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Abstract

Three-dimensional Green’s functions (GFs) of steady-state motion in linear anisotropic elastic half-space and bimaterials are derived

within the framework of generalized Stroh formalism and two-dimensional Fourier transforms. The present study is limited to the subsonic

case where the sextic equation has six complex eigenvalues. If the source and field points reside in the same material, the GF is expressed in

two parts: a singular part that corresponds to the infinite-space GF, and a complementary part that corresponds to the reflective effects of the

interface in the bimaterial case and of the free surface in the half-space case. The singular part in the physical domain is calculated

analytically by applying the Radon transform and the residue theorem. If the source and field points reside in different materials (in the

bimaterial case), the GF is a one-term solution. The physical counterparts of the complementary part in the half-space case and of the one-

term solution in the bimaterial case are derived as a one-dimensional integral by analytically carrying out the integration along the radial

direction in the Fourier-inverse transform. When the source and field points are both on the interface in the bimaterial case or on the surface in

the half-space case, singularities appear in the Fourier-inverse transform of the GF. The singularities are treated explicitly using a method

proposed recently by the authors. Numerical examples are presented to demonstrate the effects of wave velocity on the stress fields, which

may be of interest in various engineering problems of steady-state motion. Furthermore, these GFs are required in the steady-state boundary-

integral-equation formulation of anisotropic elasticity.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Green’s function (GF) has been an interesting subject of

research due to its direct and indirect applications to various

engineering and physics problems. While most static GFs in

anisotropic elastic and two-dimensional (2D) domains can

be derived in terms of the Stroh formalism as given in

Ref. [1], the three-dimensional (3D) static GFs were

obtained by making use of the generalized Stroh formalism

and 2D Fourier transforms [2–5]. Other techniques have

also been applied to derive the static GFs in bimaterials and

multilayered materials [6–8]. Development of the GFs

under either general transient or time-harmonic (i.e.

proportional to eivt) conditions poses great difficulty, as is

evidenced in Refs. [9–11].

As is well known, a steady-state motion in velocity v is

defined as the motion where the response depends on the

combination of the space ðxÞ and time ðtÞ variables as

x 2 vt; instead of depending upon them individually. Such

motions occur in many practical problems, such as moving

cars on the highway and high-speed trains on the railway

[12,13]. Recently, Verruijt and Cordova [14] presented a

closed-form solution for the problem of a moving point load

on an isotropic elastic half-plane with hysteretic damping.

Lykotrafitis and Georgiadis [15] derived the 3D funda-

mental solution for a moving source on the surface of a

thermo-elastic half-space. Andersen and Nielsen [16]

presented a boundary-element analysis for the steady-state

response of an elastic half-space subjected to a surface

force. So far, however, very little has been done along these
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lines when the material is anisotropic [1]. The steady-state

GFs for 3D anisotropic elastic media are not available in the

literature.

In this paper, we apply the generalized Stroh formalism

and 2D Fourier transforms to derive such steady-state GFs

in anisotropic linearly elastic half-spaces and bimaterials. In

the bimaterial case, the interface is perfectly bonded. In the

half-space case, the surface is traction-free. The boundary-

value problem of these systems subjected to a point force is

first solved analytically in the Fourier-transformed domain.

The physical-domain counterpart is then derived using the

Fourier-inverse transform. The present study is limited to

the subsonic case where the sextic equation has six complex

eigenvalues. The formulation is described in Section 2. In

Section 3, the GFs of half-space and bimaterials are derived.

These GFs in the physical domain are expressed as a 1D

integral over a finite interval. In Section 4, the special cases

of both source and field points being located on the interface

in the bimaterial case and on the surface in the half-space

case are treated, where the 1D integral exhibits singularities.

The singularities are treated explicitly using a method

proposed recently by the authors [17]. In Section 5,

numerical results of AlN/InN bimaterials are reported,

demonstrating the validity and elegance of the present

formulation, as well as the effects of wave velocity on the

stress fields. Conclusions are drawn in Section 6.

2. Formulation

We consider a full space consisting of two semi-infinite

homogenous materials, as shown in Fig. 1. The materials are

linear anisotropic elastic, and the interface is perfectly

bonded. A Cartesian coordinate system ðx1; x2; x3Þ is

attached to the bimaterial structure, with the origin (0, 0,

0) located on the interface and the ðx1 2 x2Þ plane

coinciding with the interfacial plane. The material occupy-

ing x3 , 0 is called material 1, and that occupying x3 . 0 is

called material 2. When one of the materials has zero

stiffness, i.e. one of the half-spaces is empty, the bimaterial

system is reduced to a half-space. We assume a point force f

moving horizontally at a constant velocity vð¼ v1; v2; 0Þ in

the space. The location of the point force is given by

X0 þ vt; where t is the time and X0 is the initial location

when t ¼ 0:

The local constitutive law and the equation of motion of

the structure are given by

sji ¼ Cjilmul;m; ð1Þ

sji;j þ fidðx 2 X0 2 vtÞ ¼ r€ui; ð2Þ

where sji is the stress component, Cjilm is the elastic stiffness

component, r is the mass density, dðxÞ is the Dirac delta

function, the dots over u indicate partial derivatives with

respect to t; and the comma in the subscript indicates the

partial derivative with respect to the coordinate that follows.

The elastic stiffness and mass density are in general different

in the two half-spaces. The Latin indices range from 1 to 3.

Greek indices that will be used later range from 1 to 2. The

repeated subscript implies the conventional summation over

its range.

