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The individual laminae elastic constants in multilayer laminates composed of dissimilar isotropic
layers were determined using ultrasonic-resonance spectroscopy and the linear theory of elasticity.
Ultrasonic resonance allows one to measure the free-vibration response spectrum of a traction-free
solid under periodic vibration. These frequencies depend on pointwise density, laminate dimensions,
layer thickness, and layer elastic constants. Given a material with known mass but unknown
constitution, this method allows one to extract the elastic constants and density of the constituent
layers. This is accomplished by measuring the frequencies and then minimizing the differences
between these and those calculated using the theory of elasticity for layered media to select the
constants that best replicate the frequency-response spectrum. This approach is applied to a
three-layer, unsymmetric laminate of WpCu, and very good agreement is found with the elastic
constants of the two constituent materials. ©2003 Acoustical Society of America.
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I. INTRODUCTION

Determining the elastic constants of materials with u
known constitution is a much-studied problem in science
engineering, and there are numerous methods available
solving it. One method that is particularly robust
ultrasonic-resonance spectroscopy~URS!, in which the free-
vibration response spectrum of the solid is used in comb
tion with the theoretical values of frequencies for obje
with known density, geometry, and elastic constants.1–6 Nu-
merous applications of this method, along with descriptio
of the experimental system, measurements, and theore
analysis, are given in Migliori and Sarrao.6 The theoretical
predictions are based on the Ritz method, in which the s
tion of the weak form of the equations of periodic motion
sought as given in Hamilton’s principle, where the displa
ments are given in a finite series in terms of the spatial
ordinates of the specimen geometry. Excellent accuracy
be obtained using this approach.

To date, most applications of URS for the determinat
of elastic constants have been for homogeneous media.
sistent with these applications, the computational algorith
developed for this purpose have without exception used b
functions for the displacement components that have b
continuous with continuous derivatives~such as the Leg-
endre polynomials used for parallelepipeds by Demarest2 and
power series as used in the more general method devel
by Visscher and colleagues7!. This is a valid and useful ap
proach for homogeneous media, but special care mus
taken when considering dissimilar media. At an interface
tween two materials that differ in elastic properties, the tra
2618 J. Acoust. Soc. Am. 114 (5), November 2003 0001-4966/2003/
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verse shear stresses are continuous across the interfac
there is a jump in shear modulus. Hence, there is a disco
nuity in the through-thickness displacement gradient t
cannot be represented using functions withC1 continuity
~i.e., functions such as power series, which possess con
ous first derivatives over the specimen domain!.

Recently, we developed a method to account for
through-thickness behavior of laminated elastic and pie
electric media.8 This method is based on a discrete-layer a
proximation to the weak form of the equations of motion,
which we split the through-thickness and in-plane dep
dence of the approximation functions in the Ritz metho
Similar approaches have been used in related problem
Pauley and Dong9 for wave propagation in laminated piezo
electric media, and a generalized discrete-layer approach
elastic laminates by Reddy.10 With this model in hand, our
present objective is to evaluate the elastic constants and
sities of layered parallelepipeds where only the edge dim
sions, layer thicknesses, total mass, and free-vibrat
response spectra are given. To our knowledge, this is the
application of URS to dissimilar composites of this type, a
it results in a method where, rather than separating the i
vidual constituents of the composite, we can consider
component as a whole.

II. MATERIAL

Three-layer Wp /Cu laminates were fabricated by
powder-metallurgy approach in which powders of spec
compositions were mixed, layered, and then densified i
hot press. High-purity ~99.9! 1–5-mm-diameter copper
114(5)/2618/8/$19.00 © 2003 Acoustical Society of America
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FIG. 1. Microstructure of the trilayer composite inte
face and the copper/tungsten composite.
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powder11 was mixed with high-purity~99.95! W powder
with an average particle diameter of 1mm.12 Cu–W powders
were made by mixing amounts of pure W and Cu that wo
lead to a 20 percent composite when fully dense, and mil
in a polycarbonate bottle with four to five cleaned alumi
balls for 24 h. The laminate was made by pouring first
Cu–W powder, then the pure Cu powder, and finally m
Cu–W powder into a 25.4-mm-diameter graphite die. T
inner walls of the die were coated with BN to prevent chem
cal reaction with carbon. After each powder type was pour
a clean steel punch was used for leveling. This resulted
powder stack consisting of 20%W/0%W/20%W. The stack
powders were then sintered in a hot press under a vacuu
1.3331022 Pa, a load of 40 MPa at 985 °C for 15 mi
Cooling was accomplished with the load still applied a
rate of about 20 °C/min, until about 500 °C, at which po
the rate slowed substantially. A dense trilayer sample con
ing of 20%W/0%W/20%W resulted, with layer thickness
of 1.50 mm/1.88 mm/1.66 mm, respectively.

