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Multiscale Green’s-function method for modeling point defects and extended defects in anisotropi
solids: Application to a vacancy and free surface in copper

V. K. Tewary*
Materials Reliability Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA

~Received 4 March 2003; revised manuscript received 21 October 2003; published 12 March 2004!

The elastic response of a vacancy in a semi-infinite fcc copper lattice containing a free surface is calculated
by using a new multiscale Green’s function method. The method treats the lattice distortion near the vacancy
at the atomistic level and the free surface at the macroscopic continuum level in the same formalism. The
lattice is modeled using the lattice statics Green’s function that fully accounts for the discrete atomistic
structure of the lattice and can model a large crystallite containing a million atoms without excessive CPU
effort. The method is especially useful for modeling the elastic response of nanocrystals containing point
defects in which surfaces and interfaces play important roles. The method bridges the length scales seamlessly
by relating the microscopic lattice distortion near a point defect to measurable macroscopic parameters of the
solid such as the strain and the displacement field at a free surface. Using the interatomic potential derived by
Cleri and Rosato, the lattice distortion, relaxation energy, and relaxation volume due to a vacancy are calcu-
lated in an otherwise perfect copper lattice for a million-atom model containing a free~100! surface. The
calculated value of the relaxation volume is in excellent agreement with the observed value. Numerical results
are also presented for the strain and the displacement fields at the free surface due to a vacancy and the
interaction energy between a vacancy and the free surface in anisotropic semi-infinite copper.

DOI: 10.1103/PhysRevB.69.094109 PACS number~s!: 61.72.Bb, 61.72.Ji, 68.35.Gy, 61.46.1w
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I. INTRODUCTION

We describe a multiscale Green’s function~MSGF!
method to model a vacancy in a semi-infinite fcc copp
lattice containing a free surface at two length scales: Ato
istic and continuum. At the continuum scale, we calculate
strain and the displacement fields at the free surface due
vacancy in the bulk and the elastic interaction energy
tween the vacancy and the free surface. At the atomi
scale, we calculate the lattice distortion, the relaxation
ergy and the relaxation volume due to the vacancy. Th
length scales are linked seamlessly in the MSGF meth
The method fully accounts for the discrete structure of
lattice at the atomistic scale and the elastic anisotropy of
solid at the continuum scale.

A vacancy is an important point defect in a solid since
affects the mechanical as well as electrical properties of
solid. Since the strain and the displacement fields at the
face can be measured, these quantities can be useful for
acterizing a vacancy and observing its physical effects o
solid. The elastic interaction energy gives the concentra
of vacancies near the free surface, which is important
modeling diffusion and other related processes that are
portant for technological applications such as the stab
and reliability of copper interconnects in devices.

The strain or the displacement fields are usually measu
at or near a free surface. It is, therefore, important to mo
a vacancy and at least one free surface in the same for
ism. The effect of other surfaces in the solid can be neglec
if the vacancy is close to the surface where the measurem
are made and other surfaces are far enough. The free su
also affects the displacement field due to the vacancy, wh
is responsible for the elastic interaction between the sur
and the vacancy. Strain field due to a vacancy or any o
0163-1829/2004/69~9!/094109~13!/$22.50 69 0941
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point defect in a semi-infinite solid containing a free surfa
can be calculated by using the continuum model Gree
function1,2 for a half-space solid. The continuum model h
been quite successful in modeling extended defects suc
free surfaces and interfaces.3 However, it is well known that
the continuum model is not a suitable representation4–6 of
the response of a solid near a point defect. It is necessa
account for the discrete structure of the lattice at least n
the point defect and also include the effect of the free s
face.

There are two techniques available in the literature
pure atomistic calculations of the properties of a vacancy
any point defect in an infinite lattice: One using the latti
statics Green’s functions~LSGF!6,7 and the other using mo
lecular dynamics~MD!8–13 ~for review and other references
see Refs. 8 and 13!. In both the techniques an infinite solid
represented by a finite crystallite with periodic bounda
conditions. So far there have been no LSGF or MD calcu
tions on a point defect in a semi-infinite solid, which accou
for a free surface in the solid as well as the discrete atomi
structure of the lattice near the point defect. These techniq
have to be extended to multiscale systems that include
tended defects such as free surfaces along with point def

The LSGF method has the advantage that it can mod
large crystallite without excessive CPU requirements. F
example, even a million-atom model requires only a fe
seconds of CPU time to calculate the LSGF on a standa
GHz desktop. A disadvantage of the LSGF method is tha
does not account for nonlinear effects. In case of a sin
vacancy, the harmonic approximation is valid4–6 and hence
the LSGF method is applicable. On the other hand, the M
accounts for nonlinear response but is usually limited
small crystallites containing a few hundred atoms. La
crystallites can be modeled using MD only by using spec
techniques and massive CPU effort.9
©2004 The American Physical Society09-1
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V. K. TEWARY PHYSICAL REVIEW B 69, 094109 ~2004!
In the MD model, the calculation of the energy of a v
cancy converges within a few hundred atoms beyond wh
the energy is not sensitive to the size of the crystallite. So
MD model of a small crystallite containing a few hundre
atoms is adequate for calculation of the formation energy
a vacancy. However, a small crystallite can not be used
calculations of strains which are defined by long range d
placement fields. Atomic displacements beyond the rang
the direct interaction from the vacancy contribute little to t
formation energy of the vacancy6 but are important for cal-
culations of strain and surface effects. For calculation of
strain, therefore, it is necessary to use a very large crysta
which makes the MD model computationally inefficient.
contrast, the LSGF method is computationally very efficie
for modeling large crystallites. We, therefore, adopt t
LSGF method for multiscale modeling.

In this paper we describe a new multiscale Green’s fu
tion ~MSGF! method for modeling a point defect and a fr
surface in a semi-infinite solid. The MSGF method is
extension of the LSGF method. It fully accounts for the d
crete atomistic structure of the solid near the point defect
uses the continuum model to include the effect of the f
surface. The model is truly multiscale because it seamle
links the response of the solid at the atomistic level to
response at the macro level. The method can be applie
any point defect and any extended defect in a general an
tropic solid.

The MSGF method bridges the length scales from
atomistic ~subnano! to the continuum~macro! and thus di-
rectly relates the physical processes at the atomistic leve
measurable macroscopic parameters. In order to see the
portance of a multiscale formulation, consider, for examp
the lattice distortion caused by a point defect in a solid. T
lattice distortion is defined as the atomic displacements
discrete lattice sites. Experimentally one measures the s
near a free surface. Strain is a macroscopic quantity. It
parameter of the continuum model defined in terms of
rivatives of the continuous displacement field. It is, therefo
not strictly defined in the lattice theory that gives the atom
displacements at discrete lattice sites, which is a disc
variable. In order to interpret the experimental results, o
needs a model to relate the discrete distortion near the p
defect to measurable strains at or near the surface. Altho
elegant averaging techniques14 have been developed for th
purpose in infinite solids, the averaging process is not uni
and requires careful attention to various conservation la
In contrast, the MSGF method directly relates the lattice d
tortion to the measurable continuum parameters while it fu
accounts for the discrete nature of the solid near the de
and includes the effect of the free surface on the lattice
tortion.