For a steady-state motion due to the point force f moving

at a constant velocity v; the displacement field u can be

written as

uiðx; tÞ ¼ uiðx 2 vtÞ: ð3Þ

Substituting Eqs. (1) and (3) into Eq. (2), the equations of

motion become

Cp
jilmul;mj ¼ 2fidðy 2 YÞ; ð4Þ

where Cp
jilm ; Cjilm 2 rvmvjdil; Y ¼ X0; and yð; x 2 vtÞ is

a new moving reference frame. The effective stiffness

matrix Cp
jilm is not as fully symmetric as the stiffness matrix

Cjilm: Otherwise, Eq. (4) resembles the equilibrium equation

in elastostatics [1].

The continuity conditions of displacement and traction at

the interface are given by

u1 ¼ u2 and t1 ¼ t2 at y3 ¼ 0; ð5Þ

where the subscripts 1 and 2 indicate the association of

a quantity to materials 1 and 2, respectively, and

tð; ðs13;s23;s33Þ
TÞ consists of the stress components out

of the interface plane, where the superscript T indicates the

transpose of the matrix.

In addition, it is required physically that as lyl
approaches infinity, the displacement u vanishes, i.e.

lim
lyl!1

uðyÞ ¼ 0: ð6Þ

This is called the radiation condition. This condition may

not be satisfied by all solutions of steady-state motion at

arbitrary velocity v that are mathematically permissible to

Eqs. (4) and (5). The present study is limited to the case

where Eq. (6) holds.
Fig. 1. A bimaterial infinite space subjected to a steadily moving point force

f at velocity v ¼ ðv1; v2; 0Þ.
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3. Bimaterial and half-space Green’s functions

3.1. General solution in Stroh formalism

Within the generalized Stroh formalism, we first apply

the following 2D Fourier transforms ðk1; k2Þ to the in-plane

variables of uiðyÞ as

~uiðk1; k2; y3Þ ¼
ðð

uiðy1; y2; y3Þe
ikayady1dy2; ð7Þ

where e stands for the exponential function, and i in the

exponent denotes the unit of imaginary number,
ffiffiffiffi
21

p
: The

integral limits are ð21;1Þ in both coordinates y1 and y2:

Thus, in the Fourier-transformed domain, the equation of

motion, Eq. (4), becomes

Cp
3ik3 ~uk;33 2 iðCp

aik3 þ Cp
3ikaÞka ~uk;3 2 Cp

aikbkakb ~uk

¼ 2fie
iYakadðY3Þ: ð8Þ

Solving the above ordinary differential equation yields a

general solution as

~uðk1; k2; y3Þ ¼ ae2iphy3 ; ð9Þ

where h is the norm of ðk1 ¼ hcos u; k2 ¼ hsin uÞ; and p

and a satisfy the eigenrelation

½Q þ pðR þ RTÞ þ p2T�a ¼ 0; ð10Þ

with

Qik ¼ Cp
aikbnanb; Rik ¼ Cp

aik3na; TIK ¼ Cp
3ik3: ð11Þ

In the above equation, n1 ¼ cos u; and n2 ¼ sin u; where

u together with h are the polar coordinates of the

transformed plane ðk1; k2Þ:

Besides vector t; we define another vector consisting

of the stress components in the horizontal plane as

s ; ðs11;s12;s22Þ
T: The combination of t and s represents

the complete stress tensor s because of its symmetry.

Utilizing the constitutive law in Eq. (1) and applying the 2D

Fourier transform in Eq. (7), these vectors are obtained in

the transformed domain as

~t ¼ 2ihb e2iphy3 ; ð12Þ

~s ¼ 2ihc e2iphy3 ; ð13Þ

where

bi ¼ ðC3ikana þ pC3ik3Þak; ð14Þ

c1 ¼ ðC11kana þ pC11k3Þak;

c2 ¼ ðC12kana þ pC12k3Þak;

c3 ¼ ðC22kana þ pC22k3Þak:

ð15Þ

Depending upon the values of the stiffness constants Cjilm

and point-force velocity v; the eigenvalues p of Eq. (10)

may be complex or real. In the following, we confine our

discussion to the case where all the eigenvalues of Eq. (10)

are complex. In this case, the eigenvalues pi and associated

eigenvectors ai; bi and ci appear in pairs of complex

conjugates. We arrange these eigenvalues and eigenvectors

in the following way:

Im pi . 0; piþ3 ¼ �pi; aiþ3 ¼ �ai; biþ3 ¼ �bi;

ciþ3 ¼ �ci ði ¼ 1; 2; 3Þ ð16Þ

A ¼ ½a1; a2; a3�; B ¼ ½b1; b2; b3�; C ¼ ½c1; c2; c3�; ð17Þ

where Im stands for the imaginary part and the over-

bar denotes the complex conjugate. Assuming that

piði ¼ 1; 2; 3Þ are distinct, the general solutions of displace-

ment and stress are obtained by superposing the six

solutions of Eqs. (9), (12) and (13), respectively, as

~u ¼ ih21 �Ake2i�phy3lq þ ih21Ake2iphy3lw; ð18Þ

~t ¼ �Bke2i�phy3 lq þ Bke2iphy3 lw; ð19Þ

~s ¼ �Cke2i�phy3 lq þ Cke2iphy3lw; ð20Þ

where qðk1; k2Þ and wðk1; k2Þ are unknown complex vectors

and

ke2iphy3l ¼ diag½e2ip1hy3 ; e2ip2hy3 ; e2ip3hy3�: ð21Þ

Note that the above matrix C is different from the fourth-

order elastic stiffness tensor Cijkl:

