.

II. PROCEDURE

A. Data generation and fitting

Data sets were generated using the HN equation:

fHN~v!5
1

@11~ ivt!a#b ~2!
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with the values listed in Table I and witht51/2p s. The
values fora andb were chosen to represent experimenta
realizable values as was the generated frequency rangf
5v/2p50.01 Hz–10 kHz). The imaginary portion (e9) of
the data was then fit@over the following frequency~f ! win-
dows: 0.01–10 Hz, 0.1–100 Hz, and 1–1000 Hz# using an
unweighted Levenberg–Marquardt algorithm18 minimizing
the squared deviations to the following equation:

e* ~v!2e`

e02e`
5f~v!, ~3!

where e0-e` is the dispersion strength,e` is the high fre-
quency dielectric constant, ande* (v) is the complex fre-
quency dependent dielectric constant:

e* ~v!5e8~v!1 i e9~v!, ~4!

wheree8 and e9 are the real and imaginary components
the complex dielectric constant, respectively. The high f
quency dielectric constant was then obtained through a lin
least squares fit of the real data using the CC~or CD! param-
eters obtained from the fit of the imaginary portion. T
residuals on the real component are comparable to the im
nary fit and will not be presented, as they contribute noth
extra to the discussion.

We have deliberately set our frequency ranges to be
center but include the loss maximum. This is perhaps
most commonly seen situation experimentally. In additio
from the functional forms involved, if only one wing of th
dispersion is observed, the CC function always would
expected to fit the data no matter what the underlying rel
ation function is like. Note that for the data generated by
HN equation we have set the dispersion strength equa
unity ande` equal to zero. However, in the fits these para
eters were allowed to be adjustable, since for real data s
the dispersion width ande` are not knowna priori and are
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thus determined from the curve fits. The forms off~v! used
in the above equation were the CC equation@Eq. ~1!# and the
CD equation:

fCD~v!5
1

~11 ivt!d . ~5!

B. Least squares

A major point of confusion is the use of least squares
fit one exact function to another exact function.12–14 Typi-
cally this is done with a numeric tool kit using regressi
analysis which reports out both a standard deviation of
and fitted coefficients with an associated estimate of th
standard deviation. There even seems to be a claim of
least squares package14 being better than another package12

We would like to point out that, for a constant set
sampling points, any procedure should produce the sam
sults for the fitted parameters within round-off limits an
numerical stability since these are exact functions. Furth
more, within these constraints, the coefficients have no s
dard deviation associated with them since they are enti
defined by the functions themselves and the sampling set
is chosen.

In addition, the actual value of the reported stand
deviation loses any statistical meaning other than a mini
zation parameter. The fit after all is not being made to a
of data that is capable of being represented by an e
model plus a random deviate with a sampled populati
This is the assumption, along with a constant expected v
ance at each sampled point, associated with the statis
application of least squares.

For example, if two functions have the same asympto
limits, with a fitting range chosen so that over most of t
fitting range the two functions have nearly the same valu
the calculated standard deviation approaches a small num
simply because the interval over which one function diffe
significantly from the other is bounded, while the normaliz
tion is determined by the size of the sampling window. T
is the case for a normalized relaxation function where e
end goes to either 0 or 1. This point is emphasized b
well-known result for complete orthonormal Fourier expa
sions where the series expansion is allowed to differ from
reference by an arbitrary number of fixed points, ev
though the expansion converges in the mean squared sen19

C. Criterion of fit

While we have employed a least squares technique
find a representation of one function to another, we have
used the computed standard deviation as a measure of g
ness of fit. The calculated standard deviation does not h
its usual meaning as when data, subject to a random un
tainty, are fit to an assumed, correct functional form. In t
case, the computed standard deviation is a measure o
width of the distribution of the data points about their expe
tation values.20 For our case, neither the fitted data nor t
assumed forms have random deviates. Aside from the q
tion of discrete versus continuous fitting, the calculated fi
subject only to computational errors that are not believed
o
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be important. Furthermore, our comparisons are not dep
dent on how optimally the least squares was performed.