The composite microstructure and the nature of the
terface between layers is apparent in the scanning elec
micrograph shown in Fig. 1. The light and dark contra
represent the W and Cu, respectively. Consistent with
fact that Cu and W do not react and are mutually insolub
observations in the scanning electron microscope~SEM! in-
dicated that the interface between the 20% W and 0%
layers represents a discrete transition between these co
sitions, without the presence of a discernible interphase.~The
SEM’s resolution limit is approximately 0.1mm!. The inter-
face plane does exhibit some roughness. Typically, the in
face position varies by less than 100mm over 2 mm.

Single-composition composites~20% W and pure Cu!
were produced as described above to measure the e
properties of the material in the outer layers. The hot-pres
trilayer composites were subsequently cut by diamond
into specimens of dimensions 7.0137.8435.04 mm, with
the layers in the third dimension. Single-composition spe
mens were cut by electrodischarge machining to dimens
10.039.038.0 mm, with no layers.

III. THEORY

A. Geometry and boundary conditions

The rectangular parallelepiped described in the previ
section is a special case of the general layered block assu
in our theoretical calculations. The parallelepiped is in g
J. Acoust. Soc. Am., Vol. 114, No. 5, November 2003
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eral composed of an arbitrary number of elastic and isotro
layers. The parallelepiped has dimensions Lx , Ly , and Lz ,
and the z direction is perpendicular to each dissimila
material interface. Each layer has constitutive equations
can be expressed as13

s i j 5ld i j ekk12mei j . ~1!

Here,l andm are the Lame´ parameters,d i j is the Kronecker
delta,s i j are the components of stress, andei j are the com-
ponents of infinitesimal strain. We also use the alternate fo
of the constitutive relation

s i j 5Ci jkl ekl , ~2!

where theCi jkl are the components of the elastic-stiffne
tensor, which can be expressed in terms of the two La´
parameters. The strain-displacement relations are given

ei j 5
1

2 S ]ui

]xj
1

]uj

]xi
D . ~3!

Here,ui represent the displacement components.
Hamilton’s principle forms the basis for the weak for

of the equations of motion14

dE
t0

t

dtE
V
F1

2
ru̇ j u̇ j2Uo~ekl!GdV1E

t0

t

dtE
S
T̄kduk dS50.

~4!

Here,t is time,V andSare the volume and surface occupie
by and bounding the solid,T̄ are the specified surface trac
tions, d is the variational operator, the overdot superscr
represents differentiation with respect to time, andUo repre-
sents the strain-energy density, given for a linear elastic
terial as

U5 1
2Ci jkl ei j ekl . ~5!

The weak form of the governing equations, as well
the governing differential equations themselves, can
found by substituting the above relations into Hamilton
principle. Here, we use the usual contracted notation for
elastic stiffnessesCi jkl by compressing theij andkl indices
into a single index ranging from 1 to 6, and maintaining t
range ofm from 1 to 3. For example,C1122 becomesC12,
and so on. In rectangular Cartesian coordinates, we sex1

5x, x25y, and x35z, with the displacements asu1

5u(x,y,z), u25v(x,y,z), and u35w(x,y,z). The weak
form can be expressed using this nomenclature as
2619Heyliger et al.: Isotropic laminates



dE
t0

t

dtE
V
Fr~ u̇du̇1 v̇d v̇1ẇdẇ!2FC11

]u

]x

]du

]x
1C12

]u

]x

]dv
]y

1C13

]u

]x

]dw

]z
1C12

]v
]y

]du

]x
1C22

]v
]y

]dv
]y

1C23

]v
]y

]dw

]z
1C13

]w

]z

]du

]x
1C23

]w

]z

]dv
]y

1C33

]w

]z

]dw

]z
C44S ]v

]z
1

]w

]y D S ]dv
]z

1
]dw

]y D
1C55S ]u

]z
1

]w

]x D S ]du

]z
1

]dw

]x D1C66S ]u

]y
1

]v
]xD S ]du

]y
1

]dv
]x D G GdV1E

t0

t

dtE
S
T̄kduk dS50. ~6!
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B. Discrete-layer approximation