The above derivation is applicable to a homogeneous

domain. When applying the solutions in Eqs. (18)–(20) to

the bimaterial system (Fig. 1), two sets of unknown vectors

ðq1;w1Þ and ðq2;w2Þ result. These unknowns can be

determined by imposing the interfacial and radiation

conditions of Eqs. (5) and (6), and the continuity condition

of displacement and jump condition of stress at the location

where the moving point force f is applied. Once the solution

for the transformed domain is derived, the physical-domain

GF due to a point force f is obtained by applying the

Fourier-inverse transform, for instance, of ui; as

uiðy1; y2; y3Þ ¼
1

ð2pÞ2

ðð
~uiðk1; k2; y3Þe

2ikayadk1dk2; ð22Þ

where the integral limits in both coordinates are from 21 to

1: Alternatively, the inverse transform can be carried out in

polar coordinates,

uiðy1; y2; y3Þ ¼
1

ð2pÞ2

ðð
h~uiðk1; k2; y3Þe

2ikayadhdu; ð23Þ

where the integral limit of h is from 0 to 1; and that of u is

from 0 to 2p:

3.2. Bimaterial Green’s function

Now we write the transformed-domain GFs for bimater-

ials as

~umðk1; k2; y3Þe
2ikaYa ¼ ~uðsÞ

m ðk1; k2; y3Þ þ ih21 �Amke
2i�pmhy3 lqm

þ ih21Amke
2ipmhy3 lwm; ð24Þ
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~tmðk1; k2; y3Þe
2ikaYa ¼ ~tðsÞm ðk1; k2; y3Þ þ �Bmke

2i�pmhy3 lqm

þ Bmke
2ipmhy3lwm; ð25Þ

~smðk1; k2; y3Þe
2ikaYa ¼ ~sðsÞm ðk1; k2; y3Þ þ �Cmke

2i�pmhy3lqm

þ Cmke
2ipmhy3 lwm; ð26Þ

where the subscript m ( ¼ 1, 2) indicates the association of a

quantity to material 1 or 2, and ~uðsÞ
m ; ~tðsÞm and ~sðsÞm are special

solutions to be given. Once the unknown vectors ðqm;wmÞ

are determined, the bimaterial GFs are obtained.

To solve the problem, we take the special solutions to be

the infinite-space GFs of the material where the point force f

is located, and to be equal to zero in the other material. The

infinite-space GFs are given by

~uð1Þðk1; k2; y3Þ ¼
ih21Ake2iphðy32Y3Þlqð1Þ

; y3 , Y3

2ih21 �Ake2i�phðy32Y3Þl �qð1Þ
; y3 . Y3

(
;

ð27Þ

~tð1Þðk1; k2; y3Þ ¼
Bke2iphðy32Y3Þlqð1Þ

; y3 , Y3

2 �Bke2i�phðy32Y3Þl �qð1Þ
; y3 . Y3

(
; ð28Þ

~sð1Þðk1; k2; y3Þ ¼
Cke2iphðy32Y3Þlqð1Þ

; y3 , Y3

2 �Cke2i�phðy32Y3Þl �qð1Þ
; y3 . Y3

(
: ð29Þ

where qð1Þ ¼ A21ðM 2 �MÞ21f with M ¼ 2iBA21: Given

the explicit special solution, the unknown vectors ðqm;wmÞ

can be determined by imposing the conditions in Eqs. (5)

and (6). Since the infinite-space GFs satisfy the condition of

traction jump at the point-force location, the part of the

solution in terms of ðqm;wmÞ is continuous across the point-

force loading location. The infinite-space GFs also satisfy

the radiation condition in Eq. (6).

In the case that f is located in material 1ðY3 # 0Þ; the

bimaterial GFs in the transformed domain are obtained as,

for y3 # 0;

~u1ðk1;k2;y3Þe
2ikaYa

¼ ~uð1Þ
1 ðk1;k2;y3Þ2 ih21A1ke

2ip1hy3lF11ke
i�p1hY3l �qð1Þ

1 ; ð30Þ

~t1ðk1;k2;y3Þe
2ikaYa

¼ ~tð1Þ
1 ðk1;k2;y3Þ2B1ke

2ip1hy3 lF11ke
i�p1hY3 l �qð1Þ

1 ; ð31Þ

~s1ðk1;k2;y3Þe
2ikaYa

¼ ~sð1Þ
1 ðk1;k2;y3Þ2C1ke

2ip1hy3 lF11ke
i�p1hY3 l �qð1Þ

1 ; ð32Þ

where F11 ¼ A21
1 ð �M2 2 M1Þ

21ð �M1 2 �M2Þ �A1; and for

y3 $ 0;

~u2ðk1; k2; y3Þe
2ikaYa ¼ 2ih21 �A2ke

2i�p2hy3lF12ke
i�p1hY3l �qð1Þ

1 ;

ð33Þ

~t2ðk1; k2; y3Þe
2ikaYa ¼ 2 �B2ke

2i�p2hy3 lF12ke
i�p1hY3 l �qð1Þ

1 ; ð34Þ

~s2ðk1; k2; y3Þe
2ikaYa ¼ 2 �C2ke

2i�p2hy3 lF12ke
i�p1hY3 l �qð1Þ

1 ; ð35Þ

where

F12 ¼ �A21
2 ð �M2 2 M1Þ

21ð �M1 2 M1Þ �A1:

In the case that f is located in material 2ðY3 $ 0Þ; the

bimaterial GFs in the transformed domain are obtained, for

y3 # 0; as

~u1ðk1; k2; y3Þe
2ikaYa

¼ ih21A1ke
2ip1hy3 lF21ke

ip2hY3 lqð1Þ
2 ; ð36Þ

t~1ðk1; k2; y3Þe
2ikaYa ¼ B1 e2ip1hy3

D E
F21 eip2hY3

D E
qð1Þ

2 ; ð37Þ

~s1ðk1; k2; y3Þe
2ikaYa ¼ C1ke

2ip1hy3 lF21ke
ip2hY3 lqð1Þ

2 ; ð38Þ

where F21 ¼ A21
1 ðM1 2 �M2Þ

21ðM2 2 �M2ÞA2; and for

y3 $ 0;

~u2ðk1;k2;y3Þe
2ikaYa

¼ ~uð1Þ
2 ðk1;k2;y3Þþ ih21 �A2ke

2i�p2hy3lF22ke
ip2hY3lqð1Þ

2 ; ð39Þ

~t2ðk1;k2;y3Þe
2ikaYa

¼ ~tð1Þ
2 ðk1;k2;y3Þþ �B2ke

2i�p2hy3 lF22ke
ip2hY3 lqð1Þ

2 ; ð40Þ

~s2ðk1;k2;y3Þe
2ikaYa

¼ ~sð1Þ
2 ðk1;k2;y3Þþ �C2ke

2i�p2hy3lF22ke
ip2hY3lqð1Þ

2 ; ð41Þ

where F22 ¼ �A21
2 ðM1 2 �M2Þ

21ðM2 2 M1ÞA2:

To obtain the physical-domain GFs, we apply the

Fourier-inverse transform (23) to Eqs. (30)–(41). In the

present case, these 2D integrals are reducible to a 1D

integral over a finite interval by analytically carrying out the

integration over the radial direction h [2]. The final

expressions of the physical-domain GFs are given by

u1iðyÞ¼uð1Þ
1i ðyÞ2

1

4p2

ð2p

0

A1ikF11kl �q
ð1Þ
1l

p1ky32 �p1lY3þr cosðu2u0Þ
du;

ð42Þ

t1iðyÞ¼ tð1Þ
1i ðyÞþ

1

4p2

ð2p

0

B1ikF11kl �q
ð1Þ
1l

½p1ky32 �p1lY3þr cosðu2u0Þ�
2

du;

ð43Þ

s1iðyÞ¼ sð1Þ
1i ðyÞþ

1

4p2

ð2p

0

C1ikF11kl �q
ð1Þ
1l

½p1ky32 �p1lY3þr cosðu2u0Þ�
2

du;

ð44Þ

u2iðyÞ ¼2
1

4p2

ð2p

0

�A2ikF12kl �q
ð1Þ
1l

�p2ky3 2 �p1lY3 þ r cosðu2 u0Þ
du; ð45Þ

t2iðyÞ ¼
1

4p2

ð2p

0

�B2ikF12kl �q
ð1Þ
1l

½�p2ky3 2 �p1lY3 þ r cosðu2 u0Þ�
2

du; ð46Þ

s2iðyÞ ¼
1

4p2

ð2p

0

�C2ikF12kl �q
ð1Þ
1l

½�p2ky3 2 �p1lY3 þ r cosðu2 u0Þ�
2

du; ð47Þ
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in the case that f is located in material 1 ðY3 # 0Þ; and

u1iðyÞ ¼
1

4p2

ð2p

0

A1ikF21klq
ð1Þ
2l

p1ky3 2 p2lY3 þ r cosðu2 u0Þ
du; ð48Þ

t1iðyÞ ¼
1

4p2

ð2p

0

2B1ikF21klq
ð1Þ
2l

½p1ky3 2 p2lY3 þ r cosðu2 u0Þ�
2

du; ð49Þ

s1iðyÞ ¼
1

4p2

ð2p

0

2C1ikF21klq
ð1Þ
2l

½p1ky3 2 p2lY3 þ r cosðu2 u0Þ�
2

du; ð50Þ

u2iðyÞ ¼ uð1Þ
2i ðyÞþ

1

4p2

ð2p

0

�A2ikF22klq
ð1Þ
2l

�p2ky3 2 p2lY3 þ r cosðu2 u0Þ
du;

ð51Þ

t2iðyÞ¼ tð1Þ
2i ðyÞþ

1

4p2

ð2p

0

2 �B2ikF22klq
ð1Þ
2l

½�p2ky32p2lY3þr cosðu2u0Þ�
2

du;

ð52Þ

s2iðyÞ¼ sð1Þ
2i ðyÞþ

1

4p2

ð2p

0

2 �C2ikF22klq
ð1Þ
2l

½�p2ky32p2lY3þr cosðu2u0Þ�
2

du;

ð53Þ

in the case that f is located in material 2ðY3 $0Þ: In the

above expressions,

r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy12Y1Þ

2þðy22Y2Þ
2

q
andu0 ¼ sin21ððy22Y2Þ=rÞ:

ð54Þ

The infinite-space GFs in the physical domain are

obtained analytically by applying the Radon transform and

the residue theorem, similar to the derivation for the static

infinite-space GFs in anisotropic elastic and piezoelectric

solids [18,19]. This is summarized in Appendix A.

3.3. Half-space Green’s function

When one of the materials 1 and 2 has zero stiffness (i.e.

when one of the half-spaces is empty), the bimaterial system

is reduced to a half-space. In this case, eight different

boundary conditions with combinations of either displace-

ment or traction given in each component may be applied on

the half-space surface. The different boundary conditions,

together with the radiation condition of Eq. (6), would result

in different half-space GFs. Only the one under the traction-

free surface condition is given below. One may refer to [1,3,

20] for a detailed treatment of the half-plane and half-space

GFs under general boundary conditions in elastostatics and

static piezoelectricity.