For real data sets that have a statistical uncertainty~s!, if
the absolute deviation between two fitting functions is le
than s, then the standard deviation for large sets take
limiting value ofs regardless of how well either function fit
the data. This should be contrasted to fitting one exact fu
tion to another where the computed standard deviation
go to zero as the regions of significant difference, which m
have large values, become small relative to the total inter
Indeed for data wheres is greater than the maximum devia
tion between the two curves, no fitting procedure will be a
to discriminate between the two because the change in c
puteds would be insignificant ands will approach a con-
stant. Therefore, we are using what we feel is a more suita
metric related to the question of uniform convergence,
absolute maximum deviation between the two functions o
the interval, a metric commonly used in numeric
approximation.21 While others can be chosen, this is in fact
quite restrictive metric since any widely deviating point w
be viewed as a measure of poor fit. Consequently, for a m
sured data set characterized by a population standard d
tion greater than our metric, one will be unable to distingu
between them.

Just as is the case for the least squares, we are makin
claims as to whether our fits are the best fits for our met
Rather, we are simply stating that the comparisons are
least this good. Again, as before, better fits would on
strengthen our results.

D. Effective power law exponent

To better examine the functionality of the relaxatio
function over its range, the HN data were also locally fitt
to the power law form:

fPL5A1Bxg ~6!

as a function of normalized frequencyx(x5vt). This was
done by choosing three points spaced as a geometric pro
sion with multiplierk. For the assumed functional form, Eq
6, with values ofx1 , x2 , andx3 equal tox1 , kx1 , k2x1 , the
exponentg can be evaluated as:

g5 lnS fPL,22fPL,1

fPL,22fPL,3
D • 1

ln k
~7!

wherefPL,1, fPL,2, andfPL,3, are the relaxation functions
at x1 , x2 , andx3 , respectively. The curves we will displa
utilize ak of (3/2)1/2. Numerical computations show that th
value ofg is not changed appreciably by changingk.

III. RESULTS AND DISCUSSION

Over the three frequency ranges and the varying val
of a, the CC equation always fit the generated data be
than the CD equation, with the exception ofa50.8, b
50.6. ~The results of CC fits are shown in Table I. The C
results have been omitted.! Because the generated data we
defined to have unity dispersion strength, it is a normaliz
distribution and hence the difference between the gener
data and the fit data is the relative error in terms of
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dispersion width. While we do not wish to make an arbitra
criterion for the maximum allowable value for the absolu
deviation, we consider a good fit anything less than 1%.
data that are either better or worse than these values
frequency range would have to be adjusted as needed. In
work by Havriliak and Havriliak14 a maximum error of 3.5%
of e9 is claimed to normally be unmeasurable. This
claimed to be a consequence of limited instrumental pr
sion as well as limitations of temperature control. Howev
the uncertainty in the time domain spectrometer~TDS!,22

which is commercially available, is less than 0.1% of t
measured relaxation. Additionally, Havriliak and Havrilia
claimed that temperature control limits the precision of
measurements. A simple calculation shows that this is
correct.

Consider an exponential decay~Debye!, where the time
constantt is given by an Arrhenius equation:

t5t0 expS 2Ea

RT D . ~8!

For a temperatureT of 300 K, representative activation en
ergy Ea of 100 kJ/mol, and unit relaxation timede9/dT is
given by:

de9

dT
5

~v2v3t2!
dt

dT

~11v2t2!2 , ~9!

wheredt/dT is given by:

FIG. 1. de9/dT as a function of angular frequency~v! for a Debye relax-
ation at a temperatureT of 300 K, an activation energy of 100 kJ/mol, an
unit relaxation time atT.

FIG. 2. Residual ine9 for a Cole–Cole fit to the Havriliak–Negami equa
tion (eHN9 2eCC9 ) over the frequency range 0.01–10 Hz.
r
he
the

i-
,

e
ot

dt

dT
5

Eat0

RT2 expS 2Ea

RT D , ~10!

and whereR is the gas constant andt052.631017 s to yield
a unit relaxation time at 300 K. As can be seen in Fig. 1,
error is sharply peaked at 3.3% for a 1 °C uncertainty. Te
perature controllers with control to within 0.1 °C are read
available, showing that the contribution from temperatu
uncertainty can be easily less than the quoted value of 3%
should be realized that polymeric materials have relaxati
much broader than a Debye and therefore this is an ove
timate of the error due to temperature as long as one is
too near a glass transition.

