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Multiscale Green’s-function method for modeling point defects and extended defects in anisotropic
solids: Application to a vacancy and free surface in copper
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The elastic response of a vacancy in a semi-infinite fcc copper lattice containing a free surface is calculated
by using a new multiscale Green’s function method. The method treats the lattice distortion near the vacancy
at the atomistic level and the free surface at the macroscopic continuum level in the same formalism. The
lattice is modeled using the lattice statics Green’s function that fully accounts for the discrete atomistic
structure of the lattice and can model a large crystallite containing a million atoms without excessive CPU
effort. The method is especially useful for modeling the elastic response of nanocrystals containing point
defects in which surfaces and interfaces play important roles. The method bridges the length scales seamlessly
by relating the microscopic lattice distortion near a point defect to measurable macroscopic parameters of the
solid such as the strain and the displacement field at a free surface. Using the interatomic potential derived by
Cleri and Rosato, the lattice distortion, relaxation energy, and relaxation volume due to a vacancy are calcu-
lated in an otherwise perfect copper lattice for a million-atom model containing a(f@@ surface. The
calculated value of the relaxation volume is in excellent agreement with the observed value. Numerical results
are also presented for the strain and the displacement fields at the free surface due to a vacancy and the
interaction energy between a vacancy and the free surface in anisotropic semi-infinite copper.
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[. INTRODUCTION point defect in a semi-infinite solid containing a free surface
can be calculated by using the continuum model Green’s
We describe a multiscale Green’s functigMSGP  function™? for a half-space solid. The continuum model has
method to model a vacancy in a semi-infinite fcc copperbeen quite successful in modeling extended defects such as
lattice containing a free surface at two length scales: Atomiree surfaces and interfacésiowever, it is well known that
istic and continuum. At the continuum scale, we calculate thdéhe continuum model is not a suitable representatibof
strain and the displacement fields at the free surface due totAe response of a solid near a point defect. It is necessary to
vacancy in the bulk and the elastic interaction energy pe@ccount for the discrete structure of the lattice at least near

tween the vacancy and the free surface. At the atomistiffhe point defect and also include the effect of the free sur-

scale, we calculate the lattice distortion, the relaxation en'aC€: . . . :
ergy and the relaxation volume due to the vacancy. These There are two techniques available in the literature for

length scales are linked seamlessly in the MSGF method?!"® atpmlstlc ca!culatn_mg pf the _prgpert|es O_f avacancy or
any point defect in an infinite lattice: One using the lattice

The method fully accounts for the discrete structure of thestatics Green's functiond SGP®” and the other using mo-

Iattjce at the atomistic scale and the elastic anisotropy of th%cular dynamicgMD)822 (for review and other references,
solid at the cqntmugm scale. . . L _see Refs. 8 and 13In both the techniques an infinite solid is

A vacancy is an important point defect in a solid since it onresented by a finite crystallite with periodic boundary
affects the mechanical as well as electrical properties of thgygitions. So far there have been no LSGF or MD calcula-
solid. Since the strain and the displacement fields at the sufigns on a point defect in a semi-infinite solid, which account
face can be measured, these quantities can be useful for chggr a free surface in the solid as well as the discrete atomistic
acterizing a vacancy and observing its physical effects on gtructure of the lattice near the point defect. These techniques
solid. The elastic interaction energy gives the concentratiomave to be extended to multiscale systems that include ex-
of vacancies near the free surface, which is important fotended defects such as free surfaces along with point defects.
modeling diffusion and other related processes that are im- The LSGF method has the advantage that it can model a
portant for technological applications such as the stabilitjarge crystallite without excessive CPU requirements. For
and reliability of copper interconnects in devices. example, even a million-atom model requires only a few

The strain or the displacement fields are usually measureseconds of CPU time to calculate the LSGF on a standard 3
at or near a free surface. It is, therefore, important to modeGHz desktop. A disadvantage of the LSGF method is that it
a vacancy and at least one free surface in the same formatoes not account for nonlinear effects. In case of a single
ism. The effect of other surfaces in the solid can be neglectedacancy, the harmonic approximation is vAfiland hence
if the vacancy is close to the surface where the measurementse LSGF method is applicable. On the other hand, the MD
are made and other surfaces are far enough. The free surfagecounts for nonlinear response but is usually limited to
also affects the displacement field due to the vacancy, whicemall crystallites containing a few hundred atoms. Large
is responsible for the elastic interaction between the surfacerystallites can be modeled using MD only by using special
and the vacancy. Strain field due to a vacancy or any othetechniques and massive CPU effdrt.
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In the MD model, the calculation of the energy of a va- force® The Kanzaki forces contain all the discrete-lattice ef-
cancy converges within a few hundred atoms beyond whicliects and, for a point defect, are localized near the defect.
the energy is not sensitive to the size of the crystallite. So th&his relation is exact within the standard assumptions of the
MD model of a small crystallite containing a few hundred Born von Karman model. We then use the asymptotic rela-
atoms is adequate for calculation of the formation energy ofionship between the perfect LSGF and the CGF to model
a vacancy. However, a small crystallite can not be used fothe extended defects while retaining the atomistic effects ex-
calculations of strains which are defined by long range disactly in the effective-force term.
placement fields. Atomic displacements beyond the range of First we calculate the lattice distortion due to a vacancy in
the direct interaction from the vacancy contribute little to thean infinite solid using the LSGF for a million atom model
formation energy of the vacantput are important for cal- crystallite. These calculations give the Kanzaki forces, relax-
culations of strain and surface effects. For calculation of thetion energy, and the relaxation volume of the vacancy in an
strain, therefore, it is necessary to use a very large crystallitefinite solid. For calculation of the LSGF, we use the many-
which makes the MD model computationally inefficient. In body interatomic potential extending up to 5th neighbors ob-
contrast, the LSGF method is computationally very efficienttained by Cleri and Rosatbby using a tight binding model.
for modeling large crystallites. We, therefore, adopt theThis potential correctly reproduc€she measured values of
LSGF method for multiscale modeling. many physical parameters of a perfect Cu lattice such as the

In this paper we describe a new multiscale Green’s funcelastic constants, phonon frequencies, etc. This potential has
tion (MSGP method for modeling a point defect and a free recently been used by Sandberg and Grintvatl calculate
surface in a semi-infinite solid. The MSGF method is anthe anharmonic contribution to the formation enthalpy of a
extension of the LSGF method. It fully accounts for the dis-vacancy in copper at high temperatures. As given in Sec. Il
crete atomistic structure of the solid near the point defect andsing this potential, our calculated value of the relaxation
uses the continuum model to include the effect of the freevolume of a vacancy in Cu lattice agrees very well with the
surface. The model is truly multiscale because it seamlesslgxperimental valué® Of course this agreement in itself is not
links the response of the solid at the atomistic level to itsan indication that our method is working but it lends cre-
response at the macro level. The method can be applied wence to our physical model.
any point defect and any extended defect in a general aniso- The million-atom crystallite of the LSGF forms the core
tropic solid. of the MSGF model. The core is treated atomistically. We

