
Wave Motion 40 (2004) 399–412

Green’s-function method for modeling surface acoustic wave
dispersion in anisotropic material systems and determination of

material parameters�

V.K. Tewary∗
National Institute of Standards and Technology, Boulder, CO 80305, USA

Received 26 November 2003; received in revised form 27 January 2004; accepted 5 February 2004

Available online 28 July 2004

Abstract

A Green’s-function method for modeling propagation of surface acoustic waves in anisotropic nanolayered materials is
reviewed. The mathematical model, developed at NIST, provides a computationally efficient inversion algorithm for determi-
nation of the material parameters of the film, such as its elastic constants and density, from observed dispersion of the surface
acoustic waves. The application of the method to a 306 nm thick TiN film having transverse isotropy on a single crystal Si
substrate is discussed as an example. The errors in the values of the parameters determined by using the inversion algorithm
and the question of uniqueness of the values of the parameters are discussed in detail. It is suggested that, at least in the
example considered in this paper, the SAW dispersion can be used to determine any two parameters of the film, provided
other parameters are known by independent measurements. In particular, the values ofc11 and the density of the film, obtained
from the measured SAW dispersion, are the most reliable and the value ofc44 is the least reliable. The method is extended to
account for defective bonding between the film and the interface and the effect of an intermediate layer of silica between the
film and the substrate.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

With the advent of nanotechnology, there is a strong current interest in the study of propagation of surface
acoustic waves (SAWs) in anisotropic thin films on anisotropic solids for the purpose of elastic characterization
of thin films. In a homogeneous semi-infinite solid, the velocity of the surface wave or the Rayleigh wave is
independent of the frequency of the wave. For a film of finite thickness on a substrate, the SAW velocity depends
upon the frequency. The characteristic features of SAW in thin films arise because of the finite thickness of the
film and the coupling between the waves in the film and the substrate. The functional dependence of the phase
velocity on the frequency is called the dispersion relation. If the phase velocity is dispersive, so would be the group
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velocity. Usually, however, SAW dispersion relations refer to the variation of the phase velocity. In this paper,
therefore, by “velocity” we mean only the phase velocity. The measured SAW dispersion curves have been used
[1,2] for estimating the elastic constants of the film and other material parameters such as the density and the
thickness.

A mathematical model is needed for interpretation and inversion of SAW dispersion curves to obtain the material
parameters of the solid. In this article, we review and discuss a model[3] developed at NIST that is based upon
the use of the delta-function representation of the elastodynamic Green’s function for anisotropic solids[4]. The
SAW dispersion relations are obtained from the poles of the Green’s function without any need for numerical
integration. This model is computationally efficient and leads to a useful algorithm for inversion of SAW disper-
sion curves to obtain the material parameters of thin films. We discuss the limits of the inversion algorithm and
errors in the determination of the parameters which were not discussed in[3]. We also extend the model given
in [3] to two and more layers on the substrate and include the effect of defective bonding between a film and the
substrate.

No attempt is made in this article to give an exhaustive review of the published work on SAW dispersion. Extensive
literature is already available on various properties of SAWs. See, for example,[5,6] and other references quoted
in those papers. Various representations of the elastodynamic Green’s function are available in the literature[7–9].
Ting [10] has discussed elastic anisotropy in considerable detail and described some useful models in a recent
treatise.

In general, elastic wave propagation provides a useful technique for characterization of materials (see, for example,
[11,12], which also give other references). Several features of surface- and guided-wave propagation in anisotropic
solids have been discussed in[13–17]. Computational methods for inversion, that is, determination of elastic
constants by using the measured wave propagation characteristics in homogeneous anisotropic solids have been
described in[18,19], which also give other references. In most of the methods of inversion, one calculates the
velocity of the elastic waves as function of the frequency and obtains the material parameters of the film by a least
squares fitting between the calculated and the observed dispersion curve. The inversion algorithm[3] developed at
NIST provides a direct method that is computationally more efficient and suitable for anisotropic material systems
such as layered single crystals which are used in technological applications. In the NIST method the observed
dispersion relations for SAW are substituted in the expressions for the poles of the Green’s function which results
in a set of nonlinear equations for the material parameters of the film.

As an example and a model case, we discuss the dispersion of SAWs in a polycrystalline textured TiN film on
single-crystal Si. Currently there is a strong interest in TiN coatings on Si because of the hardness properties of TiN.
However, our interest in this paper is not in determining the parameters of a specific TiN film. We simply use this as
a model case for discussing the reliability of the parameters predicted by the inversion algorithm. We also calculate
the effect of an intermediate layer of fused silica between the film and the substrate on the SAW dispersion curves.
Finally, we extend the model to account for a defective interface between the film and the substrate.