Thus, we have plotted (eHN9 2eCC9 ) as a function of fre-
quency~f ! in Figs. 2–4. In Table I we list the absolute valu
of the maximum value determined for (eHN9 2eCC9 ), where
eHN9 and eCC9 are the dielectric loss components from t
Havriliak–Negami data and Cole–Cole fit, respectively.
stated previously, the Cole–Davidson fit results have b
omitted, because in all but one case the CC function fit
data better.! It should be noted that the highest error o
served for the Cole–Cole fits was 1.9231022 ~with a50.8
andb50.4! and that this value was at the edge of the fitti
window. Much lower errors were observed towards the c
ter of the fit window. To better present the nature of the fi
we have plotted in Figs. 5, 6, and 7, the best, average,
worst fits obtained for the Cole–Cole equation, respective
It is apparent from Fig. 7 that the data can be distinguish
from either a Cole–Cole or Cole–Davidson and is theref
fit only by a Havriliak–Negami.

FIG. 3. Residual ine9 for a Cole–Cole fit to the Havriliak–Negami equa
tion (eHN9 2eCC9 ) over the frequency range 0.1–100 Hz.

FIG. 4. Residual ine9 for a Cole–Cole fit to the Havriliak–Negami equa
tion (eHN9 2eCC9 ) over the frequency range 1–1000 Hz.
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Furthermore, Table I clearly illustrates that the disp
sion strength ande` obtained by the Cole–Cole fits are re
sonable values. Trends are readily observable as well. F
given frequency window~with b fixed!, asa is increased,x
increases~as does the dispersion strength! wherease` de-
creases. As the frequency window is shifted to higher f
quencies, for a fixed value ofa andb, x decreases~as does
e`!, and the dispersion strength increases. If there were g
grounds to rule out such trends, these trends could be us
an indicator that the assumed functional form is not adequ
to represent the entire relaxation process.

These results indicate several things. First, over limi
frequency ranges and for a wide range of conditions,
Cole–Cole equation reproduces the Havriliak–Negami g
erated data with reasonable values forx, the dispersion
strength, ande` . Second, because of this ability to repr
duce the data with reasonable fit parameters, it is imposs
to distinguish between the HN and CC equations over l
ited frequency ranges within experimental uncertainty. F
thermore, if we cast the HN equation in the form of the C
or CD equations we obtain the following:

fv→ infinity5
1

11~ ivt!ab

5
1

~11 ivt!ab

5
1

@11~ ivt!a#b ~11!

FIG. 6. e9 vs frequency for a Cole–Cole fit to data generated by
Havriliak–Negami equation witha50.8 andb50.8 over a frequency range
of 0.1–100 Hz.

FIG. 5. e9 vs frequency for a Cole–Cole fit to data generated by
Havriliak–Negami equation witha50.4 andb50.8 over a frequency range
of 0.01–10 Hz.
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for the high frequency limit. As can be seen in Table I,x is
always greater thanab, but as the frequency window i
shifted to higher frequencies,x decreases towardsab, thus
properly approaching the asymptotic limit.

We have added an additional plot with rather unrealis
parameters~a50.099 andb50.309!. These values were
chosen because Havriliak and Havriliak14 quote these values
as the fit values to the KWW equation with an exponent
0.04. To display the entire relaxation, Havriliak and Havr
iak showed that a frequency range of 10240– 1030 Hz was
necessary. This range is experimentally inaccessible.
most that could be observable is a small portion of suc
relaxation, if the relaxation exists. Using their HN param
eters, data were generated for the frequency range f
0.001 Hz to 10 kHz and fit to the Cole–Cole function. A
can be seen in Fig. 8, the Cole–Cole fit represents the
extremely well, with a maximum deviation of 531025—a
value that under ordinary circumstances cannot be reso
by experimental techniques. Even a linear fit to the d
yields only a 731024 maximum deviation. This supports th
statement we made in Sec. I. If the relaxation is bro
enough, it is nearly impossible to determine the expone
since, within experimental error, a curve witha50.099 and
b50.306 is indistinguishable from a curve witha50.086
andb51 even over a much wider range of frequencies th
used above.