The MSGF method bridges the length scales from thehen use the CGF for a semi-infinite anisotropic solid to cal-
atomistic (subnang to the continuum(macrg and thus di- culate the change in the Kanzaki forces due to a {9
rectly relates the physical processes at the atomistic level teurface in fcc Cu. The final values of the Kanzaki forces
measurable macroscopic parameters. In order to see the irfully and exactly account for the discrete atomistic structure
portance of a multiscale formulation, consider, for examplepf the lattice near the vacancy and the effect of the free
the lattice distortion caused by a point defect in a solid. Thesurface in the continuum limit. We use these values of the
lattice distortion is defined as the atomic displacements aanzaki forces to calculate the strain and displacement fields
discrete lattice sites. Experimentally one measures the straat the free surface due to the vacancy and also the interaction
near a free surface. Strain is a macroscopic quantity. It is anergy between the vacancy and the free surface.
parameter of the continuum model defined in terms of de- Calculations on a vacancy in an infinite Cu lattice have
rivatives of the continuous displacement field. It is, thereforepeen carried out earlier by many authg¢sse, for example,
not strictly defined in the lattice theory that gives the atomicRefs. 4—6, 1Yusing a pair interatomic potential. However, it
displacements at discrete lattice sites, which is a discretis well known that a pair interatomic potential is unrealistic
variable. In order to interpret the experimental results, ondor a metal like Cu. Hence these calculations need to be
needs a model to relate the discrete distortion near the poimevised. Several authotfor references, see Refs. 8 and) 10
defect to measurable strains at or near the surface. Althoudtave used computer simulation methods and more realistic
elegant averaging techniqgdésave been developed for this potentials to calculate the formation energy of a vacancy in
purpose in infinite solids, the averaging process is not uniquan infinite Cu lattice for a small model crystallite consisting
and requires careful attention to various conservation lawsf a few hundred atoms. Cleri and Ros&thave used their
In contrast, the MSGF method directly relates the lattice dispotential to calculate the formation energy and the formation
tortion to the measurable continuum parameters while it fullyvolume of a vacancy in infinite Cu using MD for a small
accounts for the discrete nature of the solid near the defeatrystallite containing 256 atoms.
and includes the effect of the free surface on the lattice dis- Our calculated value of the formation energy of the va-
tortion. cancy in an infinite Cu lattice agrees with the value obtained

The MSGF is based upon the f&éthat the LSGF for a by Cleri and Rosatd? However, they did not report the val-
perfect lattice reduces asymptotically to the continuumues of lattice distortion, relaxation energy and relaxation vol-
Green’s function(CGF. However, when a lattice has de- ume of the vacancy, which are important parameters. In ad-
fects, its response is given by the defect LSGF, which is alition, none of the published papers report calculations on
solution of the Dyson equation. We show in the next sectiorstrain and the displacement fields due to a point defect in a
that the defect LSGF does not reduce to the CGF. In theolid containing a free surface. Hence, there is a clear need
MSGF method, we write the response of the defect lattice akor a multiscale model that can be used to calculate all these
a product of the perfect LSGF and an effective Kanzakiparameters.
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Section Il defines the LSGF and gives the formulation ofx 3N matrices where\ is the total number of lattice sites in
the MSGF method. We give only the definition of the LSGF the Born—von Karman supercell. The Green’s function is for-
and refer the reader for the details of the LSGF method tqnaly given by
our earlier paper$! Section Ill gives numerical results for a
vacancy and free surface in a semi-infinite fcc Cu. Section G*=[®*] L. 4

IV gives a discussion of the MSGF and summarizes the Malkor a perfect lattice in equilibrium without defect(l) is 0

conclusions of the paper. Appendix A gives the CGF for an ' .
anisotropic semi-infinite Cu for the Mindlin probléfT? for all I, and the force constant and the Green's-function

without derivation. Appendix B gives analytical expressionsmatrlces have translational symmetry. We denote these ma-

for force constants, change in force constants, and forces d&gces by® andG, respectively. When a defect is introduced

to the vacancy and also the numerical values for near neichUo:\hs?a{ﬁ?ﬁitFri(:() fﬁ;r?n;ess’slg general, nonzero and the force
bor force constants and Green’s functions for perfect fcc Cu: ges.

A preliminary report of this work assuming elastic isotropy P*=d—AD, (5)
and a crude model of force constants was presented at the ) .
Spring Meeting of the Materials Research Socfétpppli- ~ Where Ad denotes the change in the force-constant matrix
cation of this technique to nanostructures such as quantufi- From Egs.(4) and (5), we obtain the following Dyson
dots in semiconductors will be published elsewhere. equation:

G*=G+GADPG*, (6)

Il. THEORY
where
We consider a monatomic Bravais lattice with a point .

defect at a lattice site. We assume a Cartesian frame of ref- G=[®] 7, 7

erence with the axes parallel to the crystallographic axes and e perfect lattice Green’s function. In the same represen-

the origin at a lattice site. We denote the lattice sites bytaiion we can write Eq3) as follows in the matrix notation:
vector indicesl, I’, etc., and the Cartesian coordinates by

indicesi, j, k, etc. The lattice sites in the defect space will be u=G*F. (8)
denoted by, L', etc. that will be within the vector space of
[, 1", etc. A vector index such dshas 3 components denoted
byl,, |5, andl;. The three-dimension&BD) force constant u=GF*, 9)
matrix between atoms atndl’ is denoted byp* (I,I"). The
force on atom and its displacement from equilibrium posi- Where
tion will be denoted, respectively, (1) andu(l), which are
3D column matrices. The displacement veai@n for atom F*=F+Adu. (10)
at lattice sitd gives the relaxation of the lattice or the lattice Equation (8) is used to calculate lattice distortion in the
distortion caused by the defect. LSGF method. Its detailed derivation has been given in Ref.
By definition 6. Equation(9), the alternative form of Eq(8), gives the
displacement in terms of the perfect-lattice Green’s function
[D*(1,1")]j; =(92W/aui(l)§uj(l’) (1) and an effective force denoted By, the so called Kanzaki
force® From Eq.(10), we can identify it as the force due to
and the defect on relaxed lattice sites, in contrasFtahat de-
notes the force at the original lattice site due to the defect.
[F(D]i=—aWlaui(l), (20 Equation(9) is applicable to any point defect such as a va-
cancy, an interstitial, or a substitutional impurity.
whereW is the potential energy of the crystal and the deriva- g the perfect latticeG(l,1") has translation symmetry
tives iq Egs.(1) and(2) are e\_/aluated at zero displacement.and' therefore, can be labeled by a single intié% It is
Following the method given in Refs. 6 and 7, we obtain  ¢g|culated by using the discrete Fourier representaffon

Using Eq.(6), we rewrite Eq.(8) as

u(h=2 G*(LINF(I"), ) G(|)=(1/N)% G(ag)exd «q.r(h)], 11)
T

whereG* is the defect lattice-statics Green’s function. TheWhere«=y—1,r(l) is the radius vector for the lattice siteN

lattice-statics Green’s function is the zero-frequency limit ofiS the total number of atoms

the phonon Green’s function that has been extensively dis- _ -1

cussed in Ref. 22. Since our interest in this paper is only in Gla=[e@] (12
the static response of the lattice, we will omit the qualifier®(q) is the Fourier transform of the force constant matrix,
“statics” for Green'’s function for brevity. The sum in EG3) andq is a vector in the reciprocal space of the lattice. For
is over all lattice sites and Cartesian coordinates, which havbrevity of notation, we shall use the same symbol for a func-
not been shown explicitly for notational brevity. tion and its discrete Fourier transform, the distinguishing fea-
In the representation of lattice site§* and ®* are N  ture being the argument of the function. Sir@ey) andd(q)
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are 3x 3 matrices, Eqs(11) and(12) can be used to calcu-
late the perfect-lattice Green’s functi@il,l").