The Green’s-function method is especially useful to calculate the displacement field or the wave forms, which, in
principle, can provide additional information about the material parameters of the film. However, a direct comparison
between theoretical and experimental waveforms is difficult because the waveforms depend upon the space–time
behavior of the applied force, which is difficult to quantify experimentally. On the other hand, the wave velocities
depend only upon the material properties of the solid. Our interest in this paper is in the calculation of SAW
dispersion curves and estimating the material parameters of the film by comparing the theoretical and experimental
values of SAW velocities. We will therefore not discuss the calculation of the displacement field.

Section 2gives a review of the Green’s-function method for calculating SAW velocities in layered structures.
This section also gives an extension of the earlier formulation[3] to incorporate the effect of defective interfacial
bonding and an intermediate layer on the SAW dispersion. The inversion algorithm for determination of the material
parameters of the film from measured SAW dispersion curves and a detailed discussion of the limitations of the
method and associated errors are given inSection 3. The discussion is based upon the case of a 306 nm TiN film on
single crystal Si that has been chosen as an example. Finally, conclusions are given inSection 4.
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Fig. 1. Cartesian frame of reference for modeling SAW propagation in thin films on a substrate. The point O on the surface is the origin of the
coordinates. TheY-axis is normal to the plane of the paper.

2. Propagation of SAW in thin films on anisotropic substrates

We consider an anisotropic thin film on an anisotropic substrate. The film and the substrate are indicated as solids
A and B, respectively, inFig. 1 that also shows the Cartesian frame of reference. The solid B extends to infinity in
the+Z-direction. Both A and B extend to infinity in theXY-plane. We denote the space variables by position vectors
x andx′. Their Cartesian components are denoted by indices 1, 2, and 3, corresponding toX, Y, andZ coordinates,
respectively. We denote the time variable byt and its canonically conjugate variable byω. For positive values,ω
can be identified as the angular frequency. Summation over repeated indices is implied.

We calculate the response of the composite solid to a point force applied at the free surface of solid A atx = 0.
We assume that there are no body forces in solids A or B. We seek the solution of the homogeneous Christoffel
equation:

Lijuj(x, t) = 0 (2.1)

whereu is the displacement field,

Lij = cikjl
∂2

∂xk∂x1
− ρ

∂2

∂t2
(2.2)

the indicesi, j,k, andl assume the values 1, 2, or 3;ρ is the density of the solid; andc is the fourth-rank elastic-constant
tensor. We obtain the solution ofEq. (2.1)separately for solids A and B and apply appropriate boundary and continuity
conditions at the interface between A and B and the free surface of the solid A. The elastic constant tensor and the
density of solids A and B will be identified by adding superscripts A and B, respectively. We will write the solution
of Eq. (2.1)in the slowness space[4,14]defined by the slowness vectorq that has the dimensions of inverse velocity.

For notational convenience we introduce a 2D vectorχ in the vector subspace ofx such thatx can be written
as (χ, x3). Obviouslyχ1 = x1, χ2 = x2. Similarly, we define a 2D vectorξ = (ξ1, ξ2) in the vector subspace ofq
such thatξ1 = q1 andξ2 = q2 andq = (ξ, q3). The traction vectorT in theZ-direction, with superscripts A or B,
is defined as follows:

Ti(x, t) = τi3(x, t) (2.3)

whereτ is the stress tensor given by

τim(x, t) = cimjk
∂uj(x, t)
∂xk

(2.4)

We specify boundary conditions (i) and (ii) for (−∞ < t < ∞) as given below:

i. At x3 = 0 (the top surface), x = (�,0)
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TA
i(�, x3 = 0, t) = ηiδ(χ)exp(ιωt) (2.5)

The 3D vector� denotes the strength of the load applied at the origin andδ denotes the Dirac delta function. We have
assumed the time dependence of the applied load inEq. (2.5)to be harmonic because our objective is to calculate
the dispersion of SAW. The propagation of aδ(t) pulse has been discussed in[3,20–22].

ii . At x3 = a (the interface), x = (�, a)

TA
i(χ, x3 = a, t) = TB

i(�, x3 = a, t) (2.6)

uA
i(�, x3 = a, t) = �uB

i(�, x3 = a, t) (2.7)

where� is a diagonal matrix with components:

�ij = �i�ij (2.8)