As a further example, we have computed the appar
exponent as a function of frequency for our test cases u

FIG. 7. e9 vs frequency for Cole–Cole and Cole–Davidson fits to da
generated by the Havriliak–Negami equation witha50.4 andb50.8 over
a frequency range of 0.1–100 Hz.

FIG. 8. e9 vs frequency for Cole–Cole and linear fits to data generated
the Havriliak–Negami equation witha50.099 andb50.306 over a fre-
quency range of 0.001–1000 Hz.
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e8 with Eqs. ~6! and ~7!. If the variation of the exponen
along a pair of functional curves is similar, the two should
able to be made to resemble each other over that frequ
range. From Fig. 9 and our results from direct fitting, it c
be seen that this is indeed the case. For this comparison
display onlye8 ase9 has a change in sign for the expone
near the maximum. Otherwise, away from the maximum,
results are similar.

Thus the low frequency limit ofg is a, therefore any
relaxation curves with the same value ofa can be made to
resemble each other at low frequencies. Similarly, the h
frequency limit ofg is theab product and hence any relax
ation curves with the sameab product can be made to re
semble each other at high frequencies~see Fig. 9 for the two
curves:a50.6, b50.6 anda50.4, b50.8!.

A final additional point worth noting is the power law
dependence approaching these limits. Power laws are o
imputed by measuring slopes on data that do not get
close to the end due to experimental limitations. Howev
these slopes are assumed to be significant.23

In Fig. 9, maxima are observed for limiting values of t
exponent greater than 0.5 and most clearly for values gre
than 0.7. This surprising result can be understood by obs
ing that for a Debye function, the limiting slope is 2 and n
1 as would be predicted from the above argument. In fact
the exponent in the HN function or the CC function a
proaches unity, the maximum approaches a value of 2
broadens out so that in the limit of an exponent of unity,
correct Debye function result is recovered.

IV. CONCLUSIONS

When data of limited time or frequency range are fit
broad relaxation functions, the significance of the fitted fo
may be less certain than is appropriate to properly charac
ize relaxation functions that could otherwise be dist
guished. Many of the comparisons we have displayed
have large differences. It is just that they are outside
frequency range of observation.

We have neglected completely the effects of dispers
overlaps and instrumental systematic errors. These will
ther complicate the process in ways that will be hard to p
dict. For overlap, the difficulties in separation make the

FIG. 9. Apparent power law exponent~g! as a function of log(vt) for
various values ofa andb.
e
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termination of any relaxation function more difficult and ca
result in parameters that are quite different from those
tained with no overlap present. For systematic errors, suc
those due to deviations from an assumed calibration cu
near the ends of a frequency range, the deviations need
even follow any expected relaxation function. While a rela
ation function always obeys the Kramers–Kro¨nig relations,24

these latter deviations need not.
We are leaving open the question of how well any fun

tion can represent the other. It is clear just from element
considerations that the KWW, HN, CC, and CD functio
are quite different, especially in their limiting behavio
Since it is now possible to directly measure accurate ti
and frequency data, we have to address this issue in ano
article.

For all of these reasons, the ultimate appeal must
made to the measured data and how well they can be fitte
the data are not fit by a given form then the issue disappe
However, it is entirely likely that the data can be fit to mo
than one in which case the issue should be properly
open.

It should be remembered, however, that whatever fo
is chosen it must be used in both the time and freque
domains at the same time. The time and frequency respo
are connected by transforms that require the transform pa
be uniquely related and using one functional form in o
domain does not alter the use of another in the other. S
nificant deviations in one domain will lead to comparab
ones in the other and will be of similar magnitude. A co
sideration of the relative success of the Ham
approximation25 will show this to be the case. Furthermor
in this approximation the instantaneous current at timet, is
considered to be proportional toe9(v)/t. It has been more
exactly demonstrated in the development of time–dom
techniques to determine the frequency response
dielectrics.22,26,27 In that work, small deviations in one do
main imply corresponding deviations in the other as the
tegral transform is dominated by behavior at the center of
transformation matrix.
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