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Change in low-temperature thermodynamic functions of a semiconductor due to a quantum dot
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A phonon Green’s function method is developed for modeling the phonon modes of a semiconductor
perturbed by a quantum dot. Simple expressions are derived for the frequency spectrum of perturbed low-
frequency phonon modes and changes in the Helmholtz-free energy and the constant-volume specific heat at
low temperatures using the Debye model. The changes are found to be significant and can be used to charac-
terize the material properties of the quantum dot. The theory is also applicable to nanocrystals and other
nanoinclusions in solids.
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[. INTRODUCTION and to illustrate the use of our defect phonon Green'’s func-
tion method. For low-temperature thermodynamic calcula-
We show that a quantum ddQD) causes significant tions the simple Debye model is adequdaiich is valid at
changes in the phonon spectrum and the low-temperatulew frequencies. Here “low temperatures” refer to tempera-
thermodynamic functions of the host semiconductor. Theséures T which are much less than the Debye temperature
changes can be measured which can provide useful pararwhen the Debyd law is obeyed. Similarly, “low frequen-
eters for characterizing the material propertiekastic con- cies” refer to frequenciesv<wp, the Debye cut-off fre-
stants, densityof the QD. Knowledge of these parameters isquency. In the Debye model, a solid is treated as an isotropic
necessary for modeling the formation, growth, and stabilityscalar continuum. For elastostatic calculations and more de-
of QD’s and their arrays. Characterization of QD’s is neededailed calculations of phonon characteristics, the full tensor
because the material parameters for a QD are, in generdrm of the Christoffel equations has to be used.
different than those for the bulk solid. Our results suggest a When an impurity is introduced into a solid, it perturbs
new method of characterizing QD’s which would supplementthe phonon modesof the host solid. If the impurity has
the information obtained by the present methods suclinternal degrees of freedom such as a QD, it also has internal
as those based upon photoluminescence, Raman spectr@gd interfacial phonon modes. Thus the total phonon modes
copy etc. of a solid containing a QD consists of internal modes of the
We develop a Green’s function method for modelingQD modified by the host solid, interfacial modes, and the
phonons in solids containing QD’s. We define a defect phomodes of the host solid perturbed by the impurity. The inter-
non Green’s function that gives the frequency-dependent rgial and interfacial modes of a QD have been studied in con-
sponse of a solid containing a defect such as a QD. It acsiderable detail by many authdrsee, for example, Refs. 8,
counts for the fact that the material parameters of the QD ar€]. However, a study of the perturbed low-frequency modes
different from the host solid. The Green’s function is usefulor change in the low-temperature thermodynamic quantities
for the calculation of the thermodynamic functions and otherof a solid due to these modes has not been reported in the
phonon-related characteristics of the solid such as the Debydterature. Our interest in this paper is in these low-frequency
Waller factor. Our method is an adaptation of the powerfulphonon modes of the host solid perturbed by the presence of
discrete lattice Green's function methdd® that has been a QD.
used successfully for modeling crystal lattices with point de- The internal and interfacial modes of QBs® are rela-
fects. tively high-frequency modes that can be observed by tech-
In addition to modeling the phonons, our method can beniques such as Raman spectroscBpy.They do not signifi-
used for the calculation of stresses and strains associat@antly affect the low-temperature thermodynamic quantities
with a QD since the elastostatic response of a solid is simplyecause the contribution of a phonon of frequencat tem-
given by the zero-frequency limit of the phonon Green'speratureT is weighted by the factor exptiw/ksT) wheres
function? The use of the defect phonon Green’s functionis Planck’s constant ankk is the Boltzmann constant. Fur-
method is new in the continuum mechanics modeling ofther, the frequency spectrum of these modes may have a
QD's. The earlier Green’s function method for QI¥s® is linear dependence on. Some modes may be isolated and
limited to elastostatic calculations and does not account folocalized! Their frequency spectrum has a delta-function de-
the difference between the material parameters of a QD angendence om as in the Einstein model. These modes do not
the host solid. The importance of the difference between th@ive the T dependence o, , the specific heat of the host
elastic constants of the QD and the host solid has recentlgolid at constant volume at low temperatuté’ The fre-
been discussed in detail by Ellaway and Faux. quency spectrum of a perfect solidithout QD’s) is propor-
We use the Green'’s function to calculate the change in th&ional to w? that gives thel® dependence of the specific heat
frequency spectrum of the host solid and its thermodynamias T—0.
functions caused by the presence of a QD. Our objective isto On the other hand, we find that the frequency spectrum of
obtain an order of magnitude estimate of the above changdbe perturbed low-frequency phonon modes has the quadratic
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and higher-order dependence enThe quadratic term is of G*=[L*]}, (5
the same order as in the perfect Debye solid. Phonons in the
Debye model are nondispersive. The presence of higher- L*=L—H(S—x)AL, (6)
order terms in the frequency spectrum shows the dispersive
behavior of phonons induced by the presence of a QD. Fur- L= EV)2(+ pw?, @)
ther, the perturbed low-frequency phonon modes change the
low-temperature thermodynamic quantities of the host solid. AL:AEV>2<+APQ,2, 8