Eq. (2.5)specifies a free surface except at the origin where the load is applied, andEq. (2.6)is the continuity
condition for the traction at the interface. For a perfectly bonded interface� = I whereI is the unit matrix. The case
of perfectly bonded interface has been discussed in detail in[3]. Boundary conditions for a liquid coupled layer
have been given by Ren et al.[22]. Non-unity values of� represent a defective interface showing discontinuity
of displacement or debonding at the interface. We will refer to� as the debonding parameter. Note that even for
a defective interface the traction should be continuous or otherwise there will be a net force at the interface. In
addition to the conditions given byEqs. (2.5) and (2.8), we requireτB

i3(x) → 0 asx3 → ∞.
Now we write the solution ofEq. (2.1)using the delta-function representation of the Green’s function[3]. Since

we need to satisfy three boundary conditions, we introduce three different virtual forcesf0, fa, andfb and write the
solution in solid A as follows:

uA(x, t) =
∫

GA
h(q)δ[q · x − (t − t′)]f0(�, t

′)dq dt′ +
∫

GA
h(q

∗)δ[q ∗ x + q3a− (t − t′)]fa(�, t′)dq dt′

(2.9)

where

Gh(q) = M(q)δ(D(q)) (2.10)

D(q) is the determinant of the matrix [�(q) − ρI], andM(q) is the matrix of its cofactors,q = (q1, q2, q3), q∗ =
(q1, q2, −q3), dq = dq1dq2dq3, and

Λij(q) = cikjlqkq
′
l (2.11)

The solution in solid B is written as:

uB(x, t) =
∫

GB
h(q)δ[q · x − q3a− (t − t′)]fa(ξ, t′)dq dt′ (2.12)

In view of the boundary conditions given byEqs. (2.5)–(2.7), the virtual forces will be independent ofq3. The
integrations inEqs. (2.9) and (2.12)are to be performed over the entire space ofq andt′. For brevity the integration
limits and separate integration symbols for the variables are not written inEqs. (2.9) and (2.12). The virtual forces
are calculated by a straightforward application[3] of Eqs. (2.5), (2.7), (2.9) and (2.12)which give the harmonic
wave forms in solids A and B. The Green’s function is given by the displacement field for unitη.

It is found that the Green’s function has poles at certain values ofω. The location of the poles are given by the
solution of the equation:

DV(�, ω, cij, ρ, a) = 0 (2.13)

whereDV is the determinant of the set of algebraic equations which determine the virtual forces. It depends upon
the material parameters of the film and the substrate such as the elastic constants, density, and the thickness.
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Fig. 2. Dispersion curves in the [1 1 0] and [1 0 0] directions for a perfectly bonded 306 nm TiN film on Si calculated by using material parameters
of the reference set inTable 1. Thickness of the film is 306 nm. Solid line: [1 1 0]; dashed line: [1 0 0].

Eq. (2.13)is a nonlinear 3n × 3n determinantal equation wheren is the dimensionality of the solid. For 3D,n = 3
and for 2D,n = 2. The full expression forDV is given in Ref.[3]. The relationship between the velocity and the
frequency obtained by solvingEq. (2.13)gives the dispersion of the SAW. In principle, the elastic constants and other
material parameters of the film can be determined by comparing the calculated and measured dispersion of surface
waves.

The above formalism is easily extended to incorporate the effect of an intermediate layer between the film and
the substrate. We label the intermediate layer as C. The boundary condition at the top surface (solid A) remains
the same as given byEq. (2.5). The continuity conditions at the interface between A and C and between C and B
are given by equations exactly similar toEqs. (2.6) and (2.7). Since there are five conditions to be satisfied, we
need to introduce five virtual forces. The determinantDV will now be 5n × 5n where, as before,n = 3 for a 3D
problem (point source) andn = 2 for a 2D problem (line source). The SAW velocities are obtained by solving the
determinantal equation similar toEq. (2.13)which will now be 5n × 5n.

As an example we calculate the dispersion curves for a 306 nm TiN film on a single crystal Si. We chose this
example because of a strong current interest in TiN films due to their attractive hardness properties and because
good measurements[1,2] and a preliminary analysis[3] of SAW dispersion are available for TiN on Si. The film
studied in the measurements was polycrystalline with preferred orientation (texture) in its own crystallographic
[1 1 1] direction. The TiN single crystal has fcc structure and therefore has hexagonal symmetry in a plane normal
to the [1 1 1] direction. Since the crystallites are randomly oriented on this plane, the film can be assumed to be
transversely isotropic.

In our calculations we assume the same geometry as in the experimental set up[1,2] and in Ref.[3]. The
measurements were made using an optical line source for SAWs propagating in the [1 1 0] direction in Si, which is
taken to be theX-axis inFig. 1. The interface between the film and the substrate was the (0 0 1) plane of Si, which
is normal to theZ-axis in the frame of reference shown inFig. 1. We assume the line source to be parallel to the
Y-direction which is normal to the plane of the paper inFig. 1. The wave velocities do not depend upon the nature
of the source. We model the film as transversely isotropic hexagonal solid with itsc-axis parallel to theZ-axis in
Fig. 1.

