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Change in low-temperature thermodynamic functions of a semiconductor due to a quantum dot

V. K. Tewary
Materials Reliability Division, National Institute of Standards & Technology, Boulder, Colorado 80305

~Received 9 July 2002; published 27 November 2002!

A phonon Green’s function method is developed for modeling the phonon modes of a semiconductor
perturbed by a quantum dot. Simple expressions are derived for the frequency spectrum of perturbed low-
frequency phonon modes and changes in the Helmholtz-free energy and the constant-volume specific heat at
low temperatures using the Debye model. The changes are found to be significant and can be used to charac-
terize the material properties of the quantum dot. The theory is also applicable to nanocrystals and other
nanoinclusions in solids.
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I. INTRODUCTION

We show that a quantum dot~QD! causes significan
changes in the phonon spectrum and the low-tempera
thermodynamic functions of the host semiconductor. Th
changes can be measured which can provide useful pa
eters for characterizing the material properties~elastic con-
stants, density! of the QD. Knowledge of these parameters
necessary for modeling the formation, growth, and stabi
of QD’s and their arrays. Characterization of QD’s is need
because the material parameters for a QD are, in gen
different than those for the bulk solid. Our results sugges
new method of characterizing QD’s which would supplem
the information obtained by the present methods s
as those based upon photoluminescence, Raman spe
copy etc.

We develop a Green’s function method for modeli
phonons in solids containing QD’s. We define a defect p
non Green’s function that gives the frequency-dependen
sponse of a solid containing a defect such as a QD. It
counts for the fact that the material parameters of the QD
different from the host solid. The Green’s function is use
for the calculation of the thermodynamic functions and ot
phonon-related characteristics of the solid such as the De
Waller factor. Our method is an adaptation of the power
discrete lattice Green’s function method1–3 that has been
used successfully for modeling crystal lattices with point d
fects.

In addition to modeling the phonons, our method can
used for the calculation of stresses and strains assoc
with a QD since the elastostatic response of a solid is sim
given by the zero-frequency limit of the phonon Gree
function.2 The use of the defect phonon Green’s functi
method is new in the continuum mechanics modeling
QD’s. The earlier Green’s function method for QD’s4–6 is
limited to elastostatic calculations and does not account
the difference between the material parameters of a QD
the host solid. The importance of the difference between
elastic constants of the QD and the host solid has rece
been discussed in detail by Ellaway and Faux.7

We use the Green’s function to calculate the change in
frequency spectrum of the host solid and its thermodyna
functions caused by the presence of a QD. Our objective
obtain an order of magnitude estimate of the above chan
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and to illustrate the use of our defect phonon Green’s fu
tion method. For low-temperature thermodynamic calcu
tions the simple Debye model is adequate1 which is valid at
low frequencies. Here ‘‘low temperatures’’ refer to temper
tures T which are much less than the Debye temperat
when the DebyeT3 law is obeyed. Similarly, ‘‘low frequen-
cies’’ refer to frequenciesv!vD , the Debye cut-off fre-
quency. In the Debye model, a solid is treated as an isotro
scalar continuum. For elastostatic calculations and more
tailed calculations of phonon characteristics, the full ten
form of the Christoffel equations has to be used.

When an impurity is introduced into a solid, it perturb
the phonon modes1 of the host solid. If the impurity has
internal degrees of freedom such as a QD, it also has inte
and interfacial phonon modes. Thus the total phonon mo
of a solid containing a QD consists of internal modes of
QD modified by the host solid, interfacial modes, and t
modes of the host solid perturbed by the impurity. The int
nal and interfacial modes of a QD have been studied in c
siderable detail by many authors@see, for example, Refs. 8
9#. However, a study of the perturbed low-frequency mod
or change in the low-temperature thermodynamic quanti
of a solid due to these modes has not been reported in
literature. Our interest in this paper is in these low-frequen
phonon modes of the host solid perturbed by the presenc
a QD.