In the case of the lower half-space ðy3 # 0Þ; the

transformed-domain GF under the traction-free surface

condition (t ¼ 0 at y3 ¼ 0) is given by

~uðk1;k2;y3Þe
2ikaYa

¼ ~uð1Þðk1;k2;y3Þþ ih21Ake2iphy3 lB21 �Bkei�phY3l �qð1Þ
; ð55Þ

~tðk1;k2;y3Þe
2ikaYa

¼ ~tð1Þðk1;k2;y3ÞþBke2iphy3lB21 �Bkei�phY3l �qð1Þ
; ð56Þ

~sðk1;k2;y3Þe
2ikaYa

¼ ~sð1Þðk1;k2;y3ÞþCke2iphy3 lB21 �Bkei�phY3 l �qð1Þ
: ð57Þ

Following the same procedure as that previously used in

the bimaterial system, the physical-domain half-space GF is

derived as

uiðyÞ ¼ uð1Þ
i ðyÞþ

1

4p2

ð2p

0

AikðB
21 �BÞkl �q

ð1Þ
l

pky3 2 �plY3 þ r cosðu2 u0Þ
du;

ð58Þ

tiðyÞ ¼ tð1Þ
i ðyÞþ

1

4p2

ð2p

0

2BikðB
21 �BÞkl �q

ð1Þ
l

½pky3 2 �plY3 þ r cosðu2 u0Þ�
2

du;

ð59Þ

siðyÞ ¼ sð1Þ
i ðyÞþ

1

4p2

ð2p

0

2CikðB
21 �BÞkl �q

ð1Þ
l

½pky3 2 �plY3 þ r cosðu2 u0Þ�
2

du:

ð60Þ

In the case of the upper half-space ðy3 $ 0Þ; the

transformed-domain GF under the traction-free surface

condition is given by

~uðk1;k2;y3Þe
2ikaYa

¼ ~uð1Þðk1;k2;y3Þ2 ih21 �Ake2i�phy3l �B21BkeiphY3 lqð1Þ
; ð61Þ

~tðk1;k2;y3Þe
2ikaYa

¼ ~tð1Þðk1;k2;y3Þ2 �Bke2i�phy3 l �B21BkeiphY3lqð1Þ
; ð62Þ

~sðk1;k2;y3Þe
2ikaYa

¼ ~sð1Þðk1;k2;y3Þ2 �Cke2i�phy3 l �B21BkeiphY3 lqð1Þ
: ð63Þ

The corresponding physical-domain GF is given by

uiðyÞ ¼ uð1Þ
i ðyÞ2

1

4p2

ð2p

0

�Aikð �B
21BÞklq

ð1Þ
l

�pky3 2plY3 þ r cosðu2u0Þ
du;

ð64Þ

tiðyÞ ¼ tð1Þ
i ðyÞþ

1

4p2

ð2p

0

�Bikð �B
21BÞklq

ð1Þ
l

½�pky3 2plY3 þ r cosðu2u0Þ�
2

du;

ð65Þ

siðyÞ ¼ sð1Þ
i ðyÞþ

1

4p2

ð2p

0

�Cikð �B
21BÞklq

ð1Þ
l

½�pky3 2plY3 þ r cosðu2u0Þ�
2

du:

ð66Þ
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4. Interfacial and surface Green’s functions

4.1. Interfacial Green’s function

When the source point (i.e. the point force f) is located on

the interface, the GF is called the interfacial GF [1]. If only

the source point is located on the interface (but the field

point is not!), the expressions of the physical-domain

steady-state bimaterial GFs derived above are nonsingular.

Thus, they are suitable for a regular numerical evaluation.

However, if both the source and field points are located on

the interface, these expressions become singular. Then, a

special treatment is necessary to evaluate these GFs. For

brevity, we examine only the case where the source point is

on the interface side of material 1. A detailed discussion for

the 3D interfacial GF of elastostatics can be found in

Ref. [17].

The singular interfacial GFs in the transformed domain

are obtained by setting Y3 ¼ y3 ¼ 0 in Eqs. (30)–(35) and

rearranging:

~u1ðk1; k2; y3Þe
2ikaYa ¼ ~u2ðk1; k2; y3Þe

2ikaYa

¼ ih21ðM1 2 �M2Þ
21f; ð67Þ

~t1ðk1; k2; y3Þe
2ikaYa ¼ M1ðM1 2 �M2Þ

21f; ð68Þ

~s1ðk1; k2; y3Þe
2ikaYa ¼ N1ðM1 2 �M2Þ

21f; ð69Þ

~t2ðk1; k2; y3Þe
2ikaYa ¼ �M2ðM1 2 �M2Þ

21f; ð70Þ

~s2ðk1; k2; y3Þe
2ikaYa ¼ �N2ðM1 2 �M2Þ

21f: ð71Þ

It is noted that the transformed-domain displacement

fields on the two sides of the interface are equal. Meanwhile,

the transformed-domain traction, ~t; exhibits a jump in the

magnitude of f across the interface. This jump corresponds

to the point force applied on the interface. The physical-

domain counterpart, t; correspondingly exhibits a jump of

fdðy 2 YÞ at the location of the point force. Furthermore,

the transformed-domain in-plane stress, s; is in general

different across the interface due to the materials mismatch.