The MSGF is based upon the fact6,7 that the LSGF for a
perfect lattice reduces asymptotically to the continu
Green’s function~CGF!. However, when a lattice has de
fects, its response is given by the defect LSGF, which i
solution of the Dyson equation. We show in the next sect
that the defect LSGF does not reduce to the CGF. In
MSGF method, we write the response of the defect lattice
a product of the perfect LSGF and an effective Kanz
09410
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force.6 The Kanzaki forces contain all the discrete-lattice
fects and, for a point defect, are localized near the def
This relation is exact within the standard assumptions of
Born von Karman model. We then use the asymptotic re
tionship between the perfect LSGF and the CGF to mo
the extended defects while retaining the atomistic effects
actly in the effective-force term.

First we calculate the lattice distortion due to a vacancy
an infinite solid using the LSGF for a million atom mod
crystallite. These calculations give the Kanzaki forces, rel
ation energy, and the relaxation volume of the vacancy in
infinite solid. For calculation of the LSGF, we use the man
body interatomic potential extending up to 5th neighbors
tained by Cleri and Rosato10 by using a tight binding model
This potential correctly reproduces10 the measured values o
many physical parameters of a perfect Cu lattice such as
elastic constants, phonon frequencies, etc. This potential
recently been used by Sandberg and Grimvall15 to calculate
the anharmonic contribution to the formation enthalpy o
vacancy in copper at high temperatures. As given in Sec.
using this potential, our calculated value of the relaxat
volume of a vacancy in Cu lattice agrees very well with t
experimental value.16 Of course this agreement in itself is no
an indication that our method is working but it lends cr
dence to our physical model.

The million-atom crystallite of the LSGF forms the co
of the MSGF model. The core is treated atomistically. W
then use the CGF for a semi-infinite anisotropic solid to c
culate the change in the Kanzaki forces due to a free~100!
surface in fcc Cu. The final values of the Kanzaki forc
fully and exactly account for the discrete atomistic structu
of the lattice near the vacancy and the effect of the f
surface in the continuum limit. We use these values of
Kanzaki forces to calculate the strain and displacement fie
at the free surface due to the vacancy and also the interac
energy between the vacancy and the free surface.

Calculations on a vacancy in an infinite Cu lattice ha
been carried out earlier by many authors~see, for example,
Refs. 4–6, 17! using a pair interatomic potential. However,
is well known that a pair interatomic potential is unrealis
for a metal like Cu. Hence these calculations need to
revised. Several authors~for references, see Refs. 8 and 1!
have used computer simulation methods and more real
potentials to calculate the formation energy of a vacancy
an infinite Cu lattice for a small model crystallite consistin
of a few hundred atoms. Cleri and Rosato10 have used their
potential to calculate the formation energy and the format
volume of a vacancy in infinite Cu using MD for a sma
crystallite containing 256 atoms.

Our calculated value of the formation energy of the v
cancy in an infinite Cu lattice agrees with the value obtain
by Cleri and Rosato.10 However, they did not report the val
ues of lattice distortion, relaxation energy and relaxation v
ume of the vacancy, which are important parameters. In
dition, none of the published papers report calculations
strain and the displacement fields due to a point defect
solid containing a free surface. Hence, there is a clear n
for a multiscale model that can be used to calculate all th
parameters.
9-2
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MULTISCALE GREEN’s-FUNCTION METHOD FOR . . . PHYSICAL REVIEW B 69, 094109 ~2004!
Section II defines the LSGF and gives the formulation
the MSGF method. We give only the definition of the LSG
and refer the reader for the details of the LSGF method
our earlier papers.6,7 Section III gives numerical results for
vacancy and free surface in a semi-infinite fcc Cu. Sect
IV gives a discussion of the MSGF and summarizes the m
conclusions of the paper. Appendix A gives the CGF for
anisotropic semi-infinite Cu for the Mindlin problem18–20

without derivation. Appendix B gives analytical expressio
for force constants, change in force constants, and forces
to the vacancy and also the numerical values for near ne
bor force constants and Green’s functions for perfect fcc
A preliminary report of this work assuming elastic isotro
and a crude model of force constants was presented a
Spring Meeting of the Materials Research Society.21 Appli-
cation of this technique to nanostructures such as quan
dots in semiconductors will be published elsewhere.

II. THEORY

We consider a monatomic Bravais lattice with a po
defect at a lattice site. We assume a Cartesian frame of
erence with the axes parallel to the crystallographic axes
the origin at a lattice site. We denote the lattice sites
vector indicesl, l8, etc., and the Cartesian coordinates
indicesi, j, k, etc. The lattice sites in the defect space will
denoted byL , L 8, etc. that will be within the vector space o
l, l8, etc. A vector index such asl has 3 components denote
by l 1 , l 2 , andl 3 . The three-dimensional~3D! force constant
matrix between atoms atl andl8 is denoted byf* ( l,l8). The
force on atoml and its displacement from equilibrium pos
tion will be denoted, respectively, byF~l! andu~l!, which are
3D column matrices. The displacement vectoru~l! for atom
at lattice sitel gives the relaxation of the lattice or the lattic
distortion caused by the defect.

By definition

@F* ~ l,l8!# i j 5]2W/]ui~ l!]uj~ l8! ~1!

and

@F~ l!# i52]W/]ui~ l !, ~2!

whereW is the potential energy of the crystal and the deriv
tives in Eqs.~1! and ~2! are evaluated at zero displaceme
Following the method given in Refs. 6 and 7, we obtain

u~ l!5(
l8

G* ~ l,l8!F~ l8!, ~3!

whereG* is the defect lattice-statics Green’s function. T
lattice-statics Green’s function is the zero-frequency limit
the phonon Green’s function that has been extensively
cussed in Ref. 22. Since our interest in this paper is only
the static response of the lattice, we will omit the qualifi
‘‘statics’’ for Green’s function for brevity. The sum in Eq.~3!
is over all lattice sites and Cartesian coordinates, which h
not been shown explicitly for notational brevity.
In the representation of lattice sites,G* and F* are 3N
09410
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33N matrices whereN is the total number of lattice sites i
the Born–von Karman supercell. The Green’s function is f
mally given by

G* 5@F* #21. ~4!

For a perfect lattice in equilibrium without defects,F~l! is 0
for all l, and the force constant and the Green’s-funct
matrices have translational symmetry. We denote these
trices byF andG, respectively. When a defect is introduce
in the lattice,F~l! becomes, in general, nonzero and the fo
constant matrix changes. So

F* 5F2DF, ~5!

whereDF denotes the change in the force-constant ma
F. From Eqs.~4! and ~5!, we obtain the following Dyson
equation:

G* 5G1GDFG* , ~6!

where

G5@F#21, ~7!

is the perfect lattice Green’s function. In the same repres
tation, we can write Eq.~3! as follows in the matrix notation

u5G* F. ~8!

Using Eq.~6!, we rewrite Eq.~8! as

u5GF* , ~9!

where

F* 5F1DFu. ~10!