The calculated dispersion curves in the [1 1 0] and [1 0 0] directions of Si are shown inFig. 2assuming a perfect
interface, that is� = I. For these calculations, the following values were used for the material parameters of Si:

c∗11 = 165.7 GPa, c∗12 = 63.9 GPa, c∗44 = 79.6 GPa, ρ = 2331 kg/m3
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Table 1
Density and elastic constants of TiN film that give good fit with the measured dispersion curve in the [1 1 0] direction. Reference set taken from
[3] (ρ—density in (kg/m3), cij—elastic constants in (Gpa))

ρ c11 c13 c33 c44 Q × 106

Reference set 5408 455 148 446 159 8.1
Set 1 (iso) 5408 455 150 455 153 6.1
Set 2 5524 478 125 240 275 7.9
Set 3 5505 479 125 230 159 7.1
Set 4 5408 452 120 306 142 7.3
Set 5 5403 455 149 437 175 7.5
Set 6 5408 455 144 416 159 6.7
Set 7 5361 448 144 443 125 7.3

The asterisks overc denote that these values are with respect to the crystallographic axes of silicon. The material
parameters of the film chosen for these calculations are taken from Ref.[3]. These parameters are given in row 1
(reference set) ofTable 1in the next section where we will discuss their determination in detail.

The calculated dispersion curves are shown inFig. 2for frequencies from 0 to about 20 GHz in order to illustrate
the nature of the SAW dispersion in the low as well as high frequency limit. In practice, the measurements are usually
limited to the range 15–500 MHz. As seen inFig. 2, the SAW velocity at zero frequency is equal to 5.08 km/s in
the [1 1 0] direction and 4.92 km/s in the [1 0 0] direction. These are the Rayleigh wave velocities in the Si substrate
in the two directions and are independent of the film. This is physically expected because the zero frequency wave
has infinite wave length which cannot be sensitive to properties of a film of finite thickness. At the other extreme
of infinite frequencies, the SAW velocity reduces to 4.93 km/s which is the Rayleigh velocity in the film and does
not depend upon the material parameters of the substrate. In this limit the wave is confined to the film and does not
see the substrate. As we see fromFig. 2, the Rayleigh velocity of the film is independent of the direction of wave
propagation. This is a consequence of the assumed transverse isotropy of the film.

In order to see the effect of the imperfect bonding, we calculate the dispersion curves for the same material system
for two values of the debonding parameter:β1 = 1.5 andβ1 = 0.5 whileβ3 = 1. The boundary condition given by
Eq. (2.5)for the continuity of the traction is still valid. The values ofβi are chosen just for the purpose of illustration
and have no particular physical justification. An experimental analysis of the effect of defective interfacial bonding
on SAW propagation is not available. The solution for the virtual forces corresponding to these boundary conditions
is given in Appendix A. The calculated dispersion curves are shown inFig. 3for the [1 1 0] direction.

For the purpose of comparison, the SAW dispersion for the perfectly bonded film TiN film of thickness 306 nm
is also shown inFig. 3. As expected, the curve forβ1 = 1 (perfect bonding) inFig. 3 lies between those forβ1
= 1.5 andβ1 = 0.5. We also observe from the figure that the SAW velocity in the zero frequency and the high
frequency limits does not depend upon the values of the debonding parameter�. This is physically expected for
reasons described previously.

Now we consider the effect of an intermediate layer between the film and the substrate on the SAW dispersion. In
general, an intermediate layer almost always exists between the film and the substrate. For example, Si usually has a
layer of oxide on the surface. Moreover, there are usually residual stresses at the interfaces. The residual stresses do
not change the elastic constants in the linear approximation. In the nonlinear case, the higher order elastic constants
can be approximately included by using effective values of the second order elastic constants. Thus it is possible
to model the residual stresses at the interface by assuming an intermediate layer of different elastic constants. The
calculation of SAW dispersion in case of an intermediate layer follows essentially on the same lines as described
above.

The calculated SAW dispersion curve for a TiN film on Si with an intermediate layer of fused silica is shown
in Fig. 4. The fused silica is assumed to be isotropic with the following material parameters:c11 = 78.5 GPa,
c12 = 16.1 GPa, andρ = 2204 kg/m3. The dispersion curve inFig. 3 is shown only up to about 500 MHz which
is the range of interest from the point of view of measurements. We assume the same geometry as inFig. 1.
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Fig. 3. Dispersion curves in the [1 1 0] direction for a imperfectly bonded 306 nm TiN film on Si calculated by using same parameters as in
Fig. 2. Solid line:β1 = 1.5; dotted line:β1 = 0.5; dashed line:β1 = 1 which corresponds to perfect bonding.

The thickness of the film and that of the intermediate layer are assumed to be 206 and 100 nm, respectively. For
comparison, the SAW dispersion for TiN film of thickness 306 nm is also shown in the same figure. Again we
note that the SAW velocity at zero frequency does not depend upon the properties of the film or the intermediate
layer.