The quadratic and the higher-order terms in the frequency
spectrum change the coefficients & and higher-order V5 is the Laplacian operating an andF*(x) includes the
terms in theT dependence of, . This changes the effective additional terms on thé_HS) left-hand side of Eq(1) con-
Debye temperature of the host solid as well as its temperdaining eigenstrains at the surface of the QD arising from the
ture dependence. Their measurements can give useful infofierivative ofH(S—x). Knowledge ofF* is not required for
mation about the elastic constants and the density of the QFalculations of the phonon modes, which are determined by
which should supplement the information obtained by meathe LHS of Eq.(4). For notational brevity, we have not
surements on relatively higher-frequency phonon modes. shown the functional dependence of various quantities.on
We have applied our theory to QD’s in InAs/GaAs and In Eq.(4) G* is the defect Green’s function for the solid.
Ge/Si. The change in the specific heat is proportional to thét is distinguished fromG=L""*, which is identified as the
volume concentration of QD’s and depends upon the elastiperfect Green’s function of the solid without the defect term
constants and density of the host solid and the QD. OuAL. The operators are represented in the vector space of the
formulation is also applicable to nanocrystals or othersolid so we can write them in the form of matrices with their
nanoinclusions in solids. We hope that these calculations wilelements labeled by andx’.
encourage detailed measurements on changes in the thernfoom Eq.(5), using the matrix notation

dynamic functions due to the formation of QD’s and nanoc- . _
rystals. G'=GT 7, ©

where
II. PHONON GREEN’S FUNCTION FOR THE DEBYE
MODEL T(X,x")=[8(x,x")—H(S—x)AL,G(x,x")]. (10

The Debye model can be derived by taking the scalaEquation(9) has the same structure as that for defects in
form of the Christoffel equations of elastic equilibrium, lattices which has been studied extensivef/The vector

which is space generated by all values xfin S defines the defect
space. The second term on the RHS of Ed) is nonvan-
(91 9%;)[E* (X) (91 %)) Ju(x) + p* (X) @*u(x) = F(X), ishing only in the defect space. For localized defects, the

2 dimensionality of the defect space is finite. We can therefore
use the matrix partitioning techniqtié for calculating the
defect Green’s function. Using this technigié,we obtain

the following expression for the block of thE matrix de-
fined by Eq.(10) in the defect space:

wherex is the 3D position vectorj=1, 2, or 3 denotes a

Cartesian componeni(x) is the applied forcey(x) is the

displacement fieldE is an effective elastic constant in the

Debye approximation, angd is the density of the solid. To

account for inhomogeneities in the solid due to the presence "N " ,

of a QD,E* andp* are shown in Eq(1) as functions ok. MOGXT) = 8(x.X") = ALG 6T, (D

The summation convention over repeated indices is assumegherex andx’ are both confined to the defect space where
We assume that a single QD is locatedkatO withinan  H(S—x)=1.

area enclosed by the surfaBeThe elastic constant and the  The defect Green’s function as defined by Ej.includes

density of the material forming the QD are assumed to behe effect of the change in the material parameters of the QD

E—AE andp—Ap, respectively, wher& andp are the cor- through the termAL. It gives a convenient formulation for

responding parameters of the host solid without inclusionscalculating the change in the response of a solid due to the

We can write presence of a QD or any other nanoinclusion. Equatihn
gives the displacement field in the solid due to a QD in terms
E*(x)=E—H(S—x)AE, (2)  of the defect Green’s function. The elastostatic field is ob-
tained by taking thew—0 limit of the Green’s functiof.
p*(X)=p—H(S=x)Ap, (3)  Our present interest is only in the phonon modes. These are

fgiven by the poles of the Green’s functicand the frequency

spectrum is given by the imaginary part of its diagonal ele-

ment x=x").