Equation ~8! is used to calculate lattice distortion in th
LSGF method. Its detailed derivation has been given in R
6. Equation~9!, the alternative form of Eq.~8!, gives the
displacement in terms of the perfect-lattice Green’s funct
and an effective force denoted byF* , the so called Kanzak
force.6 From Eq.~10!, we can identify it as the force due t
the defect on relaxed lattice sites, in contrast toF, that de-
notes the force at the original lattice site due to the defe
Equation~9! is applicable to any point defect such as a v
cancy, an interstitial, or a substitutional impurity.

For the perfect lattice,G( l,l8) has translation symmetry
and, therefore, can be labeled by a single indexl- l8. It is
calculated by using the discrete Fourier representation6,22

G~ l!5~1/N!(
q

G~q!exp@iq.r ~ l!#, ~11!

wherei5A21, r ~l! is the radius vector for the lattice sitel, N
is the total number of atoms

G~q!5@F~q!#21, ~12!

F~q! is the Fourier transform of the force constant matr
and q is a vector in the reciprocal space of the lattice. F
brevity of notation, we shall use the same symbol for a fu
tion and its discrete Fourier transform, the distinguishing f
ture being the argument of the function. SinceG~q! andF~q!
9-3
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V. K. TEWARY PHYSICAL REVIEW B 69, 094109 ~2004!
are 333 matrices, Eqs.~11! and ~12! can be used to calcu
late the perfect-lattice Green’s functionG( l,l8).

The sum in Eq.~11! is over discrete values ofq in the first
Brillouin zone of the lattice. The symmetry of the lattice c
be exploited to reduce the number of terms in the sum.
example, for cubic solids, it is necessary to carry out the s
over only 1/48th of the first Brillouin zone. For a million
atom model (N5106) the calculation ofG~l! takes only a
few seconds on an ordinary 3 GHz desktop computer. Ev
billion-atom model (N5109) would take only about an hou
of CPU time.

The solution of the Dyson’s equation@Eq. ~6!# is obtained
by partitioning the matrices in the defect space and is
scribed in Appendix B. After calculatingu for all atoms in
the defect space using Eq.~B42!, we calculate Kanzaki force
in the defect space by using Eq.~B43!. The matrixDF and
the vectorsF* andF are 0 outside the defect space but notu.
The displacement of all other atoms in the solid is then giv
in terms of the perfect-lattice Green’s function by use of E
~9!. The Kanzaki force contains the full contribution of th
discrete lattice structure in the defect space.

The LSGF expressions6 for relaxation energy associate
with the lattice distortion and the relaxation volume a
given below:

Wrel52S 1

2D(
L

f~L !.u~L ! ~13!

and

DVrel5Tr D/~c1112c12!, ~14!

whereD is the dipole tensor defined by6

Di j 5(
L

f i* ~L !.r j~L !. ~15!

The summation in Eqs.~13! and ~15! are over all atoms in
the defect space. The relaxation energy is a part of the
mation energy of the defect. Similarly, the relaxation volum
is only a part of the formation volume of the defect.

The perfect-lattice Green’s function varies6 as 1/r ( l) for
large 1 and reduces asymptotically to the continuum Gre
function. To establish the correspondence between the LS
and CGF, we maker ~l! and q continuous variables and re
place the summation in Eq.~11! by integration over the re
ciprocal space. In conformity with the continuum model n
tation, we replacer ~l! by x for large l, which will denote the
position vector corresponding to the lattice sitel. Thus, in the
limit x→`

G~x!>Gc~x!5S 1

2p D 3E Gc~q!exp~iq.x!dq, ~16!

where, keeping terms up toq2 in f~q!,

Gc~q!5Lim
q→0

G~q!5Lim
q→0

@F~q!#215@L~q!#21. ~17!
09410
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The subscriptc on G in Eq. ~16! denotes the Green’s func
tion in the continuum model. In Eq.~17!, L is the Christoffel
matrix, which is defined in terms ofc, the elastic constan
tensor, as follows:

L i j ~q!5cik j l qkql . ~18!

Summation over repeated Cartesian indices is implied.
The asymptotic relation given by Eq.~16! is valid only for

the perfect Green’s functionG. It is generally not valid for
the defect Green’s functionG* defined by Eq.~4! unless the
term containingDF in Eq. ~6! is negligible. In most cases o
practical interest it is not negligible. For example, in the ca
of a vacancyDF5F. Moreover, if the effect ofDF is neg-
ligible, then the information about the defect is lost. Calc
lations in this region are, therefore, not of interest for stud
ing the properties of the defect.

In the earlier literature~for references, see Ref. 6! it has
been often assumed that theDF term in Eq.~6! is of higher
order than theG term and will be negligible for largeu l
2 l8u even for largeDF. This is not exactly right even thoug
G varies as 1/r ( l2 l8) for large u l2 l8u. To see this, conside
the response atl for a force atl8 whereu l2 l8u is large. The
first term on the right of Eq.~6! is G( l,l8), which varies
as 1/r ( l2 l8) for large u l2 l8u and reduces toGc . The next
term in the expansion of the right of Eq.~6! is
G( l,l9)DF( l9,l-)G( l-,l8). If the defect space is localized
such as in the case of a point defect, thenl8,l9,l- are all close
to each other andu l-2 l8u is not large. Thus the second ter
on the right of Eq.~6! is of the same order in distance as t
first term and will not be negligible unlessDF is negligible.
The second term will be of a higher order in distance only
both l8 andl are far away from the defect space. This case
not of much interest for modeling defects in lattices whe
the effect of the force due to the defect has to be calcula

The advantage of writing the displacement in the form
Eq. ~9! is now obvious. We can use the full power of co
tinuum mechanics by using the continuum-model Gree
function for G where needed while retaining the discre
lattice effects and all the characteristics of the defect exa
in F* .

Equation~9! is the master equation of our MSGF metho
At large distances from the point defect and near exten
defects, we replaceG by the continuum Green’s function
defined by Eq.~17! but use the lattice value off* ~or F* ) as
defined in terms of lattice Green’s function by Eqs.~10! and
~B42!. Equation~9! is the multiscale representation of th
defect since it relates the discrete lattice parameters thro
f* to the continuum model parameters throughGc . Thus the
displacement field in our multiscale model at the positi
vectorx for largex is given by the following sum over the
defect space:

u~x!5(
L8

Gc~x,L 8!f* ~L 8!. ~19!

We can now incorporate the effect of extended defects inGc
by imposing appropriate boundary conditions using the st
dard techniques of the continuum model. As an example,
consider a semi-infinite solid with a free surface and cal
9-4
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MULTISCALE GREEN’s-FUNCTION METHOD FOR . . . PHYSICAL REVIEW B 69, 094109 ~2004!
late the strains at the surface due to a vacancy in the b
We also calculate the displacement field at the free sur
and the elastic interaction energy between the vacancy
the free surface. We choose a frame of reference in which
origin and thex and y axes are on the free surface and t
positivez axis points into the solid. The axes are assumed
be parallel to the crystallographic axes. The zero-tract
boundary condition at the free surface, which is taken to
the plane atx350, is given by

t i3~x!5ci3 jkejk~x!50 ~x350!, ~20!

where

ejk5]uj~x!/]xk , ~21!

e andt denote, respectively, the second-rank strain and st
tensors, andc is the fourth-rank elastic-constant tensor. T
off-diagonal elements of Eq.~21! have to be symmetrized in
the definition of the strain tensor.