Fig. 4. Dispersion curves in the [1 1 0] direction for a TiN film on Si with an intermediate layer of fused silica. Thickness of the film is 206 nm
and that of the silica layer is 100 nm. Solid line: no intermediate layer; dashed line: including layer of silica.
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We can draw some general inferences from the dispersion curves inFigs. 2–4for the purpose of extracting
information about the film. At very low frequencies, the SAW velocity is not sensitive to the material parameters of
the film, the quality of the bond, or the presence of an intermediate layer. In the limit of infinite frequency, the SAW
velocity becomes equal to the Rayleigh velocity in the film independent of its thickness. The Rayleigh velocity
is determined by a single combination of elastic constants and density. The Rayleigh velocity is independent of
frequency (no dispersion) and can yield only a single parameter. Thus, the SAW dispersion cannot yield all the
parameters of the film in the limit of very high frequencies. When the frequencies are such that the wavelength of
SAW is comparable to the thickness of the film, then the SAW dispersion will be most sensitive to the parameters
of the film. The figures show maximum structure around 3–5 GHz where the SAW measurements should be most
sensitive to the presence of the film. Currently, most measurements of SAW dispersion are limited to frequencies >
15 MHz and< 1 GHz.

We make an interesting observation fromFigs. 3 and 4. Though the SAW velocity at zero frequency depends
only upon the parameters of the substrate, the slope of the dispersion curve at zero frequency is quite sensitive to
the parameters of the film. In the absence of the film, SAW propagation will be dispersionless and the slope of the
curve would be zero. This would suggest that a direct measurement of the slope of the dispersion curves rather than
of the actual velocity as a function of frequency can yield useful information about the film and its bonding with
the interface even at low frequencies. Direct measurements of the slopes of the dispersion curves have not been
reported in the literature. This also suggests that a measurement of group velocity rather than the phase velocity
may give more information about the film since it involves the derivative of the frequency. For Rayleigh waves, the
phase and group velocities are equal.

3. Determination of elastic constants of the film from measured SAW dispersion

Experimentally, one measures the SAW dispersion—the phase velocity of the surface waves as a function of
frequency. These measurements can, in principle, be inverted to estimate material parameters such as the elastic
constants, density, the thickness of the film, and the quality of the interfacial bond. The usual procedure (see, for
example,[19]) of obtaining the elastic constants from the measured dispersion is to use a least-squares fit between
the observed dispersion curves and theoretical curves obtained by Adler’s method[17]. It involves a large number
of forward calculations. One difficulty in this procedure lies in the identification of the right branch of the theoretical
dispersion curves. If the determinantDV is 3n × 3n, Eq. (2.13)will have 3n branches of solutions. Only one of them
will correspond to the experimental curve. The difficulty is further aggravated by the crossing over of the branches
in theξ-space in some cases.

An efficient method of inversion has been developed at NIST[3]. In this method of inversion, we use the measured
values ofξ (inverse velocity) for specific values ofω directly inEq. (2.13), and solve the resulting nonlinear equation
for the material parameters. This method is computationally faster and more efficient and avoids the problem of
identification of a specific branch of the solution. In the case of a line source used in the experiment,ξ is a scalar
and equal toq1. Each pair of values of (ω, q1) gives one equation. We have to use at least as many equations as the
number of parameters to be determined. In practice, we choose about double the number of equations, and obtain
the parameters by an optimization or minimization procedure.

We consider the same example of TiN film on Si. The values of the elastic constants and the density of the film
as calculated in Ref.[3] by using the measured SAW dispersion curve are given in row 1 ofTable 1. We will refer
to this set of parameters as the reference set. These values were obtained by assuming the film to have transverse
isotropy and a perfect interfacial bond for which� = I. The measured[1] dispersion curve in the [1 1 0] direction
is shown by the triangles inFig. 5along with the theoretical curve[3]. The theoretical curve is the lower frequency
end of the curve shown inFig. 2. It is given here again in order to show the agreement with the measured values that
are available until about 450 MHz. The fit between the theoretical and the experimental values as shown inFig. 5
is very good, the difference being less than 0.1%. However, since the measurements are made on only one plane,
only four elastic constants—c11, c13, c33, andc55—could be determined.
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Fig. 5. Theoretical and experimental dispersion curves in the [1 1 0] direction for the same system as inFig. 2. Solid line: theory; triangles:
measured values[1].

The fact that such a good fit is obtained between the theory and the experiment should not be surprising as
such, because of a large number (5) of adjustable parameters in the theory. Perhaps the most important question
in any inversion algorithm is the uniqueness and the uncertainty in the values of parameters because inversion is
essentially an ill posed problem. A set of parameters obtained by inversion can be guaranteed to be unique only if all
the measurements can be made at all points which is obviously not possible. Mathematically the lack of uniqueness
can be attributed to the solution of the set of nonlinear equations that admit a large number of solutions. One has to
find a solution “near” a set of values. In practice, the initial set of values is chosen on physical considerations, but
that is not always possible.