In many past studies, approximations to the three d
placements are generated in terms of the global (x,y,z) co-
ordinates. In this study, the dependence of the displacem
on thez coordinate is separated from the functions inx andy.
This allows for global functions inx and y that result in a
subsequent reduction of the size of the computational p
lem. Hence, approximations for the three displacement c
ponents are sought in the form10

u~x,y,z,t !5(
i 51

m

(
j 51

n

U ji ~ t !C i
u~x,y!C̄ j

u~z!,

v~x,y,z,t !5(
i 51

m

(
j 51

n

Vji ~ t !C i
v~x,y!C̄ j

v~z!, ~7!

w~x,y,z,t !5(
i 51

m

(
j 51

n

Wji ~ t !C i
w~x,y!C̄ j

w~z!.

Here, m and n are the respective number of in-plane a
through-thickness terms used to approximate each varia
The approximations for each of the three field quantities
constructed in such a way as to separate the dependen
the planar coordinate variables from that in the coordin
variable perpendicular to the interface. The reason for thi
that the change in the material properties forces a brea
the gradients of the displacements across an interface.
can be seen easily by considering the case of shear stres
dissimilar-material interface. Since the stress must be c
tinuous across an interface but the shear modulus is diffe
for two layers, the shear strain must be different. This i
plies that the slope of the displacement variables across
interface must be different, thus eliminating functions su
2620 J. Acoust. Soc. Am., Vol. 114, No. 5, November 2003
-

nts

b-
-

le.
e
in

e
is
in
his
at a
n-
nt
-
he
h

as the commonly used power series7 or Legendre
polynomials.3

In the thickness direction, one-dimensional Lagrang
interpolation polynomials are used forC̄ j (z). For the in-
plane approximations, different types of approximations c
be used for the two-dimensional functionsC j (x,y). We use
power series for the problem of traction-free vibration. Fo
parallelepiped withn layers (n21) is the number of subdi-
visions through the parallelepiped thickness~typically taken
equal to or greater than the number of layers in the para
epiped!, and G j i is the value of componentG at height j
corresponding to thei th in-plane approximation function.10

Substituting these approximations into the weak form
Eq. ~6!, introducing the assumption of periodic motion, co
lecting the coefficients of the variations of the displacemen
and placing the results in matrix form, we obtain the resu

rv2F @M11# @0# @0#

@0# @M22# @0#

@0# @0# @M33#
G H $u%

$v%
$w%

J
2F @K11# @K12# @K13#

@K21# @K22# @K23#

@K31# @K32# @K33#
G H $u%

$v%
$w%

J 5H $0%
$0%
$0%

J . ~8!

The elements of these submatrices are themselves subm
ces whose elements are determined by evaluating the p
tegrated elastic stiffnesses through the thickness multip
by the various shape functions or their derivatives as de
mined by the variational statement. If these submatric
each of order (n11), are defined by the subscriptsa andb,
TABLE I. Groupings of approximation functions.

Group Displacement x y z Group Displacement x y z

OD u O E E OX u O O O
v E O E v E E O
w E E O w E O E

EY u O O E EZ u O E O
v E E E v E O O
w E O O w E E E

EX u E E E EV u E O O
v O O E v O E O
w O E O w O O E

OY u E E O OZ u E O E
v O O O v O E E
w O E E w O O O
Heyliger et al.: Isotropic laminates
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the corresponding elements can be expressed in a fairly c
pact form. These are given in the Appendix.

The matrix equations are general and can accommo
approximating functions in (x,y) that are either global and
analytic ~such as Fourier or power series! or local and ex-
actly evaluated~such as finite-element polynomials!. The de-
pendence on thez coordinate has been eliminated by pre
tegrating, which manifests itself in the matrix equatio
above. Because of the nature of the approximating functi
themselves, the derivatives of the displacement are cont
ous over only a specific sublayer. If the material is homo
neous, this is still an acceptable approximation even fo
subdivided layer because the behavior trends toward a
tinuous derivative as the number of layers increases. For
case of dissimilar media, the functions allow a break in
slope, which matches physical reality much more accura
than does a global approximation.