The internal and interfacial modes of QD’s8–10 are rela-
tively high-frequency modes that can be observed by te
niques such as Raman spectroscopy.11,12They do not signifi-
cantly affect the low-temperature thermodynamic quantit
because the contribution of a phonon of frequencyv at tem-
peratureT is weighted by the factor exp(2\v/kBT) where\
is Planck’s constant andkB is the Boltzmann constant. Fur
ther, the frequency spectrum of these modes may hav
linear dependence onv. Some modes may be isolated an
localized.1 Their frequency spectrum has a delta-function d
pendence onv as in the Einstein model. These modes do n
give theT3 dependence ofCv , the specific heat of the hos
solid at constant volume at low temperatures.13,14 The fre-
quency spectrum of a perfect solid~without QD’s! is propor-
tional tov2 that gives theT3 dependence of the specific he
asT→0.

On the other hand, we find that the frequency spectrum
the perturbed low-frequency phonon modes has the quad
©2002 The American Physical Society21-1
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and higher-order dependence onv. The quadratic term is o
the same order as in the perfect Debye solid. Phonons in
Debye model are nondispersive. The presence of hig
order terms in the frequency spectrum shows the disper
behavior of phonons induced by the presence of a QD. F
ther, the perturbed low-frequency phonon modes change
low-temperature thermodynamic quantities of the host so
The quadratic and the higher-order terms in the freque
spectrum change the coefficients ofT3 and higher-order
terms in theT dependence ofCv . This changes the effectiv
Debye temperature of the host solid as well as its temp
ture dependence. Their measurements can give useful i
mation about the elastic constants and the density of the
which should supplement the information obtained by m
surements on relatively higher-frequency phonon modes

We have applied our theory to QD’s in InAs/GaAs a
Ge/Si. The change in the specific heat is proportional to
volume concentration of QD’s and depends upon the ela
constants and density of the host solid and the QD. O
formulation is also applicable to nanocrystals or oth
nanoinclusions in solids. We hope that these calculations
encourage detailed measurements on changes in the the
dynamic functions due to the formation of QD’s and nano
rystals.

II. PHONON GREEN’S FUNCTION FOR THE DEBYE
MODEL

The Debye model can be derived by taking the sca
form of the Christoffel equations of elastic equilibrium
which is

~]/]xj !@E* ~x!~]/]xj !#u~x!1r* ~x!v2u~x!5F~x!,
~1!

wherex is the 3D position vector,j 51, 2, or 3 denotes a
Cartesian component,F(x) is the applied force,u(x) is the
displacement field,E is an effective elastic constant in th
Debye approximation, andr is the density of the solid. To
account for inhomogeneities in the solid due to the prese
of a QD,E* andr* are shown in Eq.~1! as functions ofx.
The summation convention over repeated indices is assum

We assume that a single QD is located atx50 within an
area enclosed by the surfaceS. The elastic constant and th
density of the material forming the QD are assumed to
E2DE andr2Dr, respectively, whereE andr are the cor-
responding parameters of the host solid without inclusio
We can write

E* ~x!5E2H~S2x!DE, ~2!

r* ~x!5r2H~S2x!Dr, ~3!

whereH is the step function for vector arguments, and is 1
x is contained withinS, and is 0 otherwise.

Using Eqs.~2! and ~3!, the solution of Eq.~1! in matrix
notation is given by1

u5G!F* , ~4!

where
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G!5@L!#21, ~5!

L!5L2H~S2x!DL, ~6!

L5E¹x
21rv2, ~7!

DL5DE¹x
21Drv2, ~8!

¹x
2 is the Laplacian operating onx, andF* (x) includes the

additional terms on the~LHS! left-hand side of Eq.~1! con-
taining eigenstrains at the surface of the QD arising from
derivative ofH(S2x). Knowledge ofF* is not required for
calculations of the phonon modes, which are determined
the LHS of Eq. ~4!. For notational brevity, we have no
shown the functional dependence of various quantities onv.

In Eq. ~4! G! is the defect Green’s function for the solid
It is distinguished fromG5L21, which is identified as the
perfect Green’s function of the solid without the defect te
DL. The operators are represented in the vector space o
solid so we can write them in the form of matrices with the
elements labeled byx andx8.
From Eq.~5!, using the matrix notation

G!5GT21, ~9!

where

T~x,x8!5@d~x,x8!2H~S2x!DLxG~x,x8!#. ~10!