We now examine whether the above inversion algorithm gives unique values of the material parameters. We
define a quality of fit parameter as follows:

Q = 1

N

∑
k

[DV(q1k, ωk, cij, ρ, a)]
2 (3.1)

whereq1k andωk for k 1, 2,. . . , N areN points on the observed dispersion curve. IfDV is complex,Q could be
defined in terms of the magnitude ofDV. In general,Q is positive. In the ideal caseQ = 0. For brevity, we have not
shown the function dependence ofQ on various parameters. TheQ value for the set of parameters for TiN[3] quoted
in column 1 ofTable 1is less than 10−6 which is quite good. It was mentioned in Ref.[3] but not discussed in any
detail that several alternative sets of parameters are possible that give almost as good a fit between the experimental
and theoretical SAW dispersion curves in the [1 1 0] direction. We used our inversion algorithm to determine other
sets of parameters of the film from the same measured values of SAW dispersion in the [1 1 0] direction.

In general, a set of nonlinear equations, which we have to solve for determining the material parameters, admits
many solutions. The nonlinear equations are usually solved by a minimization or an optimization procedure. Such
procedures always introduce a nonzero numerical noise. In choosing a set of parameters, we have to define the
criteria for the goodness of the solution. In practice, we cannot demand thatQ must be 0 for a set of parameters
to be acceptable. Moreover, in real cases, there is also a nonzero experimental error. Hence we have to consider
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Fig. 6. Dispersion curves in the [1 1 0] and [1 0 0] directions for the same system as inFig. 2 calculated by using material parameters of sets
2–8 inTable 1. All the sets give approximately the same dispersion curve in both the directions. The values obtained from the reference set are
shown as discrete points. Solid line: [1 1 0]; dashed line: [1 0 0].

the uniqueness of the parameters within the margins set by the numerical noise and the experimental error. We
arbitrarily chooseQ < 10−5 for accepting a set of parameters. We also consider the dispersion in the frequency
range 10–500 MHz which is the usual range of measurements.

In our inversion algorithm, we used interpolated experimental values in order to reduce the numerical noise
caused by the scatter in the experimental values which was very small. We found a large number (at least 20) of
sets of parameters that ‘fit’ the calculated values with the experimental values. Some of these can be ruled out on
physical considerations since we know that the film is TiN. We can use constraints such as, for example, that the
density should be around 5400 kg/m3 which is approximately the value for a perfect fcc TiN crystal,c11 should
be around 400–600 GPa,c55 andc13 should not be larger thanc11, etc. In fact the results are very sensitive to the
density, which in real cases can vary because of the varying nitrogen content in TiN. Even constraining the density
to a value near 5400 kh/m3, we found at least 10 sets of parameters which give approximately the same dispersion
in the [1 1 0] direction.

Some of the sets of parameters are given inTable 1in rows 2–8. The calculated dispersion curve obtained
from these sets is shown as the dotted line inFig. 6. The difference between the dispersion curves obtained from
different sets is too small to be shown in the figure. The calculated values obtained from the reference set are
shown as discrete points in the same figure. We see that the all the sets give about give the same dispersion
curve in the [1 1 0] direction which also agrees with the reference set. It should be emphasized that it is not the
inadequacy of the inversion algorithm that a unique set is not found. On the other hand it shows the power of
the inversion algorithm that it has discovered a large number of sets which all give about the same dispersion
curves.

Note that the set given in row 2 ofTable 1is isotropic, that is the elastic constants obey the following isotropy
conditions:

c33 = c11 andc11 − c12 = 2c44 (3.2)
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Table 1also gives theQ value for each set as calculated by using experimental values of the dispersion inEq. (3.1).
Note that all these sets give a good fit, that is,Q < 10−5. The difference between theQ values is not large enough
to distinguish between the sets. It is not logical to choose the set with the smallestQ value as the best set because
of the uncertainties introduced by numerical noise in the calculations as well as experimental measurements in real
cases. Hence all sets inTable 1seem to be equally acceptable.

It would appear that the uniqueness can be improved by taking more independent observations in other directions.
Since Si substrate is anisotropic, observations in other directions should provide independent data even if the film is
isotropic. We therefore consider SAW propagation in the [1 0 0] direction. We have already assumed that the film is
transversely isotropic with its hexagonalc-axis parallel to theZ-axis, soc44 = c55. If the film was not transversely
isotropic, then we would need another elastic constant to calculate the dispersion in the [1 0 0] direction. The SAW
dispersion in the [1 0 0] direction calculated from the isotropic set is shown as the dashed curve inFig. 6. All the
sets given in rows 2–8 give about the same dispersion curve. Again, the difference between the values calculated
from different sets is too small to be shown in the figure.