The sum in Eq(12) is over discrete values af in the first
Brillouin zone of the lattice. The symmetry of the lattice can

PHYSICAL REVIEW B 69, 094109 (2004

The subscript on G in Eq. (16) denotes the Green’s func-
tion in the continuum model. In E@17), A is the Christoffel
matrix, which is defined in terms df, the elastic constant
tensor, as follows:

be exploited to reduce the number of terms in the sum. For

example, for cubic solids, it is necessary to carry out the sum

over only 1/48th of the first Brillouin zone. For a million-
atom model N=10°) the calculation ofG(l) takes only a
few seconds on an ordinary 3 GHz desktop computer. Even
billion-atom model N = 10°) would take only about an hour
of CPU time.

The solution of the Dyson’s equati¢&qg. (6)] is obtained

Ajj(d) = Cix;ji kq - (18)

Summation over repeated Cartesian indices is implied.

The asymptotic relation given by E@L6) is valid only for
fhe perfect Green’s functio6. It is generally not valid for
the defect Green’s functio6* defined by Eq(4) unless the
term containingA® in Eq. (6) is negligible. In most cases of
practical interest it is not negligible. For example, in the case

by partitioning the matrices in the defect space and is degs 4 vacancyA® = ®d. Moreover, if the effect oA is neg-

scribed in Appendix B. After calculating for all atoms in
the defect space using E@42), we calculate Kanzaki force
in the defect space by using E@®43). The matrixA® and
the vectord=* andF are 0 outside the defect space but mot

ligible, then the information about the defect is lost. Calcu-
lations in this region are, therefore, not of interest for study-
ing the properties of the defect.

In the earlier literaturéfor references, see Ref) & has

The displacement of all other atoms in the solid is then giverheen often assumed that the term in Eq.(6) is of higher

in terms of the perfect-lattice Green'’s function by use of Eq,

(9). The Kanzaki force contains the full contribution of the
discrete lattice structure in the defect space.

The LSGF expressiofidor relaxation energy associated
with the lattice distortion and the relaxation volume are
given below:

1
\%e{ﬁ@ﬂumu (13
and
AV, =Tr D/(cll+2cl2), (14
whereD is the dipole tensor defined by
Dijzg f(L).rj(L). (15)

The summation in Eqg13) and(15) are over all atoms in
the defect space. The relaxation energy is a part of the fo

mation energy of the defect. Similarly, the relaxation volume'”

is only a part of the formation volume of the defect.
The perfect-lattice Green’s function vafiess 1f(l) for

large 1 and reduces asymptotically to the continuum Green’
G

function. To establish the correspondence between the LS
and CGF, we make(l) and g continuous variables and re-
place the summation in E@l1) by integration over the re-
ciprocal space. In conformity with the continuum model no-
tation, we replace(l) by x for largel, which will denote the
position vector corresponding to the lattice git€hus, in the
limit x— o0

1 3
G(X)EGC(X)=(Z) f Gc(g)exp(eq.x)dg,  (16)
where, keeping terms up @ in ¢(q),
G(@)=LimG(q)=Lim[®(q)] '=[A(q)]"*. (17

q—0 a—0

order than theG term and will be negligible for largel
—1’| even for largeA®. This is not exactly right even though
G varies as ¥/(I—1") for large|I—1"|. To see this, consider
the response dtfor a force atl’ where|l—1’| is large. The
first term on the right of Eq(6) is G(I,I"), which varies
as 1f(I-1") for large |I-1"| and reduces t&.. The next
term in the expansion of the right of Eq6) is
G(LIMADU"1I"G(I",1"). If the defect space is localized,
such as in the case of a point defect, thel,I"” are all close
to each other anf” —1'| is not large. Thus the second term
on the right of Eq(6) is of the same order in distance as the
first term and will not be negligible unlegsd is negligible.
The second term will be of a higher order in distance only if
both!l" andl are far away from the defect space. This case is
not of much interest for modeling defects in lattices where
the effect of the force due to the defect has to be calculated.
The advantage of writing the displacement in the form of
Eqg. (9) is now obvious. We can use the full power of con-
tinuum mechanics by using the continuum-model Green’s
function for G where needed while retaining the discrete

jattice effects and all the characteristics of the defect exactly

*

Equation(9) is the master equation of our MSGF method.
At large distances from the point defect and near extended
efects, we replac& by the continuum Green’s function

gefined by Eq(17) but use the lattice value &f (or F*) as
defined in terms of lattice Green’s function by E¢E0) and
(B42). Equation(9) is the multiscale representation of the
defect since it relates the discrete lattice parameters through
f* to the continuum model parameters through Thus the
displacement field in our multiscale model at the position
vectorx for largex is given by the following sum over the
defect space:

() =2 Gex,LHf*(L"). (19

L/
We can now incorporate the effect of extended defectSdn
by imposing appropriate boundary conditions using the stan-
dard techniques of the continuum model. As an example, we
consider a semi-infinite solid with a free surface and calcu-
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late the strains at the surface due to a vacancy in the bullcan be written in terms of the body forces. Thus, Ef)
We also calculate the displacement field at the free surfaceeduces to the simple expression

and the elastic interaction energy between the vacancy and

the free surface. We choose a frame of reference in which the 1
origin and thex andy axes are on the free surface and the W= —(5
positivez axis points into the solid. The axes are assumed to

be parallel to the crystallographic axes. The zero-traction i
boundary condition at the free surface, which is taken to bdvhere we have replaced the volume integral by the sum over

> T (L)GUL,LHf* (L"), (29
LL’

the plane aks=0, is given by the defect space and the supersciiptenotes matrix trans-
pose.
Tia(X)=Cizik€k(X)=0 (x3=0), (20 The first term inG. of Eq. (22), when used in Eq(25),
givesW,q, the relaxation energy of the vacancy in the infi-
where nite solid. However, the use of the CGF is not justified for
&= U5 ()] 9%, 21) calculation ofW,,, because the discrete-lattice effects are

important. It should be calculated by using the lattice

eandr denote, respectively, the second-rank strain and stredgreen’s functiof that gives Eq(13). To calculate the inter-

tensors, ana is the fourth-rank elastic-constant tensor. Theaction energy between the vacancy and the free surface, we

off-diagonal elements of Eq21) have to be symmetrized in use the CGF even ifandl’ are both in the defect space if

the definition of the strain tensor. the distance between the vacancy and the free surface is large
An expression for th&, that satisfies Eq(20) has been enough. The interaction energy between the vacancy and the

given in Appendix A without derivation. It is written as a free surface is obtained by using the second term of(£2).