An expression for theGc that satisfies Eq.~20! has been
given in Appendix A without derivation. It is written as
sum of G0 , the Green’s function for the infinite solid, an
Gs , due to the contribution of the free surface, as follow

Gc~x,L !5G0~x2L !1Gs~x,L !, ~22!

whereL is confined to the discrete lattice sites in the def
space. Equation~22! can be used if the point defect is fa
from the free surface. Ifx is close to the defect space, on
should use the LSGF forG0 in Eq. ~22! as given in Ref. 6 but
the second term can still be used. Unlike the CGF for infin
solid, the LSGF is not singular atx5L . The second term
though derived from the continuum model, is not singular
x5L .

The strain field atx can be calculated by using Eq.~21!.
Equation~19! is equivalent to the solution of the Christoffe
equation for a solid containing a discrete distribution of bo
forcesF~L !. It is also similar to the corresponding equatio
in the LSGF method6 with G replaced byGc .

We now derive an expression for the elastic interact
energy between the point defect and the free surface.
total elastic strain energy for the solid is given by

Wel52S 1

2D ci jkl E
V
ekl~x!ei j ~x!dx, ~23!

where the integration extends over the whole volume of
solid. Using Eq.~21! and the Gauss theorem, we write E
~23! in the form

Wel52S 1

2D ci jkl F E
S
ekl~x!ui~x!njdxs

2E
V
~]2uk~x!/]xj]xl !ui~x!dxG , ~24!

where the integral in the first term is over the surface of
solid andn is the surface normal. This term is 0 in view o
Eq. ~20!. Using the Christoffel equation given in Append
A, the second term on the right-hand side~rhs! of Eq. ~24!
09410
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can be written in terms of the body forces. Thus, Eq.~24!
reduces to the simple expression

Wel52S 1

2D(
LL 8

fT* ~L !Gc~L ,L 8!f* ~L 8!, ~25!

where we have replaced the volume integral by the sum o
the defect space and the superscriptT denotes matrix trans
pose.

The first term inGc of Eq. ~22!, when used in Eq.~25!,
givesWrel , the relaxation energy of the vacancy in the in
nite solid. However, the use of the CGF is not justified f
calculation ofWrel , because the discrete-lattice effects a
important. It should be calculated by using the latti
Green’s function6 that gives Eq.~13!. To calculate the inter-
action energy between the vacancy and the free surface
use the CGF even ifl and l8 are both in the defect space
the distance between the vacancy and the free surface is
enough. The interaction energy between the vacancy and
free surface is obtained by using the second term of Eq.~22!
into Eq. ~25!, and is given by

Wint52S 1

2D(
LL 8

fT* ~L !Gs~L ,L 8!f* ~L 8!. ~26!

Now, we consider the induced interaction between the s
face and the vacancy. The induced interaction between
defects arises from the change in the Kanzaki force due
one defect by the presence of the other defect.6 This interac-
tion is of higher order and can be calculated by iteration.
the present case, the presence of the free surface ind
additional displacements on the atoms in the solid. The
placements of the atoms in the defect space change the
zaki force and hence the strains at the surface as well as
interaction energy between the surface and the vacancy.

The first-order induced displacements on atoms in the
fect space caused by the surface are given by

Du~L !5(
L8

Gs~L ,L 8!F* ~L 8!. ~27!

We then calculate the new Kanzaki force from Eq.~10! and
use this value in the calculation of the strain and the inter
tion energy from Eqs.~19!, ~21!, and~26!. Higher order in-
duced displacements and corrections to the strain and
interaction energy can be calculated by using Eq.~27! again
with the new Kanzaki force and then further modifying th
Kanzaki force.

Finally, Eq.~19! can also be used for calculating the effe
of an applied surface stress on the defect. Since Eq.~19!
expresses the response of the solid near the free surfa
terms of the CGF, standard continuum mechanics1–3 can be
used for such calculations. For example, the interaction
tween the applied surface stress and the vacancy is give
an equation similar to Eq.~25! with fT replaced by the ap-
plied stress,L replaced by the continuous variablex, and
taking the derivatives ofGc with respect tox.
9-5
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III. APPLICATION TO FCC COPPER

For the purpose of illustration, we apply the MSG
method given in Sec. II to calculate the displacement fi
and strains at the free surface due to a vacancy in an an
tropic semi-infinite crystal of copper. We also use the MS
method to calculate the interaction energy between the
cancy and the free surface. We chose copper because~i! it is
a material of great interest as is apparent from a large n
ber of publications on point defects in copper,~ii ! a good
interatomic potential is available, and~iii ! strain due to a
vacancy and its interaction with the free surface are imp
tant for many studies such as diffusion and electromigra
in copper interconnects.

We use the tight-binding potential for copper, which h
been given by Cleri and Rosato.10 The CR model potentia
extends up to fifth neighbor. It is a many-body potential th
depends upon the coordinates of all 79 atoms that are w
fifth neighbor distance of an atom. The potential correc
reproduces many static and dynamic properties of the s
including the cohesive energy, phonon dispersion, and
elastic constants.

In their excellent paper, Cleri and Rosato10 have applied
their potential to calculate the formation energy of a vaca
in fcc copper. However, they have not reported the calcu
tion of the lattice distortion due to the vacancy. Lattice d
tortion due to a defect is an important parameter that ch
acterizes the defect and is responsible for the elastic fiel
the defect. The lattice distortion can, in principle, be me
sured by x-ray scattering, which is useful for verification
the model. Cleri and Rosato used the molecular dynam
method to model a crystallite of copper~and many other
metals! containing 256 atoms. Since the defect space it
consists of 79 atoms, it is important to model a crystal
containing a much larger number of atoms for a reliable c
culation of the lattice distortion. Too small a crystallite c
introduce spurious size effects.

First we use the LSGF method to calculate the atom
displacements due to a vacancy in a million-atom model
ing the Cleri–Rosato potential. We calculate the relaxat
energy of the vacancy and its relaxation volume in an oth
wise perfect lattice with no free surface. Then we calcul
the Kanzaki forces and use the MSGF method as descr
in Sec. II to calculate the displacement field and the strain
the free surface, and the interaction energy of the vaca
with the free surface.

In order to calculate the perfect-lattice Green’s functi
we calculate the force constants using the Cleri–Rosato
tential up to fifth neighbors. Analytical expressions for t
force constants and their numerical values for a perfect c
per lattice have been given in Appendix B. The force co
stants for atoms beyond fifth neighbors make negligible c
tribution to the Green’s function and the lattice distortio
We calculate the Green’s function between all pair of ato
in the defect space by using Eq.~11! with N5106. Calcu-
lated values of the perfect Green’s functions for up to fif
neighbor atoms are also given in Appendix B. The compu
values of the Green’s function for more distant neighbo
which are needed for the present calculations, and a c
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puter program for calculating the Green’s functions can
obtained from the author on request.

We assume that the vacancy is at the origin. Since e
atom in this model interacts with all atoms up to its fif
neighbors, the defect space consists of 79 atoms—the
cancy and its 78 neighbors. Each matrix in Eq.~B41! is
therefore 2373237, and the force and the displacement ve
tors in Eqs.~B42! and~B43! are 237-dimensional. Analytica
expressions for theDf matrix elements between all pairs o
atoms and the force vectorf for all atoms in the defect spac
are given in Appendix B. Their numerical values are n
given here because of space constraints but can be obta
from the author. However, for further application of th
present formalism, knowledge of the Kanzaki forces
enough, which are given below for each atom in the def
space.