The values obtained from the reference set in row1 ofTable 1are shown as discrete points on the curve in the
same figure. Note that the values calculated from the reference set agree very well with the values obtained from
other sets in the [1 0 0] direction also. Hence we infer that if the reference set correctly predicts the measurements
in the [1 0 0] direction, so would all the other sets inTable 1. Thus measurements in the [1 0 0] direction would not
be able to distinguish between the sets given inTable 1. Note that the SAW velocities in the [1 1 0] and the [1 0 0]
directions at zero frequency, which correspond to the Rayleigh velocities in the two directions in Si, as well the
starting slope and curvature of the two curves inFig. 6are very different. This difference would suggest that the two
curves are independent and should contain independent information. It is a consequence of the transverse isotropy
of the film that measurements in different directions do not yield new information. However, it is surprising since
the substrate is anisotropic. If transverse isotropy is not assumed, more elastic constants will be needed.

The main reason for lack of uniqueness is that there are too many unknown parameters compared to the amount
of information contained in the measured values of the SAW dispersion. If the experimental uncertainties and
numerical noise is close to zero, it may be possible in principle to find the global minimum ofQ that will correspond
to the real set of parameters. It would not help very much if we include very high frequencies. As mentioned earlier,
in the limit of infinite frequency, the SAW velocity becomes equal to the Rayleigh velocity in the film independent
of its thickness. The Rayleigh velocity is determined by a single combination of elastic constants and density. The
Rayleigh velocity is independent of frequency (no dispersion) and can yield only a single parameter. Thus, the SAW
dispersion cannot yield all the parameters of the film in this limit. As remarked earlier, the most sensitive region of
the frequency in this case is about 3–5 GHz when the wavelength of SAW is comparable to the thickness of the film.

If we constrain the elastic constants to obeyEq. (3.2), and allow the density to vary, we still get different
sets of parameters. However, if we fix the density along with the isotropy condition, then we do obtain a unique
set of isotropic elastic constants. If we constrain the density to vary in a small range, then may be even three
parameters—two elastic constants and the density can be determined within the range of numerical noise.

In the anisotropic case also two parameters can be uniquely determined if we fix the values of other parameters.
The calculated values are not very sensitive to choice ofc44 so the estimated values ofc44 are least reliable. If we
fix the density,c44, andc33, then we obtain unique values ofc11 andc13. In general if we vary only two parameters
then we get a unique set but the results are more stable if we fixc44. So it appears that the information content in
the SAW dispersion curves is just about enough to determine two parameters or, at the most three parameters if the
density is constrained to vary in a small range.

We also used the inversion algorithm to determine the values of the debonding parameter and the parameters
of the intermediate layer. The above discussion also applies to these cases. If all other parameters are fixed, then
two parameters, for example, the debonding parameter or two elastic constants of the intermediate layer can be
determined from the SAW dispersion curves.

The main conclusion is that, for isotropic as well as anisotropic films, two material parameters can be most
efficiently determined by SAW measurements by using the known values of other parameters. The calculations are
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Table 2
Magnitude of the estimated fractional error in each parameter of the TiN film given inTable 1due to inadequate fitting as calculated fromEq.
(3.4)

(#ρ/ρ) × 10−3 (#c11/c11) × 10−3 #c13/c13 #c33/c33 #c44/c44

Reference set 2.9 4.3 0.02 0.05 0.6
Set 1 (iso) 4.9 8.2 0.05 0.10 0.74
Set 2 4.3 6.9 0.03 0.08 1.2
Set 3 5.7 10 0.05 0.12 0.79
Set 4 5.2 9.1 0.06 0.14 0.69
Set 5 4.9 8.4 0.05 0.11 0.84
Set 6 5.3 9.2 0.05 0.12 0.79
Set 7 5.1 8.8 0.05 0.12 0.61

very sensitive to the density of the film and least sensitive toc44. In general, as remarked in[3], the variation ofc11
amongst different sets is relatively small. It seems that the best use of the above procedure is for determining the
value ofc11 and the density of films. These conclusions are of course based upon the analysis of a single sample,
that is a TiN film on Si.