sum of Gy, the Green's function for the infinite solid, and into Eq.(25), and is given by

G, due to the contribution of the free surface, as follows:

Ge(x,L)=Gy(x—L)+Gyx,L), (22) Wig= —(%)2 P (L)GY(L,LHF*(L").  (26)
LL'
wherelL is confined to the discrete lattice sites in the defect
space. Equatiori22) can be used if the point defect is far Now, we consider the induced interaction between the sur-
from the free surface. Ik is close to the defect space, one face and the vacancy. The induced interaction between two
should use the LSGF fdB, in Eq.(22) as given in Ref. 6 but  defects arises from the change in the Kanzaki force due to
the second term can still be used. Unlike the CGF for infiniteone defect by the presence of the other defddiis interac-
solid, the LSGF is not singular a¢=L. The second term, tion is of higher order and can be calculated by iteration. In
though derived from the continuum model, is not singular athe present case, the presence of the free surface induces
x=L. additional displacements on the atoms in the solid. The dis-
The strain field ak can be calculated by using E1).  placements of the atoms in the defect space change the Kan-
Equation(19) is equivalent to the solution of the Christoffel zaki force and hence the strains at the surface as well as the
equation for a solid containing a discrete distribution of bodyinteraction energy between the surface and the vacancy.
forcesF(L). It is also similar to the corresponding equation  The first-order induced displacements on atoms in the de-
in the LSGF methotiwith G replaced byG, . fect space caused by the surface are given by
We now derive an expression for the elastic interaction
energy between the point defect and the free surface. The
total elastic strain energy for the solid is given by Au(L)=2, G(L,L")F*(L"). (27
o

We=—

1
5) Cijkl fvekl(x)eij(x)dxv (23)  We then calculate the new Kanzaki force from EQ) and

use this value in the calculation of the strain and the interac-
where the integration extends over the whole volume of thdion energy from Eqs(19), (21), and(26). Higher order in-
solid. Using Eq.(21) and the Gauss theorem, we write Eq. duced displacements and corrections to the strain and the

(23) in the form interaction energy can be calculated by using d) again

with the new Kanzaki force and then further modifying the
Kanzaki force.

Lem(x)ui(x)njdxs Finally, Eq.(19) can also be used for calculating the effect
of an applied surface stress on the defect. Since (E9).
expresses the response of the solid near the free surface in

' (24 terms of the CGF, standard continuum mechdnitsan be
used for such calculations. For example, the interaction be-

where the integral in the first term is over the surface of thgween the applied surface stress and the vacancy is given by

solid andn is the surface normal. This term is 0 in view of an equation similar to Eq25) with fT replaced by the ap-

Eq. (20). Using the Christoffel equation given in Appendix plied stressL replaced by the continuous variable and

A, the second term on the right-hand sigths) of Eq. (24)  taking the derivatives o6, with respect tax.

1
Wei=— 2 Ciiki

—f (Puk(x)/ ax;ax ) ui(X)dx
\
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ll. APPLICATION TO FCC COPPER puter program for calculating the Green’s functions can be
. . obtained from the author on request.

For thg purpose of ‘illustration, we apply the MS(.;F We assume that the vacanc?/ is at the origin. Since each
method given in Sec. Il to calculate the displacement fieldy;, i this model interacts with all atoms up to its fifth
and_stramg _at.the free surface due to a vacancy in an an'sﬂ'eighbors, the defect space consists of 79 atoms—the va-
tropic semi-infinite crystal of copper. We also use the MSGFCancy and its 78 neighbors. Each matrix in EB41) is
method to calculate the interaction energy between the Vanerefore 23% 237, and the force and the displacement vec-
cancy and the free surface. We chose copper bedéuisés  tors in Eqs(B42) and(B43) are 237-dimensional. Analytical
a material of great interest as is apparent from a large nunexpressions for tha ¢ matrix elements between all pairs of
ber of publications on point defects in coppéi) a good  atoms and the force vectérfor all atoms in the defect space
interatomic potential is available, an(@i) strain due to a are given in Appendix B. Their numerical values are not
vacancy and its interaction with the free surface are imporgiven here because of space constraints but can be obtained
tant for many studies such as diffusion and electromigratioirom the author. However, for further application of the
in copper interconnects. present formalism, knowledge of the Kanzaki forces is

We use the tight-binding potential for copper, which hasenough, which are given below for each atom in the defect
been given by Cleri and RosatdThe CR model potential Space.
extends up to fifth neighbor. It is a many-body potential that The crystal retains the cubic point-group symmetry in the
depends upon the coordinates of all 79 atoms that are withiRresence of the vacancy if the point group operators are ap-
fifth neighbor distance of an atom. The potential correctlyPlied about the vacancy. In the present case, we can use
reproduces many static and dynamic properties of the soligroup theory to reduce the 28237 matrices in EqB41) to

including the cohesive energy, phonon dispersion, and théX 7 matrices, which simplifies the matrix inversion consid-
elastic constants. erably. We use this proceddreo calculate the atomic dis-

In their excellent paper, Cleri and Rosfttave applied Placements and Kanzaki forces, which are given below for

their potential to calculate the formation energy of a vacancytoms in the defect space. The results for other atoms in the
in fcc copper. However, they have not reported the calculadefect space can be obtained by symmetry. All the lengths

tion of the lattice distortion due to the vacancy. Lattice dis-'€ in units ofa, and the forces are in units of ey//where
tortion due to a defect is an important parameter that charka=3.61 A is the lattice constant of copper.
acterizes the defect and is responsible for the elastic field of

the defect. The lattice distortion can, in principle, be mea- —0.012 —0.308
sured by x-ray scattering, which is useful for verification of u(1,1,00=| —0.012|, F*(1,1,0=| —0.308|, (28
the model. Cleri and Rosato used the molecular dynamics 0 L O
method to model a crystallite of coppéand many other
metalg containing 256 atoms. Since the defect space itself 4.14] [ 0.081
consists of 79 atoms, it is important to model a crystallite u(2,0,0=| 0 [+10°3, F*2,00=| O (29)
containing a much larger number of atoms for a reliable cal- Y 0 ’ " 0 ’
culation of the lattice distortion. Too small a crystallite can - -
introduce spurious size effects. " 385 F 377