Equation ~9! has the same structure as that for defects
lattices which has been studied extensively.1–3 The vector
space generated by all values ofx in S defines the defec
space. The second term on the RHS of Eq.~10! is nonvan-
ishing only in the defect space. For localized defects,
dimensionality of the defect space is finite. We can theref
use the matrix partitioning technique1–3 for calculating the
defect Green’s function. Using this technique,1–2 we obtain
the following expression for the block of theT matrix de-
fined by Eq.~10! in the defect space:

M ~x,x8!5d~x,x8!2DLxG~x,x8!, ~11!

wherex andx8 are both confined to the defect space whe
H(S2x)51.

The defect Green’s function as defined by Eq.~9! includes
the effect of the change in the material parameters of the
through the termDL. It gives a convenient formulation fo
calculating the change in the response of a solid due to
presence of a QD or any other nanoinclusion. Equation~4!
gives the displacement field in the solid due to a QD in ter
of the defect Green’s function. The elastostatic field is o
tained by taking thev→0 limit of the Green’s function.2

Our present interest is only in the phonon modes. These
given by the poles of the Green’s function1 and the frequency
spectrum is given by the imaginary part of its diagonal e
ment (x5x8).

As shown in Ref. 1,all the perturbed phonon frequencie
are given by the zeroes ofD(v), the determinant ofM. In
order to calculateM, we first calculateG for the Debye
model by using the Fourier representation of the Gree
function as given below:
1-2
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G~x,x8!52~1/r!E ~c2k22v2!21 exp@ ik.~x2x8!#dk,

~12!

where the integration is over the Debye sphere in recipro
space andc25E/r. As in the Debye model, we take th
volume per mode as equal to 1/V, whereV5(4p/3)K3 is the
volume of the Debye sphere andK its radius.
From Eqs.~8! and ~12!, the second term on the RHS of E
~11! is given by

DLxG~x,x8!5~Dr/r!E g~k! exp@ ik.~x2x8!#dk,

~13!

where

g~k!5~h2k22v2!~c2k22v2!21 ~14!

andh25DE/Dr.
For simplicity, henceforth we neglect the size of the Q

and assume it to be confined to a single-lattice site of volu
1/V. This is a reasonable assumption because our intere
only in low-frequency phonons whose wavelengths are m
larger than the size of the QD. In this approximationx5x8
50 is the only element in Eq.~11! andM5D(v) becomes
a scalar.

In the integral in Eq.~12!, we apply the branch cut at th
negative real axis and introduce a vanishingly small ima
nary part in the frequency1 as v5v2 i0. We then evaluate
the integral over a sphere of radiusK. From Eqs.~11! and
~12!, we obtain

D~v!512~DE/E!@113dj21~3d/2!j3

3$ ln~12j!/~11j!2p i %#, ~15!

where j5v/vD , vD5cK is the Debye frequency, andd
512c2/h2.

III. CHANGE IN THE PHONON FREQUENCY SPECTRUM
AND THE THERMODYNAMIC FUNCTIONS

In order to verify our model, we first show that the ph
non Green’s function defined by Eq.~12! gives the Debye
frequency spectrum. We writev25v22 i0 in Eq. ~12! and
calculate the diagonal part (x85x) of the Green’s function.
After carrying out the integration over the Debye sphere
radiusK, we obtain

G~x,x;v2!52~3V/rvD
2 !@11~v/2vD!

3$ ln~vD2v!/~vD1v!2p i %#. ~16!

The frequency spectrumg(v) is given by1

g~v!52v~r/pV! Im G~x,x;v22 i0!5~3/vD
3 !v2,

~17!

which is the Debye formula. The low-temperature spec
heat corresponding to Eq.~17! per atom~or per mode! is
given by1

Cv~T!5kB~4p4/5!b3, ~18!
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whereb5T/u andu5\vD /kB is the Debye temperature.
The change in the frequency spectrum1 caused by a single
QD is given by

Dg~v!5~1/p! Im~d/dv! ln D~v!. ~19!

If we expand the RHS of Eq.~19! at low frequencies, the firs
two terms are

Dg~v!5~3B/2!j21~5B2/2!j4, ~20!

where

B53DEd/~DE2E!. ~21!

From Eq.~20! we see that the leading term inDg(v) is of
the same order as ing(v). The v2 term in the frequency
spectrum corresponds to nondispersive propagation
phonons as in the Debye model. The presence of hig
order terms in Eq.~20! shows dispersion of phonons caus
by the QD.