The crystal retains the cubic point-group symmetry in t
presence of the vacancy if the point group operators are
plied about the vacancy. In the present case, we can
group theory to reduce the 2373237 matrices in Eq.~B41! to
737 matrices, which simplifies the matrix inversion consi
erably. We use this procedure6 to calculate the atomic dis
placements and Kanzaki forces, which are given below
atoms in the defect space. The results for other atoms in
defect space can be obtained by symmetry. All the leng
are in units ofa, and the forces are in units of eV/a, where
2a53.61 Å is the lattice constant of copper.

u~1,1,0!5F20.012
20.012

0
G , F* ~1,1,0!5F20.308

20.308
0

G , ~28!

u~2,0,0!5F 4.14
0
0

G * 1023, F* ~2,0,0!5F 0.081
0
0

G , ~29!

u~2,1,1!5F23.85
22.88
22.88

G * 1023, F* ~2,1,1!5F23.77
22.04
22.04

G * 1023,

~30!

u~2,2,0!5F24.98
24.98

0
G * 1023, F* ~2,2,0!5F29.61

29.61
0

G * 1023,

~31!

u~3,1,0!5F 3.64
21.34

0
G * 1024, F* ~3,1,0!5F24.16

21.59
0

G * 1023.

~32!

We see from Eq.~25! that the radial displacement of th
nearest neighbor is about 0.017a50.003 nm which is about
1% of the equilibrium value of the nearest neighbor distan
This shows that the lattice will be strained substantially n
the defect. The relaxation energy and the relaxation volu
of the vacancy in the infinite solid as calculated from Eq
~13! and ~14! are given below
9-6
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MULTISCALE GREEN’s-FUNCTION METHOD FOR . . . PHYSICAL REVIEW B 69, 094109 ~2004!
Wrel520.032 eV and DVrel /Va520.24, ~33!

whereVa52a3 is the original volume of the monatomic fc
unit cell. Cleri and Rosato calculated the total formation e
ergy, which includes the relaxation energy, of the vacanc
be 1.25 eV which agrees with our calculations. They did
calculate the relaxation energy or the relaxation volume
the vacancy. Our calculated value of the relaxation volu
agrees very well with the experimental value of20.25 re-
ported in Ref. 16.

Now we use the multiscale representation given by
~9! to calculate the displacement field and the strains at
free surface. We assume that the free surface is a~100! plane.
Using the value off* given by Eqs.~28!–~32!, we apply
Kanzaki forces at all the atoms in the defect space. We
sume that the vacancy is located at (0,0,h). We then use Eq
~19! to calculate the displacement field at the free surf
with Gc given by Eq.~A2! of Appendix A. The strains are
calculated in terms of the derivatives ofGc . Finally, we
calculate the interaction energy between the vacancy and
free surface by using Eq.~26!.

Figure 1 shows the displacement field at the origin at
free surface as a function ofh, the depth of the vacanc
below the free surface. Figure 2 shows the diagonal com
nents of the strain tensor at the origin as function ofh. Figure
3 shows the interaction energy between the free surface
the vacancy also as a function ofh. The coordinates of the
vacancy in all the three figures are (0,0,h). All lengths are in
units of a51.805 Å, half the lattice constant of fcc Cu. In a
the figures the minimum value ofh is 4. This is to ensure tha
the defect space of the vacancy does not touch the sur
Since the fifth neighbor distance from the vacancy is ab
3.16, the atomistic structure of the surface will need to
modeled forh,4.

The results given in Figs. 1–3 include the contribution
the surface induced displacements calculated by using
~27!. This contribution is small and its calculation converg
within one iteration. An interesting effect of the surface i

FIG. 1. Thez component of the displacement at~0,0,0! on the
free surface due to a vacancy at (0,0,h) in copper. All length are in
units of a51.805 Å, half the lattice constant of fcc Cu.
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duced displacements is on the displacement fields of th
atoms where some of its components are 0 due to symm
in the infinite lattice. The presence of the free surface
stroys this symmetry and those components become no
nishing. For example, thez component of the displacemen
of the atom at~1,1,0! in the infinite lattice is 0 by symmetry
This component becomes nonzero when surface induced
placements are included. Overall, the maximum contribut
of the surface displacement field~at h54) is less than 15%
in Fig. 1, less than 4% in Fig. 2, and less than 0.1% in Fig

Figures 1 and 2 show an extremum near the surface. T
extremum arises because of the boundary condition at
free surface given by Eq.~20!, which forces certain combi-
nations of the strain components to be 0. Overall the strai
the surface is small, that is, less than 0.01% forh.4, but
significant.

FIG. 2. The diagonal components of strain at~0,0,0! on the free
surface due to a vacancy at (0,0,h) in copper. Solid line—e11,
dotted line—e33.

FIG. 3. The interaction energy between the vacancy and the
surface in copper. The interaction energy is units of the magnit
of the relaxation energy~0.032 eV! of the vacancy in infinite fcc
Cu, which is calculated by using lattice statics Green’s function
9-7
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V. K. TEWARY PHYSICAL REVIEW B 69, 094109 ~2004!
The interaction energy is plotted in Fig. 3 in units ofWrel ,
the relaxation energy of a vacancy in an infinite solid. T
value of Wrel , given in Eq. ~33! is 20.032 eV. Figure 3
shows thatWint , the interaction energy of the vacancy wi
the free surface, is small, being less than 0.0007 eV whic
about 2% of the relaxation energy forh.4. This will change
the vacancy concentration approximately by the fac
exp(Wint /kBT) wherekB is the Boltzmann constant andT the
temperature. At room temperature this factor is about 1
that shows that the vacancy concentration near the free
face will change by about 3%. The interaction energy in F
3 falls rapidly ash increases. This shows that the vacan
concentration will be almost independent of the depth of
vacancy.

Whenh'3.16, a fifth neighbor of the vacancy will be a
or close to the surface and the defect space of the vac
will overlap with the free surface. A fully atomistic model
needed to model a point defect at or near the free surf
This would require a detailed knowledge of the atomic
rangements at and near the free surface. In such case
~19! is not valid. The validity of our model increases wi
increasingh. For any h, the reliability of our results lies
between a pure continuum calculation and a pure lattice
culation of the semi-infinite lattice provided the lattice ca
culation has been carried out for a crystallite containing
large number of atoms. A lattice calculation using too sma
crystallite may introduce spurious size effects.

IV. DISCUSSION AND CONCLUSIONS

We have developed a multiscale Green’s funct
~MSGF! method and applied it to model a vacancy in a se
infinite fcc copper lattice containing a free surface. We ha
calculated physical quantities at two length scales~atomistic
and continuum! as summarized below.

At the continuum scale, we have calculated the strain
the displacement field at the free~100! surface as a function
of h, the depth of the vacancy from the free surface. T
displacement field at the free surface due to a single vaca
is less than 1024a and the strains at the free surface are l
than 0.01% forh.4a wherea is half the lattice constant o
Cu. These values are obtained by relating the discrete la
distortion in the core region around the vacancy to the c
tinuum model parameters at the free surface where meas
ments can be made without any need for an arbitrary a
aging algorithm.