For a homogeneous isotropic parallelepiped, Oh3

showed that the eigenvalue problem in Eq.~8! can be split
into eight smaller problems using symmetry arguments of
displacement-field components and matching these with
appropriate series terms in the approximation functio
These are denoted by the eight groups listed in Table3

where the letters O and E, respectively, denote functions
are odd or even with respect to the appropriate spatial c
dinate. For example, power series can be used for each o
displacement functions~such as in the powerful algorithm o
Visscher and colleagues7!. Including six terms in the Pasca
triangle visualization of the approximation functions~i.e.,
terms up tox5y5z5) means a general eigenvalue problem
three unknowns with 63 terms in each, or an eigenvalu
problem of dimension 648. If symmetry is used, this probl
can be split into eight problems of dimension 81, grea
increasing the speed of this computation. This calculat
must be completed many times when the elastic constant
being computed, and hence the splitting of the original pr
lem possesses much appeal.

For the layered bimaterial, however, there is no mate
symmetry about thex–y plane, and hence the splitting op
J. Acoust. Soc. Am., Vol. 114, No. 5, November 2003
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eration for this characteristic must be removed. This res
not in eight groups, but four, which are the more generaliz
groups defined in Table I before exploiting symmetry abo
thex–y plane. We define these four groups and their label
in Table II.

IV. MEASUREMENTS

We measured three materials: nearly texture-free cop
0.2W/Cu composite, and a three layer 0.2W/Cu–C
0.2W/Cu laminate. Using an optical microscope, we m
sured layer thicknesses of 0.150–0.188-0.166 cm for
laminate. Mass densities were determined using Archime
method with distilled water as a standard. The copper c
tained a significant volume fraction of voids that lowered t
expected mass density by about 8%. The composite sp
men contained about 1% voids. For the elastic-constants
termination, we used URS as described in the previous
tion and by Migliori and Sarrao6 for homogeneous materials

The sending and receiving transducers were poled p
crystalline lead zirconate titanate~PZT! that hold the speci-
mens by their corners diagonally. One transducer transm
continuous sinusoidal waves to the specimen, and the o
transducer detects the specimen’s displacement respo

TABLE II. Group structure for layered isotropic laminate.

Group Displacement x y

1 u E E
v O O
w O E

2 u E O
v O E
w O O

3 u O O
v E E
w E O

4 u O E
v E O
w E E
m
-

e
-

FIG. 2. Measured resonance spectru
of trilayer laminate. Resonant frequen
cies yield theCi j . The bars at the bot-
tom of the figure indicate resonanc
frequencies calculated from the de
ducedCi j .
2621Heyliger et al.: Isotropic laminates
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Their center frequencies were 10 MHz. Their broadba
character permits using them far from their resonance
quencies, thus minimizing the piezoelectric-crystal contrib
tions to the systems macroscopic frequencies and damp
Figure 2 shows the frequency-response spectrum for the
ered composite. The two separate constituent materials
have a response spectrum, but their individual behavio
used only to compare with the results from our layer
model, and hence these are not shown. As discussed ab
the resonance frequencies depend on specimen shape,
mass~or mass density!, elastic stiffnesses, and layer thic
nesses. Although not reported, internal frictions can be
culated from the half-power width of associated resona
peaks.

V. RESULTS AND DISCUSSION

The general procedure that forms the foundation of
ing URS to calculate the elastic constants is to iterativ
select the elastic constants that give the best fit to the m
sured frequencies. This is accomplished by minimizing
differences between the measured and experimental freq
cies using the Levenburg–Marquardt algorithm.13 Details of
this procedure are described by Migliori and Sarrao.6

Two types of models are used to determine the ela
constants of the constituent materials used in this study.
model of most interest is the discrete-layer model descri
above, which is necessary to represent the through-thick
behavior of the layered material. However, we also us
simpler method to calculate the elastic constants of eac
the two constituent materials when these materials appe
a homogeneous block. In this case, global basis funct
with C1 continuity can be used since the displacement g
dients are continuous within the deformed~vibrating! solid.
Our weak form and matrix equations now remain the sa
but in this case ourz-direction approximations retain th
form used for the in-plane approximation functions. Th
methodology is well developed~see, for example, Refs.
and 5! and we will not discuss it here other than to note th
we used the same fitting procedure for the experimental
quencies of the homogeneous blocks as we did for the
ered material, with a resulting frequency rms error of 0
percent for the Cu and 0.08 percent for the Wp /Cu compos-
ite. We note that for the homogeneous block, only two ela
parameters are fit to the measured frequencies; for the
ered block, there are four.