The change in the frequency spectrum can be used
calculate the changes in thermodynamic and other funct
of the solid that depend upon the frequency spectrum
phonons. However, it is possible to calculate the change
the thermodynamic functions directly by using Eq.~15! on
the imaginary axis.1 This gives the following change in th
Helmholtz-free energy asT→0,

DF~T!2DF~0!5kBT@~p4/30!Bb3

2~4p6/63!B2b51O~b7!#. ~22!

The change in the constant-volume specific heat is given

DCv~T!52T]2DF~T!/]T2. ~23!

From Eqs.~22! and ~23!, we finally obtain

DCv~T!52kB@~4p4/10!Bb31~40p6/21!B2b5#.
~24!

We see from Eq.~24! that the presence of the QD chang
the coefficients of theT3 as well as higher-order terms. Th
change in theT3 term would change the effective Deby
temperature of the solid. The change in theT6 term will
change the temperature dependence of the Debye tem
ture. For low concentration of QD’s the total change is p
portional to the concentration.1 Thus, from Eqs.~18! and
~24!, the fractional change in the lowest-order term is giv
by

DCv~T!/Cv~T!52«B/2, ~25!

where« is the relative volume concentration of the QD’s.
The change in the specific heat of the solid due to qu

tum dots can also be expressed in terms of an effective
bye temperature of the solid and its temperature depende
From Eqs.~18!, we write Cv* , the total specific heat of the
solid per degree of freedom, in terms of the effective Deb
temperatureu* as follows:

Cv* ~T!5Cv~T!1DCv~T!5kB~4p4/5!~T/u* !3. ~26!
1-3
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From Eqs.~18!, ~25!, and~26!, we obtain the following ex-
pression for the effective Debye temperature of the so
containing low concentration of QD’s and low temperatur

u* /u511«B/61~50«p2/63!B2~T/u!2. ~27!

As an example, we consider InAs QD’s in GaAs and
QD’s in Si. The effective elastic constant in the Debye mo
of an anisotropic solid should be calculated by taking
appropriate average in different directions. In the pres
case, our objective is only to demonstrate the phon
Green’s function method and apply it to qualitatively stu
the effect of the perturbed modes and obtain an order
magnitude estimate of the changes in the thermodyna
functions of the solid. We shall therefore make a simple a
reasonable assumption thatE is equal to the bulk modulus o
the solid. The results are given below~E in 1011 Pa; r in
103 kg/m3): ~i! InAs QD’s in GaAs, E(InAs)50.58,
r(InAs)55.67; E(GaAs)50.76,r(GaAs)55.32. This gives
B51.2 and DCv(T)/Cv(T)'20.6«. ~ii ! Ge QD’s in Si,
E(Ge)50.75,r(Ge)55.32; E(Si)50.98,r(Si)52.33. This
givesB55.9, andDCv(T)/Cv(T)'23«.

We see that, as physically expected,DCv(T) is large if
the difference between the material parameters of the
and the host is large. Even for«51022, DCv(T) is signifi-
cant. In many actual cases« may be much larger. For larg
concentrations, the interaction between the QD’s will be i
portant, which we have neglected. If the interaction betw
QD’s is included, the result will depend upon higher powe
of « and will cause a stronger perturbation on the h
modes. In view of rather crude approximations that are
herent in the Debye model, our results are essentially qu
,
n
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y
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tative and provide only an order-of-magnitude estimate
DCv(T) and DF(T). In general, the values of the elast
constant and the density of the material in a QD are differ
than those for the bulk. The above results show that meas
ment ofDCv(T) andDF(T) can provide an estimate ofDE
andDr for the QD.

IV. CONCLUSIONS

The phonon modes of a solid are perturbed by the p
ence of a QD or any other nanoinclusion. This is in additi
to internal phonon modes of the QD itself and any interfac
modes. The frequency spectrum of the perturbed pho
modes is proportional tov2 in the lowest order and also
contains higher-order terms. The presence of higher-o
terms in the frequency spectrum shows dispersion
phonons. The perturbed phonon modes change the co
cient of theT3 and higher-order terms in the low-temperatu
specific heat of the solid. This would result in a change in
Debye temperature as well as its temperature depende
The change is proportional to the concentration of the QD
A measurement of these changes can give useful informa
about the elastic constants and the density of the QD’s. Th
parameters are needed for modeling the formation, grow
and stability of QD’s and their arrays.
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