Measurement of the strain field can be used to charac
ize the vacancy in Cu. The calculated value of the str
being less than 0.01% is rather small but can be measure
using modern techniques such as Kossel and pseudo K
techniques23 and CBED ~convergent beam electro
diffraction!24 that are suitable for small specimens. The K
ssel and pseudo Kossel techniques can measure chang
lattice constants up to 1025 nm23 which correspond to strain
less than 1025. The CBED can be used to measure24 strains
of the order of 1024. Such small strains may not be of muc
interest in bulk crystals but they are important in determin
and modeling the mechanical response of nanostructures
example, vacancies have been found to play important
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in determining the mechanical properties of nanoscale c
per and also in copper interconnects in electronic devi
~see Ref. 25 which also gives other references!.

We have also calculated the interaction energy betw
the vacancy and the free surface. It decreases rapidly wih
and is less than 0.0007 eV forh.4a which is about 2% of
the relaxation energy of the vacancy in the infinite solid. T
interaction energy between the free surface and the vaca
determines the concentration of vacancies near the free
face which is useful for modeling diffusion and other relat
processes that are important for technological applicati
such as the stability and reliability of copper interconnects
devices. In the present case, it is shown the interaction w
the surface would change the vacancy concentration by
than 3% near the free surface at room temperature.

The MSGF model is not applicable if the vacancy is t
close to the surface, that is, when the vacancy is within
range of interatomic interactions from the surface atom
However, in that region, the elastic interaction is not imp
tant. It becomes a problem of surface reconstruction whic
outside the scope of the present paper. Our calculations f
account for the discrete atomistic structure of the lattice n
the vacancy along with the effect of the free surface in
continuum limit. Such calculations have not been reported
the literature. This is achieved in our MSGF method
seamlessly linking the subnano atomistic and macro c
tinuum scales. The MSGF method treats a point defect at
atomistic level by using the LSGF and links it seamlessly
the CGF. The continuum part of the MSGF is used to mo
the macroscopic defects such as free surfaces and inter
using the standard techniques of the anisotropic continu
model.

At the atomistic scale, we have done a purely discr
lattice calculation of the lattice distortion and related para
eters for a vacancy in infinite Cu using the LSGF method a
assuming a million-atom model crystallite. We find that t
displacement of the atom which is the nearest neighbo
the vacancy is about 0.003 nm. This amounts to a substa
deformation of the solid near the vacancy which can
measured.23,24Earlier calculations using the LSGF or simila
semi-analytic methods for a vacancy in infinite Cu used
realistic pair potentials. We used the many-body poten
obtained by Cleri and Rosato,10 which depends upon the co
ordinates of 79 atoms and extends up to the fifth neighbo
each atom. This potential correctly reproduces several
static and dynamic properties of the perfect Cu lattice.

We have also calculated the relaxation energy~20.032
eV! which is a part of the formation energy of the defect. F
the infinite Cu lattice, our calculated value of the formati
energy of the vacancy agrees with that given by Cleri a
Rosato.10 This is expected because the relaxation energ
not sensitive to the size of the crystallite. In addition, w
calculated the relaxation volume (20.24Va) of the vacancy
whereVa is the volume of a monatomic unit cell. The rela
ation volume of the vacancy agrees very well with the e
perimental value20.25Va .16

Cleri and Rosato have not reported their calculated val
of the lattice distortion and the relaxation volume. This m
be partly because the conventional MD is mainly intend
9-8
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MULTISCALE GREEN’s-FUNCTION METHOD FOR . . . PHYSICAL REVIEW B 69, 094109 ~2004!
for calculations of energy and not for strains. The stra
depend upon long-range atomic displacements that are o
ously sensitive to the size of the model crystallite. For e
ample, in the present case, an atom~or effectively the va-
cancy! interacts directly with its 78 atoms~up to 5th
neighbors!. The model crystallite used in the MD calcula
tions of Cleri and Rosato contains 256 atoms. Thus the
dius of the crystallite is only about (256/78)1/3'1.5 times
the range of the atoms that are directly interacting with
vacancy. It is usual to assume the periodic boundary co
tions at the edge of the crystallite to simulate an infin
solid. This introduces spurious size effects on the calcula
values of the atomic displacements for atoms beyond the
few neighbors which are too close to the boundary of mo
crystallite.

In this paper we have considered only a single vacan
The method can be applied to small clusters of vacancie
calculating the appropriate Kanzaki forces. There is no n
to recalculate the Green’s function. This is one of the adv
tages of the MSGF method that the same Green’s func
can be used for different defects in the same host lattice

The MSGF method is especially useful for interpreti
and analyzing the elastic response of nanocrystals. In a m
ematical model of nanocrystals, the point defects need to
modeled at the atomistic scale, whereas free surfaces
interfaces can be adequately modeled at a macroscopic s
The continuum model is not reliable close to the point d
fects, where the discrete lattice effects of the crystal are v
important ~see, for example, Refs. 6 and 7!. On the other
hand, the lattice model becomes difficult for modeling s
faces and interfaces. This is partly because of the CPU
quirements and partly because the interatomic potential
a free surface may be different than that in the bulk due
the surface effects on the electronic band structure. Howe
the macroscopic elastic effects near a surface and othe
tended defects can be well represented by the contin
model.3 The MSGF model exploits this power of the co
tinuum model.

To conclude:

~i! We have calculated the discrete atomic displaceme
in the bulk, relaxation volume, strain and the displac
ment field at a free~100! surface due to a vacancy an
its elastic interaction energy with the free surface in
semi-infinite anisotropic fcc copper by using a ne
MSGF method;

~ii ! the MSGF method fully accounts for the discre
structure of the lattice in the bulk of the solid and
computationally efficient for modeling large crysta
lites. The calculation of the LSGF for a million-atom
model crystallite requires only a few CPU seconds
a standard 3 GHz desktop;

~iii ! the MSGF method bridges the length scales se
lessly from atomistic~subnano! to macro and relates
the measurable macroscopic parameters of the c
tinuum model to the discrete lattice parameters. T
makes the MSGF especially suitable for modeli
point defects in nanocrystals in which free surfac
and interfaces play important roles.
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APPENDIX A: CONTINUUM GREEN’S FUNCTION FOR
AN ANISOTROPIC SEMI-INFINITE SOLID

We give expression for the CGF of an anisotropic sem
infinite solid with a free~100! surface. For derivation and
details, see Refs. 18–20. We define a 3D vector K in
reciprocal space similar toq in Eq. ~20! whereK15cos(u);
K25sin(u); 2`<K3<` and 0<u<2p. For notational
convenience, we define a 2D vectorx andr in the subspace
of x such thatx15x1 , r 15R1 , x25x2 , andr 25R2 . We can
thus write general 3D vectorsx and R in real space as
(x,x3). In an analogous manner, we also define the co
sponding 2D vectorsk in the subspace ofK , such thatK
5(k,K3), wherek15K1 andk25K2 . In order to calculate
the CGF, we need to solve the determinantal equation

uL~k,K3!u50. ~A1!

for K3 whereL is the Christoffel matrix defined in Eq.~22!.
Equation~A1! has 6 roots that are functions ofu. We choose
three rootsQm (m51,3) which have positive imaginary
parts. The CGF for the semi-infinite solid can be written18–20

as follows:

Gc~x,R!5G0~x2R!1Gs~x,R!, ~A2!

where

G0~x2R!5ReS 1

4p2D
3E du(

m
M ~k,Q̄m!W̄mM0~k,Qm ,R!, ~A3!