First we use the LSGF method to calculate the atomic ' '
displacements due to a vacancy in a million-atom model ust(2,1,)=| —2.88/x107%, F*(2,1,1)=| —2.04/x107%,
ing the Cleri—Rosato potential. We calculate the relaxation | —2.88 | —2.04)
energy of the vacancy and its relaxation volume in an other- (30
wise perfect lattice with no free surface. Then we calculate ) ) ) )
the Kanzaki forces and use the MSGF method as described —4.98 —9.61
in Sec. Il to calculate the displacement field and the strains ati(2,2,00=| —4.98{x10°3, F*(2,2,0=| —9.61|x10 3,
the free surface, and the interaction energy of the vacancy . 0 | . 0 |
with the free surface. (31

In order to calculate the perfect-lattice Green’s function
we calculate the force constants using the Cleri—Rosato po- [ 3.64 ] [ —4.16]
tential up to fifth neighbors. Analytical expressions for the u(3,1,0=| —1.34[x10%, F*(3,1,00=| —1.59|%10°3.
force constants and their numerical values for a perfect cop- 0 0
per lattice have been given in Appendix B. The force con- ) - . T @32

stants for atoms beyond fifth neighbors make negligible con-

tribution to the Green’s function and the lattice distortion.We see from Eq(25) that the radial displacement of the
We calculate the Green’s function between all pair of atomsearest neighbor is about 0.@G170.003 nm which is about

in the defect space by using EL1) with N=1C°. Calcu- 1% of the equilibrium value of the nearest neighbor distance.
lated values of the perfect Green'’s functions for up to fifth-This shows that the lattice will be strained substantially near
neighbor atoms are also given in Appendix B. The computedhe defect. The relaxation energy and the relaxation volume
values of the Green’s function for more distant neighborspf the vacancy in the infinite solid as calculated from Egs.
which are needed for the present calculations, and a comd3) and(14) are given below
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g £ -1.0x10%
§ 9.0x10% 1 % \
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8.0x10°° o
-6.0x105 |
-5 - .'
7.0x10 ! e33
6.0x105 | -1.1x104 |
4.0 4.5 5.0 55 6.0 4.‘0 4.‘5 5.‘0 54|5 ‘ 6.IO
Depth of vacancy (h) Depth of vacancy (h)
FIG. 1. Thez component of the displacement @0,0 on the FIG. 2. The diagonal components of strainf@0,0 on the free
free surface due to a vacancy at (8)0in copper. All length are in  surface due to a vacancy at (®p,in copper. Solid line—e11,
units ofa=1.805 A, half the lattice constant of fcc Cu. dotted line—e33.

W,=—0.032 eV and AV, /V,=—0.24, (33) duced displacements is on the displacement fields of those
atoms where some of its components are 0 due to symmetry

whereV,=2a? is the original volume of the monatomic fcc in the infinite lattice. The presence of the free surface de-
unit cell. Cleri and Rosato calculated the total formation en-stroys this symmetry and those components become nonva-
ergy, which includes the relaxation energy, of the vacancy taishing. For example, the component of the displacement
be 1.25 eV which agrees with our calculations. They did noof the atom a(1,1,0 in the infinite lattice is 0 by symmetry.
calculate the relaxation energy or the relaxation volume ofThis component becomes nonzero when surface induced dis-
the vacancy. Our calculated value of the relaxation volumeplacements are included. Overall, the maximum contribution
agrees very well with the experimental value 60.25 re-  of the surface displacement fiefdt h=4) is less than 15%
ported in Ref. 16. in Fig. 1, less than 4% in Fig. 2, and less than 0.1% in Fig. 3.

Now we use the multiscale representation given by Eq. Figures 1 and 2 show an extremum near the surface. This
(9) to calculate the displacement field and the strains at thextremum arises because of the boundary condition at the
free surface. We assume that the free surfac€19@ plane. free surface given by Eq20), which forces certain combi-
Using the value off* given by Eqs.(28)—(32), we apply  nations of the strain components to be 0. Overall the strain at
Kanzaki forces at all the atoms in the defect space. We aghe surface is small, that is, less than 0.01% Hor4, but
sume that the vacancy is located at (8)0,We then use Eqg. significant.

(19 to calculate the displacement field at the free surface
with G, given by Eq.(A2) of Appendix A. The strains are
calculated in terms of the derivatives &.. Finally, we
calculate the interaction energy between the vacancy and th 7x10* 7
free surface by using E@26).

Figure 1 shows the displacement field at the origin at the
free surface as a function df, the depth of the vacancy
below the free surface. Figure 2 shows the diagonal compo
nents of the strain tensor at the origin as functioh.dfigure
3 shows the interaction energy between the free surface an
the vacancy also as a function lof The coordinates of the
vacancy in all the three figures are (&0, All lengths are in 7.0x10°
units of a=1.805 A, half the lattice constant of fcc Cu. In all
the figures the minimum value ofis 4. This is to ensure that
the defect space of the vacancy does not touch the surface
Since the fifth neighbor distance from the vacancy is about 2oxt0® ‘ ‘ ‘ ‘ ‘ .
3.16, the atomistic structure of the surface will need to be 40 45 50 55 6.0
modeled forh<4. Depth ofvacancy ()

The results given in Figs. 1-3 include the contribution of  F|G. 3. The interaction energy between the vacancy and the free
the surface induced displacements calculated by using E@urface in copper. The interaction energy is units of the magnitude
(27). This contribution is small and its calculation convergesof the relaxation energy0.032 eV of the vacancy in infinite fcc
within one iteration. An interesting effect of the surface in- Cu, which is calculated by using lattice statics Green’s function.

1.2x102

Interaction energy
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The interaction energy is plotted in Fig. 3 in unitswWfy, in determining the mechanical properties of nanoscale cop-
the relaxation energy of a vacancy in an infinite solid. Theper and also in copper interconnects in electronic devices
value of W, given in Eq.(33) is —0.032 eV. Figure 3 (see Ref. 25 which also gives other references
shows thatw,, the interaction energy of the vacancy with  We have also calculated the interaction energy between
the free surface, is small, being less than 0.0007 eV which ithe vacancy and the free surface. It decreases rapidlytwith
about 2% of the relaxation energy for-4. This will change  and is less than 0.0007 eV fbr>4a which is about 2% of
the vacancy concentration approximately by the factoihe relaxation energy of the vacancy in the infinite solid. The
expWin/kgT) wherekg is the Boltzmann constant aficthe  interaction energy between the free surface and the vacancy
temperature. At room temperature this factor is about 1.03jetermines the concentration of vacancies near the free sur-
that shows that the vacancy concentration near the free suface which is useful for modeling diffusion and other related
face will change by about 3%. The interaction energy in Fig.processes that are important for technological applications
3 falls rapidly ash increases. This shows that the vacancysych as the stability and reliability of copper interconnects in
concentration will be almost independent of the depth of thejevices. In the present case, it is shown the interaction with
vacancy. the surface would change the vacancy concentration by less