As shown in Ref. 1all the perturbed phonon frequencies

are given by the zeroes @ (w), the determinant oM. In

u=G*F*, (4) order to calculateM, we first calculateG for the Debye
model by using the Fourier representation of the Green’s
where function as given below:

whereH is the step function for vector arguments, and is 1 i
x is contained withinS, and is 0 otherwise.

Using Egs.(2) and(3), the solution of Eq(1) in matrix
notation is given by
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) 0o g ) ) where3=T/6 and #=7% wp /Kg is the Debye temperature.
G(x,x")= —(1/P)J (k=) "exdik.(x—=x")]dk, The change in the frequency spectfucaused by a single
(120 QD is given by
where the integration is over the Debye sphere in reciprocal Ag(w)=(1/7) Im(d/dw) INnD(w). (19

space andc?=E/p. As in the Debye model, we take the ) )
volume per mode as equal to/l/whereV=(4m/3)K3 isthe  lfwe expand the RHS of Eq19) at low frequencies, the first
volume of the Debye sphere afdits radius. two terms are

From Egs.(8) and(12), the second term on the RHS of Eq.

where
AL,G(X,X )Z(Ap/p)f v(k) exd ik.(x—x")]dk, s B—3AEJ/(AE—E). (21)
13
h From Eq.(20) we see that the leading term ig(w) is of
where the same order as ig(w). The w? term in the frequency
y(K) = (72k?— 0?)(c?k2— w?) (14) spectrum corresponds to nondispersive propagation of
phonons as in the Debye model. The presence of higher-
and »*=AE/Ap. order terms in Eq(20) shows dispersion of phonons caused

For simplicity, henceforth we neglect the size of the QDby the QD.
and assume it to be confined to a single-lattice site of volume The change in the frequency spectrum can be used to
1N. This is a reasonable assumption because our interest éalculate the changes in thermodynamic and other functions
only in low-frequency phonons whose wavelengths are muclf the solid that depend upon the frequency spectrum of
larger than the size of the QD. In this approximatioax’ phonons. However, it is possible to calculate the change in
=0 is the only element in Eq11) andM =D(w) becomes the thermodynamic functions directly by using E@5) on
a scalar. the imaginary axig. This gives the following change in the

In the integral in Eq(12), we apply the branch cut at the Helmholtz-free energy as—0,
negative real axis and introduce a vanishingly small imagi-
nary part in the frequenéyas w=w—i0. We then evaluate AF(T)—AF(0)=kgT[(7*30)BS®
the integral over a sphere of radigs From Eqgs.(11) an
(19) weobtan T diis as-(11) and — (475/63B2B5+0(BN)]. (22

D(w)=1— (AE/E)[ 1+ 3d&2+ (3d/2) &3 The change in the constant-volume specific heat is given by

X{In(1—&)/(1+ &) — mi}], (15) AC,(T)=—To*AF(T)/4T? (23)
where é=w/wp, wp=cK is the Debye frequency, and ~ From Egs.(22) and(23), we finally obtain
=1-cln", 4 3 6 205
AC,(T)=—kg[(47"/10)BB~+ (407°/21)B~B>].

lll. CHANGE IN THE PHONON FREQUENCY SPECTRUM (24)

AND THE THERMODYNAMIC FUNCTIONS We see from Eq(24) that the presence of the QD changes
the coefficients of th@2 as well as higher-order terms. The
change in theT® term would change the effective Debye
temperature of the solid. The change in the term will
change the temperature dependence of the Debye tempera-
fture. For low concentration of QD’s the total change is pro-
portional to the concentrationThus, from Eqgs.(18) and
(24), the fractional change in the lowest-order term is given