We now discuss the errors in the values of parameters determined by using the inversion algorithm. There are two
main sources or errors: inexact solution ofEq. (2.13)which makesQ nonzero, (ii) errors in the measured values of
the input parameters toEq. (2.13)such as the thickness of the film, elastic constants of the substrate, etc. We use
the Newton’s formula to estimate the error due to inexact solution ofEq. (2.13). Letw0 be the exact value of some
parameter which is estimated to bew by using the above algorithm. By expandingQ in a Taylor series atw, we
obtain fromEq. (3.1)

Q(w0) = Q(w)+
[
∂Q

∂w

]
(w0 − w) (3.3)

where the derivative is evaluated atw. If w0 is the exact solution, the LHS ofEq. (3.3)is 0. This gives the following
first order estimate of the error inw:

#w = (w0 − w) = − Q(w)

∂Q/∂w
(3.4)

The calculated fractional error#w/w in each parameter of each set of the film is given inTable 2. The set numbers in
this table refer to the same set numbers as inTable 1. In principle,Eq. (3.4)provides an additional and independent
criterion for choosing between alternative sets since it requiresQ to be small and its derivative to be large. This
criterion would prefer a sharp minimum (large derivative) over a shallow minimum (small derivative). However,
it is more a mathematical rather than physical criterion. There is no obvious reason why the actual values of the
parameters should be at a sharp minimum.

Similarly, we can obtain the error in the estimated value of a parameter caused by an error in an input parameter.
If w is the estimated parameter andp is an input parameter, we obtain by taking the total derivative ofDV from
Eq. (2.13)

dw

dp
= − ∂V/∂p

∂V/∂w
(3.5)

The fractional error in the estimated value of the parameterw is given by:

#w

w
=

(p
w

) (
dw

dp

) (
#p

p

)
(3.6)

where (#p/p) is the fractional error in the input parameterp. Eq. (3.6)gives the error inw as a function of the
frequency. To estimate the overall error, we useQ in place ofDV in Eq. (3.5). An important source of error in the
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Table 3
Magnitude of the estimated fractional error in each parameter of the TiN film given inTable 1due to fractional error 0.1 in the input value of
film thickness as calculated fromEq. (3.6)

(#ρ/ρ) × 10−2 (#c11/c11) × 10−2 #c13/c13 #c33/c33 #c44/c44

Reference set 2.7 4.0 0.21 0.46 5.5
Set 1 (iso) 3.2 5.3 0.29 0.67 4.8
Set 2 3.0 4.8 0.22 0.52 8.4
Set 3 3.4 6.1 0.28 0.72 4.7
Set 4 3.3 5.8 0.35 0.87 4.4
Set 5 3.2 5.4 0.29 0.68 5.5
Set 6 3.3 5.7 0.32 0.75 4.9
Set 7 3.3 5.7 0.33 0.78 4.0

above determination of material parameters of the film is the thickness of the film. For the purpose of illustration we
consider the same model system TiN/Si with perfect interfacial bond. We assume (#p/p) = 0.1. The overall errors
calculated by usingQ instead ofDV in Eq. (3.6)for all the parameters are given inTable 3.

We note from that the fractional error inc44 is very large for all the sets and small forc11 and the density. This is
consistent with the observation made earlier in this section that the solution obtained by the inversion algorithm is
sensitive toc11 and the density and not sensitive toc44.

4. Conclusions

1. A Green’s-function based method developed at NIST, has been described for calculating the SAW dispersion
curves in anisotropic material systems such as single as well as multiple thin films on anisotropic substrates. The
method is applicable to films with a defective interfacial bond which is simulated by introducing discontinuities
in the displacement field at the interface.

2. The formulation is based upon the delta-function representation of the elastodynamic Green’s function and
provide a computationally efficient inversion algorithm for determining the material parameters of the film
from the measured SAW dispersion curves. The parameters which can be, in principle, determined from the
SAW dispersion curves include elastic constants, density, bonding defect, and thickness of the film.

3. In the zero frequency limit the SAW velocity in the film is equal to the Rayleigh velocity in the substrate without
the film and in the high frequency limit it is equal to the Rayleigh velocity in the film without the substrate. The
SAW dispersion curves are therefore not sensitive to the film at low frequencies. In the high frequency limit it
depends only upon a single combination of all the parameters of the film that gives the Rayleigh velocity in the
material of the film. The most sensitive region of frequencies for determining the material parameters of the
film is when the wavelength of the SAW is comparable to the thickness of the film. However, the slope of the
SAW dispersion curve is sensitive to the parameters of the film even at low frequencies. A direct measurement
of the slope should therefore be useful for interrogating the properties of the film.

4. The uniqueness (or lack of it) of the parameters as determined by using the inversion algorithm is discussed
in detail by taking the example of a 306 nm TiN film on Si. It is found that the SAW dispersion curves can
give unique values of two parameters which can be the elastic constants and/or the density. If the film is
characterized by more than two parameters such as in the general anisotropic case, the inversion process
does not yield a unique set of all the parameters even if measurements are made in several directions. SAW
dispersion curves can be useful to determine any two parameters including the density provided reliable values
of other parameters are available.

5. In the example considered in this paper, the estimated values ofc11 and the density are found to be most
reliable. The values ofc44 are found to be most unreliable.
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