Whenh~3.16, a fifth neighbor of the vacancy will be at than 3% near the free surface at room temperature.
or close to the surface and the defect space of the vacancy The MSGF model is not applicable if the vacancy is too
will overlap with the free surface. A fully atomistic model is close to the surface, that is, when the vacancy is within the
needed to model a point defect at or near the free surfaceange of interatomic interactions from the surface atoms.
This would require a detailed knowledge of the atomic ar-However, in that region, the elastic interaction is not impor-
rangements at and near the free surface. In such cases Rfnt. It becomes a problem of surface reconstruction which is
(19) is not valid. The validity of our model increases with outside the scope of the present paper. Our calculations fully
increasingh. For anyh, the reliability of our results lies account for the discrete atomistic structure of the lattice near
between a pure continuum calculation and a pure lattice cathe vacancy along with the effect of the free surface in the
culation of the semi-infinite lattice provided the lattice cal- continuum limit. Such calculations have not been reported in
culation has been carried out for a crystallite containing ahe literature. This is achieved in our MSGE method by
large number of atoms. A lattice calculation using too small aseamlessly linking the subnano atomistic and macro con-

crystallite may introduce spurious size effects. tinuum scales. The MSGF method treats a point defect at the
atomistic level by using the LSGF and links it seamlessly to
IV DISCUSSION AND CONCLUSIONS the CGF. The continuum part of the MSGF is used to model

the macroscopic defects such as free surfaces and interfaces

We have developed a multiscale Green’s functionusing the standard techniques of the anisotropic continuum
(MSGPH method and applied it to model a vacancy in a semi-model.
infinite fcc copper lattice containing a free surface. We have At the atomistic scale, we have done a purely discrete
calculated physical quantities at two length scdlemistic  lattice calculation of the lattice distortion and related param-
and continuumas summarized below. eters for a vacancy in infinite Cu using the LSGF method and

At the continuum scale, we have calculated the strain andssuming a million-atom model crystallite. We find that the
the displacement field at the fré®00) surface as a function displacement of the atom which is the nearest neighbor of
of h, the depth of the vacancy from the free surface. Thehe vacancy is about 0.003 nm. This amounts to a substantial
displacement field at the free surface due to a single vacanajeformation of the solid near the vacancy which can be
is less than 10*a and the strains at the free surface are lessneasured®2*Earlier calculations using the LSGF or similar
than 0.01% foih>4a wherea is half the lattice constant of semi-analytic methods for a vacancy in infinite Cu used un-
Cu. These values are obtained by relating the discrete lattioealistic pair potentials. We used the many-body potential
distortion in the core region around the vacancy to the conebtained by Cleri and Rosat8which depends upon the co-
tinuum model parameters at the free surface where measurerdinates of 79 atoms and extends up to the fifth neighbor of
ments can be made without any need for an arbitrary avereach atom. This potential correctly reproduces several and
aging algorithm. static and dynamic properties of the perfect Cu lattice.

Measurement of the strain field can be used to character- We have also calculated the relaxation enefgy.032
ize the vacancy in Cu. The calculated value of the straireV) which is a part of the formation energy of the defect. For
being less than 0.01% is rather small but can be measured lilge infinite Cu lattice, our calculated value of the formation
using modern techniques such as Kossel and pseudo Kossslergy of the vacancy agrees with that given by Cleri and
technique® and CBED (convergent beam electron Rosato:’ This is expected because the relaxation energy is
diffraction)?* that are suitable for small specimens. The Ko-not sensitive to the size of the crystallite. In addition, we
ssel and pseudo Kossel techniques can measure changescaiculated the relaxation volume-(0.24V,) of the vacancy
lattice constants up to I8 nm? which correspond to strains whereV, is the volume of a monatomic unit cell. The relax-
less than 10°. The CBED can be used to measirstrains  ation volume of the vacancy agrees very well with the ex-
of the order of 10*. Such small strains may not be of much perimental value-0.25/,.*°
interest in bulk crystals but they are important in determining  Cleri and Rosato have not reported their calculated values
and modeling the mechanical response of nanostructures. Fof the lattice distortion and the relaxation volume. This may
example, vacancies have been found to play important rolbe partly because the conventional MD is mainly intended
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for calculations of energy and not for strains. The strains ACKNOWLEDGMENTS
depend upon long-range atomic displacements that are obvi- The author thanks Dr. D. T. Read and Dr. B. Yang for

ously sensitive (o the size of the model crystallite. For €X-useful suggestions and discussions. The author also thanks
ample, in the present case, an at¢on effectively the va- gges : : .
one of the reviewers for his/her very constructive comments.

cancy interacts directly with its 78 atomgup to 5th . .
neighbors. The model crystallite used in the MD calcula- This work was supported in part by the Advance Technology
Program of NIST.

tions of Cleri and Rosato contains 256 atoms. Thus the ra-
dius of the crystallite is only about (256/78~1.5 times

the range of the atoms that are directly interacting with the APPENDIX A: CONTINUUM GREEN'S FUNCTION FOR
vacancy. It is usual to assume the periodic boundary condi- AN ANISOTROPIC SEMI-INFINITE SOLID

tions at the edge of the crystallite to simulate an infinite \ye give expression for the CGF of an anisotropic semi-
solid. This introduces spurious size effects on the calculategfinite solid with a free(100 surface. For derivation and

values of the atomic displacements for atoms beyond the firgfatajls see Refs. 18—20. We define a 3D vector K in the
few nei_ghbors which are too close to the boundary of mOde}eciprocal space similar tq in Eq. (20) whereK ;= cos();
crystallite. K,=sin(f); —»<Kz=<w and 0<#<2sx. For notational

In this paper we have considered only a single vacancyonyenience, we define a 2D vectpandr in the subspace
The method can be applied to small clusters of vacancies byt  ¢,ch thaty,; =Xy, r1=Ry, x2=X,, andr,=R,. We can

calculating the appropriate Kanzaki forces. There is no neeg}, ;s write general 3D vectors and R in real space as
to recalculate the Green’s function. This is one of the adva_m x,x3). In an analogous manner, we also define the corre-
tages of the MSGF method that the same Green’s functio

b d for diff def in th host latt ponding 2D vectorsc in the subspace ok, such thatkK
can be used for different defects in the same host lattice. = (k,K3), wherex; =K, and k,=K.. In order to calculate

The MSGF method is especially useful for interpretingyne cGF, we need to solve the determinantal equation
and analyzing the elastic response of nanocrystals. In a math-
ematical model of nanocrystals, the point defects need to be |A(x,K3)|=0. (A1)
modeled at the atomistic scale, whereas free surfaces and ) ) ) ] )
interfaces can be adequately modeled at a macroscopic scaf@l Ks whereA is the Christoffel matrix defined in E¢22).
The continuum model is not reliable close to the point de-Equation(Al) has 6 roots that are functions afWe choose
fects, where the discrete lattice effects of the crystal are ver}ffé€ rootsQp (m=1,3) which have positive imaginary
important (see, for example, Refs. 6 and. On the other Parts. The CGF for the semi-infinite solid can be writterd
hand, the lattice model becomes difficult for modeling sur-as follows:
faces and interfaces. This is partly because of the CPU re-
guirements and partly because the interatomic potential near
a free surface may be different than that in the bulk due tavhere
the surface effects on the electronic band structure. However,
the macroscopic elastic effects near a surface and other ex- 1
tended defects can be well represented by the continuuffo(X— R)=Re( m)
model® The MSGF model exploits this power of the con-

tinuum model. -~ =
To conclude: Xf dﬂ% M(x,Qm)WrMqo(k,Qn.R), (A3)