In order to verify our model, we first show that the pho-
non Green'’s function defined by E¢l2) gives the Debye
frequency spectrum. We write?=w?—i0 in Eq.(12) and
calculate the diagonal park(=x) of the Green’s function.
After carrying out the integration over the Debye sphere o
radiusK, we obtain

G(x,X;0?) = — (3V/ pwd)[ 1+ (w/2wp) by
X{In(wp— w)/(wp+w)—mi}]. (16) AC,(T)/IC,(T)=—¢B/2, (29
The frequency spectrum(w) is given by wheree is the relative volume concentration of the QD’s.
The change in the specific heat of the solid due to quan-
J(w)=2w(p/7V)Im G(x,x;wz—i0)=(3/w%)w2, tum dots can also be expressed in terms of an effective De-

(17 bye temperature of the solid and its temperature dependence.

which is the Debye formula. The low-temperature specificc"0M Eds-(18), we write C7', the total specific heat of the
heat corresponding to Eq17) per atom(or per modg is solid per degree of freedom, in terms of the effective Debye
given by’L temperatured* as follows:

C,(T)=kg(47%5) 82, (18) CH(T)=C,(T)+AC,(T)=kg(475)(T/6*)3. (26)
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From Egs.(18), (25), and(26), we obtain the following ex- tative and provide only an order-of-magnitude estimate of

pression for the effective Debye temperature of the solidAC,(T) and AF(T). In general, the values of the elastic

containing low concentration of QD’s and low temperatures:constant and the density of the material in a QD are different
o ) ) 5 than those for the bulk. The above results show that measure-
0*/0=1+eBI6+(50e w/63)B(T/6)". (27 ment of AC,(T) andAF(T) can provide an estimate &fE

As an example, we consider InAs QD’s in GaAs and GeandAp for the QD.
QD's in Si. The effective elastic constant in the Debye model
of an apisotropic soliq should be .calc'ulated by taking an IV. CONCLUSIONS
appropriate average in different directions. In the present
case, our objective is only to demonstrate the phonon The phonon modes of a solid are perturbed by the pres-
Green’s function method and apply it to qualitatively studyence of a QD or any other nanoinclusion. This is in addition
the effect of the perturbed modes and obtain an order-ofto internal phonon modes of the QD itself and any interfacial
magnitude estimate of the changes in the thermodynamigiodes. The frequency spectrum of the perturbed phonon
functions of the solid. We shall therefore make a simple andnodes is proportional ta? in the lowest order and also
reasonable assumption thats equal to the bulk modulus of contains higher-order terms. The presence of higher-order
the solid. The results are given beld in 10'! Pa; p in terms in the frequency spectrum shows dispersion of
10° kg/m®): (i) InAs QD’s in GaAs, E(InAs)=0.58, phonons. The perturbed phonon modes change the coeffi-
p(InAs)=5.67; E(GaAs)=0.76,p(GaAs)=5.32. This gives  cient of theT® and higher-order terms in the low-temperature
B=1.2 andAC,(T)/C,(T)~—0.6e. (i) Ge QD’s in Si, specific heat of the solid. This would result in a change in the
E(Ge)=0.75,p(Ge)=5.32; E(Si)=0.98,p(Si)=2.33. This  Debye temperature as well as its temperature dependence.
givesB=5.9, andAC,(T)/C,(T)~ —3e. The change is proportional to the concentration of the QD’s.
We see that, as physically expectedC,(T) is large if A measurement of these changes can give useful information
the difference between the material parameters of the QpBbout the elastic constants and the density of the QD’s. These
and the host is large. Even fer=10"2, AC,(T) is signifi- ~ parameters are needed for modeling the formation, growth,
cant. In many actual casesmay be much larger. For large and stability of QD’s and their arrays.
concentrations, the interaction between the QD’s will be im-
portant, which we have neglected. If the interaction between
QD's is included, the result will depend upon higher powers
of ¢ and will cause a stronger perturbation on the host The author thanks Dr. Colm Flannery and Dr. Bo Yang for
modes. In view of rather crude approximations that are inuseful suggestions. This work was supported in part by the
herent in the Debye model, our results are essentially qualiAdvanced Technology Program of NIST.
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