Gs~x,R!52ReS 1

4p2D
3E du(

m,n
V~k,Qm ,Qn!Ms~k,Qm ,Qn ,R!,

~A4!

M0~k,Qm ,R!5@k.~x2r !1Q̄m~x32R3!1i«#21,
~A5!

Ms~k,Qm ,Qn ,R!5@k.~x2r !1Qmx32Q̄nR31i«#21,
~A6!

V~k,Qm ,Qn!5M ~k,Qm!A~k!S~k,Q̄n!M ~k,Q̄n!WmW̄n ,
~A7!

A~k!5F(
m

S~k,Qm!M ~k,Qm!WmG21

, ~A8!
9-9
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Si j ~k,K3!5ci3 jkKk , ~A9!

Wm51YF2c11c44
2 Qm )

nÞm
~Qm

2 2Qn
2!G , ~A10!

the overhead bar denotes complex conjugate, andM ~K ! is
the matrix of cofactors ofL~K !. The integral overu in Eqs.
~A2! and~A3! is carried out in the interval 0 to 2p which can
be reduced by using symmetry.

APPENDIX B: FORCE CONSTANTS AND GREEN’S
FUNCTIONS FOR PERFECT FCC COPPER, AND FORCES

AND CHANGE IN FORCE CONSTANTS DUE TO A
VACANCY IN THE DEFECT SPACE

We calculate the force constant and Green’s-function m
trices for a perfect fcc copper lattice using the CR ma
body potential.10 We also calculate the change in the forc
constant matrices and forces on each atom in an impe
copper lattice containing a single vacancy. These analyt
expressions should be useful for modeling of defects in
lattices and have not been published before.

The energy of the atomL in the CR model is written as

WL52jAEL1APL , ~B1!

where

EL5 (
L8ÞL

Va~L ,L 8!, ~B2!

PL5 (
L8ÞL

Vr~L ,L 8!, ~B3!

Va~L ,L 8!5exp22q@R~L ,L 8!/d21#, ~B4!

Vr~L ,L 8!5exp2p@R~L ,L 8!/d21#, ~B5!

R~L ,L 8!5r ~L 8!1u~L 8!2r ~L !2u~L !, ~B6!

R(L ,L 8)5uR(L ,L 8)u,u(L ) is the instantaneous displac
ment of atomL , r ~L ! is its position vector at equilibrium
and d is the nearest-neighbor distance. The values of
parameters for copper are:j51.224 eV, A50.0855 eV,q
52.278, andp510.96. We write all the distances in units
a51.805 Å, half the lattice constant of copper, so thatd
5A2. The sums in Eqs.~B2! and~B3! extend over all atoms
L 8 up to fifth-nearest neighbors.

The total energyW of the crystal is equal to the sum o
WL over all atomsL . For a perfect latticeEL , PL , andWL
are all independent ofL . We denote the value ofEL for a
perfect lattice byEp for all L . The elements of the force
matrix ~column vector! F~L ! for atomL and the force con-
stant matrixF(L ,L 8) between atomsL andL 8 are defined
as follows:

Fi~L !52]W/]ui~L ! ~B7!

and

F i j ~L ,L 8!5]2W/]ui~L !]uj~L 8!, ~B8!
09410
-
-
-
ct
al
c

he

where the derivatives are evaluated atu(L )50 for all L .
First, we evaluate the force constant matrix for the ato

L and L 8 as given by Eq.~B8!. We neglect the interaction
between atoms farther than the fifth-neighbor distance.
direct contribution toF(L ,L 8) comes fromEL andEL8(L 8
ÞL ). In addition there are indirect contributions from a
atoms that are within fifth-neighbor distance from bothL and
L 8. These contributions are given below.

Direct contributions fromEL andEL8 :

F i j
L ~L ,L 8!5jC1L@d i j Va1~L ,L 8!1D~L ,L 8! i j Va2~L ,L 8!#

2A@d i j Vr1~L ,L 8!1D~L ,L 8! i j Vr2~L ,L 8!#

1jC2LF (
L9ÞL

R~L ,L 9! iVa1~L ,L 9!G
3R~L ,L 8! jVa1~L ,L 8!, ~B9!

where

C1L5S 1

2AEL
D , ~B10!

C2L52S 1

4EL
3/2D , ~B11!

D~L ,L 8! i j 5R~L ,L 8! iR~L ,L 8! j /R2~L ,L 8!, ~B12!

Va1~L ,L 9!5@1/R~L ,L 9!#dVa~L ,L 9!/dR~L ,L 9!,
~B13!

Va2~L ,L 8!52Va1~L ,L 8!1d2Va~L ,L 9!/dR2~L ,L 9!,
~B14!

d i j is the Kronecker’s delta, and the sum in Eq.~B9! is over
all atoms within fifth-neighbor distance ofL . The quantities
Vr1 and Vr2 are defined by Eqs.~B11! and ~B12! with Va
replaced byVr . The contribution fromEL8 is given by an
equation similar to Eq.~B9! with L and i interchanged with
L 8 and j, respectively.

Indirect contribution:

F i j
I ~L ,L 8!52j (

L9ÞLÞL8
C2L9R~L 9,L ! iVa1~L 9,L !

3R~L 9,L 8! jVa1~L 9,L 8!, ~B15!

where the sum is over all atomsL 9 that are within fifth-
neighbor distance of bothL andL 8.

The total force constant matrix for the pair of atomsL and
L 8 is given by

F i j ~L ,L 8!5F i j
L ~L ,L 8!1F i j

L8~L ,L 8!1F i j
I ~L ,L 8!.

~B16!

The force constant matrix for an atom with itself is obtain
by using the condition22

(
L8

F i j ~L ,L 8!50. ~B17!
9-10
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For a perfect latticeF(L )50, EL is independent ofL , and
the sum in the third term on the right of Eq.~B9! is 0. For a
perfect lattice,F(L ,L 8) depends only uponL 8-L . The struc-
ture of these matrices is determined by the cubic symm
of the fcc lattice.6,22 The numerical results for the first
neighbors of the atom at the origin are given below in un
of eV/a2, wherea51.805 Å is half the lattice constant o
copper.

F~0;1,1,0!52F 3.322 3.603 0

3.603 3.322 0

0 0 20.319
G , ~B18!

F~0;2,0,0!52F 22.847 0 0

0 0.063 0

0 0 0.063
G * 1021,

~B19!

F~0;2,1,1!52F 21.065 20.570 20.570

20.570 21.046 0.807

20.570 0.807 21.046
G * 1022,

~B20!

F~0;2,2,0!52F 1.691 1.733 0

1.733 1.691 0

0 0 20.121
G * 1022,

~B21!

F~0;3,1,0!52F 0.796 0.417 0

0.417 20.091 0

0 0 20.160
G * 1022.