G(X,R)=Go(x—R)+G¢(x,R), (A2)

(i) We have calculated the discrete atomic displacements
in the bulk, relaxation volume, strain and the displace- Gy(x,R)=— Re( iz)
ment field at a fre¢100) surface due to a vacancy and 4
its elastic interaction energy with the free surface in a

semi-infinite anisotropic fcc copper by using a new xf dGE V(k,Qm,Qn)My(x,Qm,Qn.R),
MSGF method; mn
(i)  the MSGF method fully accounts for the discrete (A4)
structure of the lattice in the bulk of the solid and is
computationally efficient for modeling large crystal- Mo(k,Qm,R)=[k.(x—1)+Qm(Xs—Rs) + ] L,
lites. The calculation of the LSGF for a million-atom (A5)
model crystallite requires only a few CPU seconds on o
a standard 3 GHz desktop; M«(&,Qm,Qn,R)=[x.(x— 1)+ QmXz3— QuRa+te] %,
(i) the MSGF method bridges the length scales seam- (A6)

lessly from atomistidsubnan® to macro and relates . . .
the measurable macroscopic parameters of the con-V(«,Qn,Qn) =M (x,QnA(k)S(k,Q)M(k,Qn) W, W,,

tinuum model to the discrete lattice parameters. This (A7)
makes the MSGF especially suitable for modeling .

point defects in nanocrystals in which free surfaces Alk)= M W, A8
and interfaces play important roles. () Em: S QmIM (K, Q)W (A8)
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Sij(k,K3) =CigjkKk, (A9) where the derivatives are evaluatedugt)=0 for all L.
First, we evaluate the force constant matrix for the atoms
) ) 5 L andL’ as given by Eq(B8). We neglect the interaction
Wn=1 2C11C44an1;[m (Qn=Qn) |,  (A10)  petween atoms farther than the fifth-neighbor distance. The
direct contribution tob(L,L") comes fromE, andE (L’
the overhead bar denotes complex conjugate, M) is #L). In addition there are indirect contributions from all
the matrix of cofactors ofA(K). The integral ovem in Eqs.  atoms that are within fifth-neighbor distance from bbtand
(A2) and(A3) is carried out in the interval O tor2which can  L’. These contributions are given below.
be reduced by using symmetry. Direct contributions fronE, andE, . :

L Ny — ' 2 '
APPENDIX B: FORCE CONSTANTS AND GREEN'S ®j(L,L")=§Cq [ jVar(L,L")+D(L,L")ijVa(L,L")]
FUNCTIONS FOR PERFECT FCC COPPER, AND FORCES AT S , ~ '
AND CHANGE IN FORCE CONSTANTS DUE TO A Al 6V, (L,L")+D(L,L")i;Vo(L,L")]

VACANCY IN THE DEFECT SPACE
_ +§CZL[ > R(L,L"xval(L.L")}
We calculate the force constant and Green’s-function ma- L"#L
trices for a perfect fcc copper lattice using the CR many- , ,
body potential® We also calculate the change in the force- XR(L,L")jVar(L,L"), (B9)
constant matrices and forces on each atom in an imperfeghere

copper lattice containing a single vacancy. These analytical

expressions should be useful for modeling of defects in fcc 1
lattices and have not been published before. Ci= T : (B10)
The energy of the atorh in the CR model is written as 2VE,L
W, =—&E +AP,, B1 1
L=—&ELTAP, (B1) Corm ( 3/2), (B12
where 4E[
D(L,L");=R(L,L");R(L,L");/R*L,L"), (B12
E =S ViLL), 82 (L,L")j=R(L,L")R(L,L");/R(L,LY), (B12
L'#L V(L L") =[1/R(L,L")]dV4(L,L")/dR(L,L"),
(B13)
P .= V,.(L,L"), (B3)
- EL : Vao(L,L")=—=Va(L,L")+d?V,(L,L")/dR3(L,L"),
(B14)
Va(L,L)=exp-2q[R(L,L7)/d—1], (B4) dij is the Kronecker’s delta, and the sum in EB9) is over
V,(L,L")=exp-p[R(L,L")/d—1], (B5) all atoms within fifth-neighbor distance &f. The quantities

V., andV,, are defined by EqsB11) and (B12) with V,
N1 " _ replaced byV,. The contribution fromE, , is given by an
RELLD)=rL)+ulL)=r(b)—ub), (B6) equation similar to Eq(B9) with L andi interchanged with
R(L,L")=|R(L,L")|,u(L) is the instantaneous displace- L' andj, respectively.
ment of atomL, r(L) is its position vector at equilibrium, Indirect contribution:
and d is the nearest-neighbor distance. The values of the
parameters for copper aré=1.224 eV, A=0.0855 eV, q O (LL)=—¢ 2
=2.278, andb=10.96. We write all the distances in units of A= AL
a=1.805A, half the lattice constant of copper, so that
= /2. The sums in EqgB2) and(B3) extend over all atoms XR(L",L")jVar(L",L"), (B1Y)
L’ up to fifth-nearest neighbors.
The total energyV of the crystal is equal to the sum of
W, over all atomd.. For a perfect lattic&, , P, andW_
are all independent df. We denote the value df, for a

CorR(L",L); Va4 (L",L)

where the sum is over all atonis’ that are within fifth-
neighbor distance of both andL’.
The total force constant matrix for the pair of atomand