The physical-domain interfacial GFs are derived as

u1iðyÞ ¼ u2iðyÞ ¼
1

4p2r

þ
2p

½ðM1 2 �M2Þ
21f�i

cosðu2 u0Þ
du

8><
>:

þ ip½ðM1 2 �M2Þ
21f�ilu¼u0^p=2

9>=
>;; ð72Þ

t1iðyÞ ¼
1

4p2r2

þ
2p

2½M1ðM1 2 �M2Þ
21f�i

cos2ðu2 u0Þ
du

8><
>:

^ip
›½M1ðM1 2 �M2Þ

21f�i
›u

u¼u0^p=2

�������
9>=
>;; ð73Þ

s1iðyÞ ¼
1

4p2r2

þ
2p

2½N1ðM1 2 �M2Þ
21f�i

cos2ðu2 u0Þ
du

8><
>:

^ip
›½N1ðM1 2 �M2Þ

21f�i
›u

u¼u0^p=2

�������
9>=
>;; ð74Þ

t2iðyÞ ¼
1

4p2r2

þ
2p

2½ �M2ðM1 2 �M2Þ
21f�i

cos2ðu2 u0Þ
du

8><
>:

^ip
›½ �M2ðM1 2 �M2Þ

21f�i
›u

u¼u0^p=2

�������
9>=
>;; ð75Þ

s2iðyÞ ¼
1

4p2r2

þ
2p

2½ �N2ðM1 2 �M2Þ
21f�i

cos2ðu2 u0Þ
du

8><
>:

^ip
›½ �N2ðM1 2 �M2Þ

21f�i
›u

u¼u0^p=2

�������
9>=
>;: ð76Þ

The integrals are all taken in the sense of principle values. In

the derivation of these expressions, the following formulas

[2,21] are applied,ð1

0
ie2ishdh ¼

1

s
þ ipdðsÞ; ð77Þ

ð1

0
he2ishdh ¼ 2

1

s2
þ ip

›dðsÞ

›s
; ð78Þ

dðr cosðu2 u0ÞÞ ¼
dðu2 u0 ^ p=2Þ

rlsinðu2 u0Þl
: ð79Þ

4.2. Surface Green’s function

Similarly, the surface GF where both Y3 ¼ y3 ¼ 0 is

derived as follows:

~uðk1; k2; y3Þe
2ikaYa ¼ ih21AB21f; ð80Þ

~sðk1; k2; y3Þe
2ikaYa ¼ CB21f: ð81Þ
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uðyÞ ¼
1

4p2r

þ
2p

AB21f

cosðu2 u0Þ
duþ ip

8><
>: ½AB21f� u¼u0^p=2

�������
9>=
>;;
ð82Þ

sðyÞ ¼
1

4p2r2

þ
2p

2CB21f

cos2ðu2u0Þ
du^ ip

8><
>:

›½CB21f�

›u
u¼u0^p=2

�������
9>=
>;;

ð83Þ

for the lower-half-space case ðy3 # 0Þ; and

~uðk1; k2; y3Þe
2ikaYa ¼ 2ih21 �A �B21f; ð84Þ

~sðk1; k2; y3Þe
2ikaYa ¼ 2 �C �B21f: ð85Þ

uðyÞ ¼ 2
1

4p2r

þ
2p

�A �B21f

cosðu2 u0Þ
duþ ip

8><
>: ½ �A �B21f� u¼u0^p=2

�������
9>=
>;;

ð86Þ

sðyÞ¼
1

4p2r2

þ
2p

�C �B21f

cos2ðu2u0Þ
du^ ip

8><
>:

›½2 �C �B21f�

›u
u¼u0^p=2

�������
9>=
>;;

ð87Þ

for the upper-half-space case ðy3 $ 0Þ: The traction, t; is

equal to zero except at the location of the point force, as

imposed as the boundary condition to the half-spaces.

5. Numerical examples

In this section, we apply the previous formulation to

examine the 3D steady-state fields in AlN/InN bimaterials

subjected to a steadily moving point force. Both materials

are transversely isotropic. By AlN/InN bimaterials, we

mean that the lower half-space is occupied by AlN, and the

upper half-space by InN. We further mention that both

materials have a strong piezoelectric coupling [22]. In this

paper, however, only their elastic response is considered.

The material constants in the reduced notation (i.e. Ci0j0 2

Cijkl with i0 2 ij and j0 2 kl : 1–11; 2–22; 3–33; 4–23;

5–31; 6–12) are given by C11 ¼ 410 GPa, C12 ¼ 149 GPa,

C13 ¼ 99 GPa, C33 ¼ 389 GPa, C44 ¼ 125 GPa for AlN

[23], and C11 ¼ 190 GPa, C12 ¼ 104 GPa, C13 ¼ 121 GPa,

C33 ¼ 182 GPa, C44 ¼ 10 GPa for InN [24]. The mass

density is 3.23 kg/m3 for AlN, and 6.81 kg/m3 for InN, from

the same references as above. The isotropy-symmetry axis

of the materials is taken to be along the y3-axis. Therefore,

an in-plane rotation of the horizontally moving point force

vector would not change the characteristics in the response

field.

Let us assume that a point force is applied at a depth

of 10 mm below the interface and moves steadily along the

x1-direction in the AlN half-space. The magnitude of the

point force is 1 N, and the force can be along either axis.

The origin of the moving Cartesian reference frame is

placed right above the moving point force. The steady-state

fields along the interface over the point force are calculated

for three different magnitudes of the point-force velocity,

i.e. lvl ¼ 0; 500, and 1000 m/s. At a speed of slightly more

than 1210 m/s, two of the six eigenvalues of Eq. (10)

become real and the first transonic wave propagation is

reached [1].