~B22!

Using the force-constant matrices given above, we calcu
the perfect lattice static Green’s function6,7 using Eq.~11! for
a million-atom model. The Green’s-function matrices for t
perfect lattice have exactly the same structure as the fo
constant matrices. The calculated Green’s function matr
for the first five neighbors are given below in units ofa2/eV.
The calculated values for further neighbors can be obtai
from the author on request.

G~0;0!5F 7.648 0 0

0 7.648 0

0 0 7.648
G * 1022, ~B23!

G~0;1,1,0!5F 2.497 0.890 0

0.890 2.497 0

0 0 2.019
G * 1022, ~B24!

G~0;2,0,0!5F 1.195 0 0

0 1.383 0

0 0 1.383
G * 1022, ~B25!
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G~0;2,1,1!5F 1.361 0.327 0.327

0.327 1.235 0.205

0.327 0.205 1.235
G * 1022, ~B26!

G~0;2,2,0!5F 1.294 0.531 0

0.531 1.294 0

0 0 0.951
G * 1022, ~B27!

G~0;3,1,0!5F 0.831 0.152 0

0.152 0.919 0

0 0 0.854
G * 1022. ~B28!

Now we calculate the change in the force-constant matr
due to a vacancy in copper. We create the vacancy at
origin. This will makeEL dependent onL and F* (L ,L 8)
will depend upon bothL and L 8 separately. We define th
defect vector space consisting of the vacancy and all at
up to its fifth neighbors. The defect space thus consists o
lattice sites including the vacant lattice site at the origin a
will be of dimension 33795237. For all atoms in the defec
spaceELÞEp and will depend upon its distance from th
vacancy. For all atoms outside the defect spaceEL5Ep .

Since there is no atom at the originF i j* (0,L )50. From
Eq. ~5!

DF i j ~0,L !5F i j ~0,L !. ~B29!

In the pair potential approximation,DF i j (L ,L 8)50 for L
ÞL 8Þ0. In the present case of the many-body poten
these matrices will not be 0. For the imperfect latti
F i j* (L ,L 8) is given by Eqs.~B9!, ~B15!, and~B16! with the
difference thatEL depends uponL and the sum in the third
term on the right of Eq.~B9! is not 0 sinceL 9 does not
include the origin. We add and subtractL 950 term to the
sum, which gives

(
L9ÞLÞ0

R~L ,L 9! iVa1~L ,L 9!52R~L ,0! iVa1~L ,0!.

~B30!

Using Eq.~B30! into Eq.~B9! givesF i j*
L(L ,L 8). There is no

change in the term due to the repulsive part of the poten
which is a pair interaction. Thus we obtain

DF i j
L ~L ,L 8!5jDC1L@d i j Va1~L ,L 8!

1D~L ,L 8! i j Va2~L ,L 8!#

2jC2Lr ~L ! iVa1~L ,0!R~L ,L 8! jVa1~L ,L 8!,

~B31!

where

DC1L5C1p2C1L ~B32!

and

C1p5S 1

2AEp
D . ~B33!
9-11
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Similarly, we calculate the contributionF* L8(L ,L 8). The
indirect contribution to the force-constant matrix is given
Eq. ~B15!. The difference from the perfect lattice term aris
becauseEL9ÞEp and, in the imperfect case, the sum overL 9
does not include the origin. We obtain

DFi j
I ~L ,L 8!52jF( 8

L9
DC2L9R(L 9,L ) iVa1(L 9,L )

3R(L 9,L 8) jVa1(L 9,L 8)

1C2pr (L ) iVa1(0,L )r (L 8) jVa1(0,L 8)G ,

~B34!

whereLÞL 8ÞL 9Þ0,

C2p52S 1

4AEp
3/2D ~B35!

and

DC2L5C2p2C2L . ~B36!

The prime over the summation sign on the right of Eq.~B34!
denotes that the summation is carried out only over all
atoms in the defect space. The totalDF(L ,L 8) is obtained
by the sum of all the contributions as in Eq.~B16!. Finally,
the change in the force constant matrix for an atom w
itself is obtained by imposing the condition of invarian
against rigid body translation given by Eq.~B17!.

In the case of a perfect lattice, since the crystal has tra
lational as well as inversion symmetry, the 333 force con-
stant matrix between a pair of atoms is symmetric. For
imperfect case, the change in the force constant matrix
tween the vacancy and an atom is symmetric in view of
~B29!. In general, this matrix between other pairs of atoms
not symmetric. The lattice retains the whole point-gro
symmetry if the point-group operators are applied about
vacancy. The matrices in the defect space can, therefore
block diagonalized by using the operators of the cubic po
group as given in Ref. 6 and reduced to 737 matrices.

Finally, we calculate the forces on all atoms in the def
space by using Eq.~B7!. The direct contribution toFL(L )
the force on atomL comes fromEL and the indirect contri-
butionFI(L ) comes from all atomsL 9 which are within fifth
neighbor distance fromL . There is no atom at the origin
Following the steps similar to those for calculating the for
constants, we obtain

Fi
L~L !52jC1Lr ~L ! iVa1~0,L !1Ar~L ! iVr1~0,L !

~B37!

*Electronic mail: tewary@boulder.nist.gov
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Fi
I~L !52jFDC1L ( 8

L8ÞLÞ0

Va1~L 8,L !R~L 8,L ! i

1C1pVa1~0,L !r ~L ! i G , ~B38!

where the summation is restricted to the defect space.
total force on atomL is given by

Fi~L !5Fi
L~L !1Fi

I~L !. ~B39!

We shall now give the solution6 of the Dyson’s equation. The
forces by Eq.~B39! are 0 outside the defect space. Hence
can solve Eq. ~6! by using the matrix partitioning
technique6,7,22 in the defect space. The matrixDF is also 0
outside the defect space. The reduced Dyson equation6,7,22 in
the defect space is given by

g* 5g1gDfg* , ~B40!

whereg, g* , andDf are, respectively, the blocks ofG, G* ,
and DF in defect space. The matrices in Eq.~B40! are 3n
33n matrices, wheren is the number of atoms in the defe
space. For point defects,n is small so Eq.~B40! can be
solved by direct matrix inversion, as given below.

g* 5~ I2gDf!21g, ~B41!

whereI is the unit matrix.
For example, for an fcc lattice with a short-range inte

atomic potential in which the defect interacts up to its seco
neighbor atoms, the matrices in Eq.~B41! are 57357. Since
a point defect such as a vacancy retains the local point-gr
symmetry of the lattice, we can use group theory to simp
Eq. ~B41! considerably. In the case of a vacancy in an f
lattice with second neighbor interaction, Eq.~B41! can be
reduced to a 232 matrix equation.6 In this paper we have
assumed a many-body potential in which each atom inter
with up to its fifth neighbors. In this case the matrices in E
~B41! are 2373237. By using group theory, these matric
can be reduced to 737.

By definition, the force matrix defined by Eq.~2! is non-
vanishing only in the defect space. Using Eqs.~8! and~B40!,
we obtain for all atoms in the defect space

u5g* f, ~B42!

wheref is the component ofF in the defect space. The Kan
zaki force in the defect space is given by

f* 5f1Dfu. ~B43!
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