It is usually necessary to use a number of frequencie
least five times larger than the number of unknown consta
to be determined.6 In this application, we use the lowest 2
frequencies in our inversion scheme for the layered mate
Although it is not uncommon to have missing modes in
response spectrum, that is not the case here and our the
ical frequencies show a very strong relationship with the
perimental frequencies. We iteratively solve the eigenva
problem given in Eq.~8! until the differences between th
measured and computed frequencies reach a minimum.
initial guess for the elastic constants has no effect on the fi
values provided they are within a reasonable range~5–10
percent! of the final elastic constants. This point is discuss
in more detail by Migliori and Sarrao.6
2622 J. Acoust. Soc. Am., Vol. 114, No. 5, November 2003
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The 29 frequencies used in the minimization proced
can be split into four groups as described above. Each
these frequencies has a corresponding modal displace
pattern of the deformation pattern the specimen undergoe
it oscillates at this frequency. In Figs. 3–6 we show the lo
est nonzero modal pattern for each of the four groups.
the type of assumed displacement field we have used in
solution methodology, there are six rigid-body modes~three
translational and three rotational! that result in a displace
ment with zero strain energy. These each yield a frequenc
0, and are not included in our results other than to note
groups 1 and 3 possess one each of these modes, with gr
2 and 4 possessing two each. In several of these fig

FIG. 3. Modal shape for the lowest mode in group 2~and lowest overall
frequency! for layered bimaterial. Physically, this corresponds to shear
the x–y plane. This is the first nonzero frequency in group 2. This mo
group has one rigid-body mode with zero frequency.

FIG. 4. Modal shape for the lowest mode in group 4 for layered bimate
This mode corresponds to the breathing mode associated with the flat
remaining nearly plane but undergoing uniform deformation across eac
the six faces. This is the first nonzero frequency in group 4 which, a
group 2, also has a single rigid-body mode.
Heyliger et al.: Isotropic laminates
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~where four divisions have been used for each physical la
of the specimen!, the modal patterns show the break in t
shear strain at a dissimilar material interface, indicating
need for appropriate approximating functions through
thickness.

The final values for the elastic constants of the two c
stituent materials are given in Table III, and were calcula
with a final rms error in frequency of 0.26 percent. In th
table, the elastic constants are compared with values ca
lated using methods described above. Our theoretical m
for the layered material assumes that each of the layer
isotropic, and hence we estimate a singleC11 and C44 for
each of the two layers. The good fit to the measured frequ
cies is further demonstrated in Table IV, where we show

FIG. 5. Modal shape for the lowest mode in group 1 for layered bimate
This group has two rigid-body modes.

FIG. 6. Modal shape for the lowest mode in group 3, which also has
zero rigid-body frequencies and corresponding modal shapes.
J. Acoust. Soc. Am., Vol. 114, No. 5, November 2003
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measured frequencies compared with the theoretical freq
cies as calculated using the final elastic constants for the
layers. Also shown in this table are the frequencies t
would result if the parallelepiped were a homogeneous bl
of either of the two materials, with block H1 denoting
homogeneous block of 20 percent tungsten and H2 a ho
geneous block of pure copper. Lack of significant anisotro
in the elastic constants shown in Table IV reveals nea
texture-free materials, as expected for powder-metallu
preparation.

Our results forC11 lie within 0.9% of those of the aver
age equivalent moduli for the Cu and 1.9% of the Wp /Cu
composite. Our values forC44 are within 0.6% and 0.05%
for the same two materials, respectively. It is quite possi
that for a block with such a low aspect ratio, modes invo
ing shear deformation are more dominant, leading to be
agreement for the shear moduli than that ofC11. Other natu-
ral sources of error include the precise nature of
dissimilar-layer bond and our treating each of the mater
as isotropic in our layered model.

Our ability to extract the elastic constants of individu
layers within a laminate could prove to be significant f
certain types of materials for which a homogeneous sp
men may be difficult to procure. Thin films on substrates
natural multilayered solids could potentially be studied us
this approach without having to separate the materials
individual examination. Though not without limitations, w
have shown for the first time that ultrasonic-resonance sp
troscopy methods can be applied to layered systems
reasonably good results. Applications to more complex s
tems await future study.

l.

o

TABLE III. Calculated material properties for Cu and 0.2 Wp /Cu compos-
ite. The subscript H denotes that a homogeneous specimen was us
calculate the elastic properties, whereas the subscript L denotes calcu
using the layered specimen and discrete-layer theoretical model that i
primary focus of this study. The parametersCL , B, G andE, are the longi-
tudinal, bulk, shear, and Young moduli, andn andc are the Poisson ratio and
void volume fraction, respectively. All constants are in GPa exceptr, n, and
c.