Figs. 2–10 show the contours of the stress component

s33 and hydrostatic stress skkð¼ s11 þ s22 þ s33Þ due to the

point force applied along the x12; x22; and x32 axes,

respectively. The unit of the stress quantities is Pa. We

remark that the stress component s33 does not change across

the interface because of the continuity condition of traction

imposed in the bimaterial GF; however, due to the materials

mismatch, the hydrostatic stress skk jumps across the

interface. The hydrostatic stress on the AlN side of the

interface is indicated by s2
kk and that on the InN side by sþ

kk:

From these figures, we have observed the following

features:

1. For the static case of lvl ¼ 0; a comparison of Figs. 2 and

5 shows that a switch of the direction of the point force

between the in-plane axes causes no change in the

response fields after a corresponding in-plane rotation of

908. Furthermore, in Fig. 8, when the point force is

applied along the x3-axis, the contours of the responses

are circular. These features indicate that the elastostatic

fields are invariant with an in-plane rotation of the point-

force direction. This invariance is due to the fact that the

isotropy-symmetry axis of the materials is along the

y3-axis. However, when lvl . 0; this rotational sym-

metry breaks down—the point-force-induced fields are

altered by the inertial effect.

2. The break-down of the rotational symmetry in the

steady-state responses is observed by comparing

Figs. 3 and 6 for velocity at lvl ¼ 500 m/s, and Figs. 4

and 7 at lvl ¼ 1000 m/s. When the point-force is along

the x3-axis, the circular contours are distorted for the

velocity at lvl ¼ 500 m/s (Fig. 9) and further at

lvl ¼ 1000 m/s (Fig. 10).

3. The materials mismatch between AlN and InN causes

large difference in the hydrostatic stress, s2
kk and sþ

kk:

When the point force is applied along the in-plane axes,

the hydrostatic stress has two pairs of hill–valley

variation in AlN but only one pair of hill–valley

variation in InN (see, e.g. Figs. 2–4). The magnitudes

are very different, respectively at about 500 and 150 Pa

(Figs. 2–4). When the point force is directed along the

x3-axis, the hydrostatic stresses differ by over one order

of magnitude, and have opposite signs (Fig. 8). The stress

does not change much with increasing point-force speed

in AlN, but changes significantly in InN. The peak value

of sþ
kk in InN, which is at the origin (0,0,0), is equal to

63.2 Pa at lvl ¼ 0; 63.3 Pa at lvl ¼ 500 m/s, and 276 Pa

at lvl ¼ 1000 m/s (Figs. 8c, 9c, 10c). Furthermore,
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Fig. 2. Stress distributions on the interface due to a point force along the x1-direction with velocity lvl ¼ 0 : (a) s33; (b) s2
kk; (c) sþ

kk (Pa).

Fig. 3. Stress distributions on the interface due to a point force along the x1-direction with velocity lvl ¼ 500S m/s: (a) s33; (b) s2
kk; (c) sþ

kk (Pa).
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Fig. 4. Stress distributions on the interface due to a point force along the x1-direction with velocity lvl ¼ 1000 m/s: (a) s33; (b) s2
kk; (c) sþ

kk (Pa).

Fig. 5. Stress distributions on the interface due to a point force along the x2-direction with velocity lvl ¼ 0 : (a) s33; (b) s2
kk; (c) sþ

kk (Pa).
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Fig. 6. Stress distributions on the interface due to a point force along the x2-direction with velocity lvl ¼ 500 m/s: (a) s33; (b) s2
kk; (c) sþ

kk (Pa).

Fig. 7. Stress distributions on the interface due to a point force along the x2-direction with velocity lvl ¼ 1000 m/s: (a) s33; (b) s2
kk; (c) sþ

kk (Pa).
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Fig. 8. Stress distributions on the interface due to a point force along the x3-direction with velocity lvl ¼ 0 : (a) s33; (b) s2
kk; (c) sþ

kk (Pa).

Fig. 9. Stress distributions on the interface due to a point force along the x3-direction with velocity lvl ¼ 500 m/s: (a) s33; (b) s2
kk; (c) sþ

kk (Pa).
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at nonzero lvl; two satellite minima are formed for sþ
kk

beside the central peak in the contour plots.

6. Conclusions

We have presented the 3D GFs of a steadily moving

point source in linear anisotropic elastic half-spaces and

bimaterials. The GFs are obtained within the framework of

generalized Stroh formalism and the 2D Fourier transforms

for the subsonic case.

Numerical examples of the AlN/InN bimaterial subjected

to a steadily moving point force are carried out to

demonstrate the significant effects of wave velocity on the

stress fields. We observed that, in general, when the wave

velocity lvl . 0; the features in the contour plots of, for

example, the stress component s33 and hydrostatic stress

skk; can be distorted significantly. Furthermore, the

magnitude of the stress field increases with increasing

wave velocity lvl: For example, the peak value of the

hydrostatic stress in InN may increase by a factor between 4

and 5 when the wave velocity lvl increases from 500 to

1000 m/s.

While the supersonic case will be investigated in the

future, the numerical results for the subsonic case clearly

show the remarkable difference in the stress fields due to the

static and steady-state point sources. In the other words, the

stress field in the static case should, in general, not be applied

to the steady-state case. This could particularly be useful for

the stress analysis in structures under steady-state loading,

such as highways under cars and railways under trains.

Furthermore, the present GF solutions can be incorporated

into a steady-state boundary integral equation to analyze

more complicated practical problems.
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Appendix A

In this Appendix A, we derive the explicit steady-state

Green’s displacements in an anisotropic elastic full-space.

The same frames are established as in the text. The Green’s

displacements, Gkp; are the fundamental solutions of Eq. (4)

caused by a unit point force. This Green’s tensor is defined

by the partial differential equations

Cp
ijklGkp;liðyÞ ¼ 2djpdðyÞ; ðA1Þ

where djp is the Kronecker delta, the first index, k; of the

Green’s tensor denotes the displacement component, and

the second, p; denotes the direction of the point force.