g L’ is given b
perfect lattice byE, for all L. The elements of the force g y
matrix (column vectoy F(L) for atomL and the force con- D (LL V=P (L L+ dE (L LY +d (L L
stant matrix®(L,L’) between atom& andL’ are defined (D= R LD+ Ry (LD Py L, ).(816)
as follows:
The force constant matrix for an atom with itself is obtained
Fi(L)=—oW/au;(L) (B7) by using the conditioff
and
> @;(L,L")=0. (B17)
@j(L,L")=3d*W/gu;(L)duj(L"), (B8) L’
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For a perfect latticéd=(L) =0, E, is independent of., and [1.361 0.327 0.32
the sum in the third term on the right of E@®9) is 0. For a _ _ _,
perfect lattice®(L,L") depends only upoh’-L. The struc- G(0;2,1,)=| 0327 1.235 0.20p+10°%, (B26)
ture of these matrices is determined by the cubic symmetry | 0.327 0.205 1.23
of the fcc lattice’?2 The numerical results for the first 5 ) )
neighbors of the atom at the origin are given below in units 1294 0531 O
of eV/a?, wherea=1.805 A is half the lattice constant of G(0:2,2,0=| 0531 1294 0 |«10°2, (B27)
copper. T '
L 0 0 0.951
3.322 3.603 0 _ -
( 0 3.603 3322 0 (818 0.831 0.152 O
0:1,1,0=-| 3. . B18
s Ly ’ *31.0= 0.152 0.919 0 1 72. B2
0 0 -0319 G(0:3.1.0 *107% (829
L O 0 0.854]
—2847 O 0 Now we calculate the change in the force-constant matrices
$(0:2,0,0=— 0 0.063 0 %101 du_e_ to a vacancy in copper. We create the vacancy, at the
origin. This will makeE, dependent or. and ®*(L,L")
0 0 0.06 will depend upon boti. andL' separately. We define the
(B19) defect vector space consisting of the vacancy and all atoms
up to its fifth neighbors. The defect space thus consists of 79
—1.065 -0.570 —0.570 lattice sites including the vacant lattice site at the origin and
®(0;2,1,)=—| —0.570 —1.046 0.807 %10 ?, will be of dimension 3 79=237. For all atoms in the defect
_ -~ spacek, #E, and will depend upon its distance from the
.57 .807 1.04 p .
0.570  0.80 046 (B20)  vacancy. For all atoms outside the defect spaceE,,.
Since there is no atom at the orig@nﬁ(O,L)=O. From
1601 1.733 0 Eq. (5
®(0;2,2,0=—| 1.733 1.691 0 [x10°2 Ad;(OL)=®;(0L). (B29)
0 0 —-0.121 In the pair potential approximatiody®;; (L,L")=0 for L
(B21) #L'#0. In the present case of the many-body potential
these matrices will not be 0. For the imperfect lattice
0.796  0.417 0 ®F(L,L') is given by Eqs(B9), (B15), and(B16) with the
®(0;3,1,0=—| 0.417 —0.091 0 *10 2, difference thatt, depends upoh and the sum in the third
0 0 —0.160 term on the right of Eq(B9) is not 0 sinceL” does not
' (B22) include the origin. We add and subtrdct=0 term to the

sum, which gives

Using the force-constant matrices given above, we calculate
the perfect lattice static Green’s functfofusing Eq.(11) for

> R(L,L")Var(L,L")=—=R(L,0);Vay(L,0).

a million-atom model. The Green’s-function matrices for the

L"#L+#0

perfect lattice have exactly the same structure as the force-
constant matrices. The calculated Green’s function matrices

(B30)

for the first five neighbors are given below in unitsasfeV.

The calculated values for further neighbors can be obtaine

from the author on request.

Using Eq.(B30) into Eq.(B9) givesCIDﬁL(L,L’). There is no
ghange in the term due to the repulsive part of the potential,
which is a pair interaction. Thus we obtain

ADG(L,L")=EACy [ 8jVar(L,L")

7648 0 0
G(0:0)=| 0 7648 0 [+102 (B23) +D(L.L")ijVaz(L,L7)]
0 0 7648 —£Co 1 (L) Var(LO)R(L,L");Vay (L, L"),
[2.497 0.890 0] (B31)
G(0:1,1,0—| 0.890 2.497 0 |«10°2, (B2s) "e'€
0 0 2019_ ACleclp_ClL (832)
1195 0 0] and
. _ —2 1
G(0;200=| 0 138 0 (%1072 (B2 Clp=< ) (B33
0 0 1.383 2E,
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Similarly, we calculate the contributiod*-'(L,L’). The and
indirect contribution to the force-constant matrix is given by
Eq.(B15). The d|fferer_10e fro_m the perfect lattice term arises ,:il(l_) =—¢ACy, Z/ V(L' L)R(L L),
becausé »# E, and, in the imperfect case, the sum olér

does not include the origin. We obtain

L'#L+#0

+Clpva1(0!L)r(L)i ’ (338)

A (L,L")=—§ " ACy/R(L"L)Vay(L",L)
L!/

where the summation is restricted to the defect space. The
XR(L",L");Var(L",L") total force on atoni is given by

- Capr (L)iVar(OL)F(L") Vay(OL) Fi(L)=Fr(L)+Fi(L). (B39

We shall now give the soluti§rof the Dyson’s equation. The
(B34)  forces by Eq(B39) are 0 outside the defect space. Hence we
ry can solve Eq.(6) by using the matrix partitioning
wherel #L"#L"+0, techniqué&’?2in the defect space. The matrixd is also 0
1 outside the defect space. The reduced Dyson eqUidtiéin
Cop=—|—F— (B35  the defect space is given by
4\EY?
g =g+0A¢g", (B40)
whereg, g*, andA¢ are, respectively, the blocks &, G*,
ACy =Cpp—Cy. (B36) and A® in defect space. The matrices in H®40) are 3
The prime over the summation sign on the right of EBB4) X 3n matrices, wher@ is the number of atoms in the defect
denotes that the summation is carried out only over all thépace. For point defects) is small so Eq.(B40) can be
atoms in the defect space. The totab(L,L’) is obtained Solved by direct matrix inversion, as given below.
by the sum of all the contributions as in E@®16). Finally, . 1
the change in the force constant matrix for an atom with g'=(1-0A¢) g, (B41)
itself is obtained by imposing the condition of invariance \ynerel is the unit matrix.

against rigid body translation given by E@®17). For example, for an fcc lattice with a short-range inter-
In the case of a perfect lattice, since the crystal has transgomic potential in which the defect interacts up to its second
lational as well as inversion symmetry,' thex3 forc'e CoN-  neighbor atoms, the matrices in H&41) are 57 57. Since
stant matrix between a pair of atoms is symmetric. For the, nint defect such as a vacancy retains the local point-group
imperfect case, the change in th_e force const_ant_matrlx b%‘ymmetry of the lattice, we can use group theory to simplify
tween the vacancy and an atom is symmetric in view of Eqgq (B41) considerably. In the case of a vacancy in an fcc
(B29). In general, this matrix between other pairs of atoms iSattice with second neighbor interaction, E@®41) can be
not symmetric. The lattice retains the whole point-groupequced to a X2 matrix equatiorf. In this paper we have
symmetry if the point-group operators are applied about the,ssymed a many-body potential in which each atom interacts
vacancy. The matrices in the defect space can, therefore, hé, yp 1o its fifth neighbors. In this case the matrices in Eq.

block diagonalized by using the operators of the cubic poim(B41) are 23%237. By using group theory, these matrices
group as given in Ref. 6 and reduced t& 7 matrices. can be reduced toX7.

Finally, we calculate the forces on all atoms in the defect By definition, the force matrix defined by E¢@) is non-
space by using EqB7). The direct contribution td:L(L)_ vanishing only in the defect space. Using E@.and(B40),
the force on atont. comes fromE, and the indirect contri- o obtain for all atoms in the defect space
butionF'(L) comes from all atomk” which are within fifth

and

neighbor distance fronh.. There is no atom at the origin. u=g*f, (B42)
Following the steps similar to those for calculating the force
constants, we obtain wheref is the component of in the defect space. The Kan-

. zaki force in the defect space is given by
Fr(L)=—§Cyr(L)iVar(O,L)+Ar(L);V,1(OL)

(B37) f*=f+Agpu. (B43)
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