Cu (URSH) Cu (URSL)
0.2 Wp /

Cu (URSH)
0.2 Wp /

Cu (URSL)

r ~g/cm3! 8.2348 10.8954
C11 155.71 239.74
C22 157.79 154.88 240.30 242.18
C33 155.31 233.23

C44 40.001 60.015
C55 39.953 40.25 59.985 60.31
C66 40.175 60.845

C12 76.518 118.51
C13 75.733 74.37 116.83 121.56
C23 76.557 116.95

CL 156.30 237.80
B 102.93 157.52
G 40.025 60.213
E 106.30 160.22
n 0.3279 0.3305
c 0.078 0.009
2623Heyliger et al.: Isotropic laminates
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TABLE IV. Modal groups and frequencies~in Hz! for laminated and homogeneous blocks.

Mode vexp v lay Glay vH1 GH1 vH2 GH2

1 123 942 123 427 2 129 045 2 105 420 2
2 169 557 169 834 4 175 576 4 143 242 4
3 187 150 185 726 2 203 567 1 165 928 1
4 190 199 189 992 1 207 530 2 169 501 2
5 195 462 195 012 2 211 099 2 172 448 2
6 213 480 213 429 3 225 387 4 183 066 4
7 214 272 214 545 4 232 775 4 190 131 4
8 218 005 217 919 4 237 165 1 193 545 1
9 220 732 220 782 1 237 460 3 193 662 3

10 221 446 220 885 3 238 123 3 194 436 3
11 232 966 232 829 1 258 947 3 211 037 3
12 241 005 240 977 4 260 030 1 212 193 1
13 242 515 242 622 3 262 221 4 213 874 4
14 258 394 259 043 4 287 736 4 234 620 4
15 276 146 275 605 1 297 445 1 242 835 1
16 298 201 297 474 2 323 122 1 263 872 1
17 298 964 299 177 1 324 685 3 265 165 3
18 304 732 304 759 3 326 833 3 266 848 3
19 305 277 305 047 3 327 795 2 267 450 2
20 308 197 308 117 2 330 751 4 269 744 4
21 313 024 312 235 4 350 621 1 285 526 1
22 315 030 315 415 3 351 051 3 285 749 4
23 316 972 315 811 4 351 535 4 285 912 3
24 319 186 319 121 1 351 595 2 286 695 2
25 324 133 324 330 4 359 377 4 292 252 4
26 331 772 333 170 1 363 043 4 296 226 4
27 333 451 333 674 4 370 136 2 302 195 2
28 335 782 335 629 3 372 100 4 303 725 4
29 340 605 342 694 4 381 167 1 310 452 1
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VI. CONCLUSIONS

~1! Discrete-layer models that account for kinks in displa
ment gradients across a dissimilar-material interface
crucial in obtaining accurate theoretical frequency p
dictions and subsequent estimates of elastic constan

~2! Ultrasonic-resonance spectroscopy can be applied to
ered isotropic laminates with good accuracy. For
trilayer composite, we found matching of the first 2
frequencies yielding an rms error of 0.26 percent b
tween theoretical and measured frequencies. There w
no missing modes.

~3! Layer elastic constants of the two dissimilar materi
agree with elastic constants computed using homo
neous specimens within 0.9 percent for the Cu and
percent for the Wp /Cu composite forC11, and within
0.6 and 0.05 percent, respectively, forC44.
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APPENDIX:

The entries in the element coefficient matrices can
expressed as
oc. Am., Vol. 114, No. 5, November 2003
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The submatrices listed above are computed by preintegra
the functions inz. For any general approximation through th
thickness, these can be expressed as

Ai j
km5(

l 51

N E
zl

zl 11
CkmC̄ i~z!C̄ j~z!dz, ~A7!

Bi j
km5(

l 51

N E
zl

zl 11
CkmC̄ i~z!

dC̄ j~z!

dz
dz, ~A8!

B̄i j
km5(

l 51

N E
zl

zl 11
CkmC̄ i~z!C̄ j~z!dz, ~A9!

Di j
km5(

l 51

N E
zl

zl 11
Ckm

dC̄ i~z!

dz
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dz
dz. ~A10!
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