Fig. 10. Stress distributions on the interface due to a point force along the x3-direction with velocity lvl ¼ 1000 m/s: (a) s33; (b) s2
kk; (c) sþ

kk (Pa).
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To derive the Green’s tensor, we resort to the following

plane representation of the Dirac delta function [18,19]:

dðyÞ ¼ 2
1

8p2
D
ð
V

dðn·yÞ

lnl2
dVðnÞ; ðA2Þ

where n is a vector variable with components (n1; n2; n3),

and VðnÞ is a closed surface enclosing the origin. The

integral is taken over all planes defined by n £ y ¼ 0: The

dot ‘·’ denotes the inner product, and D is the 3D Laplacian

operator.

We now introduce a 3 £ 3 matrix

GjkðnÞ ¼ Cp
ijkqninq; ðA3Þ

and denote its inverse by G21
jk ðnÞ: Integrating G21

jk ðnÞdðn·yÞ
with respect to n; taking its second derivatives with respect

to yi; and multiplying the result by the extended stiffness

matrix Cp
ijkl; we then arrive at the following important

identity:

Cp
ijkq

›2

›yi›yq

ð
V
G21

jk ðnÞdðn·yÞdVðnÞ

¼ djpD
ð
V

dðn·yÞ

lnl2
dVðnÞ: ðA4Þ

Making use of the plane representation (A2), this

equation can be rewritten as

Cp
ijkq

›2

›yi›yq

ð
V
G21

jk ðnÞdðn·yÞdVðnÞ ¼ 28p2djpdðyÞ: ðA5Þ

Comparing Eq. (A5) to (A1), we finally obtain the

following integral expression for the Green’s displacement

tensor

GjkðyÞ ¼
1

8p2

ð
V
G21

jk ðnÞdðn·yÞdVðnÞ; ðA6Þ

or,

GjkðyÞ ¼
1

8p2

ð
V

AjkðnÞ

DðnÞ
dðn·yÞdVðnÞ; ðA7Þ

where AjkðnÞ and DðnÞ are, respectively, the adjoint matrix

and determinant of GjkðnÞ:

The integral expression (A7) for the Green’s tensor can

actually be transformed to a 1D infinite integral and the

result can then be reduced to a summation of three residues.

This is achieved by expressing the vector variable n in terms

of a new, orthogonal, and normalized system ðO; e;p; qÞ;
instead of the space-fixed Cartesian coordinates

ðO; y1; y2; y3Þ: The new base ðe;p; qÞ are chosen as the

following

e ¼ y=r; r ¼ lyl: ðA8Þ

Now let v be an arbitrary unit vector different from

eðv – eÞ; the two unit vectors orthogonal to e can then be

selected as

p ¼
e £ v

le £ vl
; q ¼ e £ p: ðA9Þ

It should be emphasized that e £ v should be normalized

so that p is a unit vector.

In the new reference system ðO; e; p;qÞ; we let the vector

variable n be expressed as

n ¼ jp þ zq þ he: ðA10Þ

It is clear then that

n·x ¼ p·yjþ q·yzþ e·yh ¼ rh: ðA11Þ

Therefore, in terms of the reference system ðO; e;p;qÞ;

Eq. (A7) becomes

GjkðyÞ ¼
1

8p2

ð
V

Ajkðjp þ zq þ heÞ

Dðjp þ zq þ heÞ
dðrhÞdVðj; z;hÞ;

ðA12Þ

where V is again a closed surface enclosing the origin

ðj; z;hÞ ¼ ð0; 0; 0Þ: Carrying out the integration with respect

to h yields

GjkðyÞ ¼
1

4p2r

ð1

21

Ajkðp þ zqÞ

Dðp þ zqÞ
dz: ðA13Þ

We now look at the matrix Gjkðp þ zqÞ and its

determinant Dðp þ zqÞ: It turns out that the matrix Gjk can

actually be expressed by the Stroh formalism. That is,

Gðp þ zqÞ ; Q þ zðR þ RTÞ þ z2T; ðA14Þ

where

Qik ¼ Cp
jikspjqs; Rik ¼ Cp

jikspjqs; Tik ¼ Cp
jiksqjqs: ðA15Þ

The determinant Dðp þ zqÞ is a sixth-order polynomial

equation of z and has six roots. For the velocity constraint

assumed in this paper, three of them are the conjugate of

the remainder. These roots can be found either by expanding

the determinant Dðp þ zqÞ into the polynomial, or by

finding the six eigenvalues of the following linear eigen

equation [1]:

N1 N2

N3 NT
1

" #
a

b

" #
¼ z

a

b

" #
; ðA16Þ

where

N1 ¼ 2T21RT
; N2 ¼ T21

; N3 ¼ RT21RT 2 Q; ðA17Þ

and the eigenvectors a and b are the coefficients of the

extended displacement and traction vectors.

Assume that Imzm . 0;m ¼ 1; 2, 3 and zm* is the

conjugate of zm; the extended Green’s displacement can
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finally be expressed explicitly as

GjkðyÞ ¼ 2
Im

2pr

X3

m¼1

Ajkðp þ zmqÞ

a11ðzm 2 zpmÞ
Y3

k¼1
k–m

ðzm 2 zkÞðzm 2 zpkÞ

ðA18Þ

where a11 ¼ detðTÞ is the coefficient of z6:

This is the explicit expression for the steady-state

Green’s displacement tensor in an anisotropic and elastic

infinite space. The Green’s strains and stresses can be

found from the Green’s displacements numerically as in

Refs. [18,19].
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