
PHYSICAL REVIEW B 68, 064108 ~2003!
Analysis of anelastic dislocation effects in the presence of an unknown background

Ward L. Johnson
Materials Reliability Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA

~Received 7 May 2002; revised manuscript received 13 May 2003; published 12 August 2003!

The general problem of analyzing acoustic measurements of dislocation anelasticity in the presence of
unknown background contributions is addressed for situations where material treatments induce changes in the
physical parameters governing dislocation motion. The analytical approach focuses on the derivatives of the
frequency-dependent acoustic damping and velocity with respect to a single experimental variable, such as
irradiation flux, annealing time, or applied stress. The equation of dislocation motion is taken to be that of an
overdamped harmonic oscillator with no restrictions on the specific physical model for the inertial, damping,
and restoring parameters. The problem is simplified by considering all dislocations in a specimen to have the
same values of these parameters, so that the contributions to the damping and velocity have the general form
of Debye functions with a single relaxation time. Although the subsequent discussion remains focused on
dislocations, the analytical approach is framed in such general terms that it can be applied to any relaxation or
overdamped resonance having a Debye form. All possible combinations of changing relaxation strength and
relaxation time are considered, and curves of the derivatives of the damping and velocity and the incremental
exponents of the frequency dependence as a function of the product of the relaxation time and measurement
frequency are presented. Since values for the abscissa in these plots cannot be directly measured in an
experiment, additional practical curves are presented of the ratio of derivatives of the damping and velocity
versus the measurable frequency exponents. For a given set of measurements, approximate values of physical
parameters determined from inspection of these graphs can be used as initial guesses in a least-squares
minimization to determine values of the relaxation time and the relative magnitude of changes in relaxation
strength and relaxation time. Two examples of data from the published literature are used to illustrate the
method of analysis.

DOI: 10.1103/PhysRevB.68.064108 PACS number~s!: 62.40.1i, 61.72.Hh, 62.80.1f
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I. INTRODUCTION

The analysis of anelastic effects~internal friction! in ma-
terials is usually complicated by the fact that a number
internal and external mechanisms dissipate acoustic en
Since the goal of such measurements is to identify and c
acterize particular physical loss mechanisms through t
dependence on frequency, temperature, or some other ex
mental variable, the contributions from other sources so
how must be removed from the analysis. In this paper, m
ods are presented for analyzing changes in the damping
velocity in material with changes in physical parameters t
significantly affect only one anelastic contribution with a D
bye dependence on frequency. Central elements of the
lytical approach are expressed in very general terms, ma
them applicable to any mechanism with a Debye form,
cluding point-defect and dielectric relaxations. However,
presentation is focused on measurements of disloca
anelasticity, because the problems of background subtrac
generally seem to be most severe for such measurem
Part of the motivation for pursuing this work has been
provide a systematic approach for determining the validity
models for the recovery of damping and velocity in Al~Zn!
~Ref. 1! and ferritic steels~Ref. 2! following the application
of tensile loads.

In anelastic studies of point defects, extraction of the
fect contribution can be relatively straightforward, becau
these contributions consist of one or more Debye functi
~peaks in the damping and dispersions in the velocity a
function of temperature or frequency!, each with an Arrhen-
0163-1829/2003/68~6!/064108~11!/$20.00 68 0641
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ius temperature dependence of the relaxation time. Beca
of the exponential dependence of the relaxation time on
verse temperature, point-defect damping peaks and velo
dispersions usually appear over relatively narrow tempe
ture ranges and can be convincingly separated in an ana
by assuming a simple functional form for the temperatu
dependence of the background. A similar approach
sometimes be used with measurements as a function of
quency, if the relaxation time falls in an appropriate range
the temperature dependence of point-defect relaxation
measured as a function of a material treatment, such as
diation or annealing, the analysis can be even more strai
forward. In this case, the relaxation times are usua
constant—only the magnitude of the relaxations~propor-
tional to the point-defect concentration! varies with material
treatment—and the changes in damping and velocity
simply proportional to the Debye functions.

In studies of dislocations, the separation of anelastic c
tributions is usually much more challenging, because the
laxation time has a relatively weak temperature depende
with an unknown functional form. Complete characterizati
in the frequency domain has rarely been attempted bec
of the technical difficulties of performing accurate measu
ments over the necessary range of ultrasonic frequenc
The relaxation time, in addition to the relaxation streng
usually changes with material treatments, so that change
damping and velocity are not simply proportional to the to
dislocation contributions, as they are for point defects. F
example, in the classical string model for dislocati
anelasticity,3,4 changes in pinning length affect both the r
©2003 The American Physical Society08-1
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laxation time and relaxation strength. Irradiation has be
effectively used to separate the dislocation contributions
internal friction, since it can provide values for the bac
ground damping~arising from sources other than disloc
tions! by essentially immobilizing dislocations wit
radiation-induced point defects. However, when perform
many types of measurements, irradiation is not a feas
experimental procedure, and a direct determination of
background is not possible. Therefore, the general prob
of analyzing dislocation effects in the presence of an
known background has been a major impediment in this fi
of research. This paper seeks to address this problem.

II. DYNAMIC EQUATIONS

The equation of motion of a dislocation with Burger
vector magnitudeb under a resolved shear stresss can be
approximated as5,6

A
d2y

dt2
1B

dy

dt
1Ky5bs, ~1!

wherey is the displacement averaged over the length of
dislocation,A is an effective dislocation mass per unit leng
B is the effective viscosity, andK is the restoring force.

The detailed physical model that is employed determi
the dependence ofA, B, andK on parameters of the disloca
tion and surrounding crystal. In the string model of Koehl3

and Granato and Lu¨cke,4 A is on the order ofrb2, wherer is
the density of the crystal. Taking the dominant first term
the Granato-Lu¨cke4 series expansion~that is, approximating
the dislocation displacement as sinusoidal!, K is equal to
p2C/L2, whereC is the effective dislocation line tension an
L is the distance between pinning points.5,6 Granato and
Lücke4 approximateC as 2G0b2/@p(12n)#, whereG0 is
the elastic modulus for shear in the glide plane with pol
ization parallel to the Burgers vector andn is Poisson’s ratio.
Various physical mechanisms may contribute toB in the
string model, including thermoelasticity, interactions w
thermal phonons and electrons, and dragging of po
defects.

Equation~1! is that of a damped forced harmonic oscill
tor. If s5s0exp(ivt) ~wheres0 is a constant,v is the an-
gular frequency, andt is the time!, then the solution is7

y5
bs0

A

exp~ ivt !

v0
22v21 iBv/A

, ~2!

where

v05AK/A. ~3!

The effect of dislocation motion on the propagation of aco
tic waves is derived from the fact that the shear strained
produced by the movement of a set of identical dislocati
with densityL is given by

ed5Lby. ~4!
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If the acoustic wave has only a shear component with po
ization parallel to the Burgers vector, the elastic strain of
surrounding latticeee is equal to the ratio of the acousti
stress and the perfect-crystal elastic constant:

ee5s/G0 . ~5!

The more general case of arbitrary symmetries of the aco
tic wave and dislocation is not considered here. This can
included by introducing an orientation factor in the final e
pression for the relaxation strength@Eq. ~12!, below#.

The complex elastic complianceJ(v) of a crystal with
dislocations is equal to the ratio of the total strain and stre

J~v!5
ee1ed

s

5
1

G0
1

Lb2

Av0
2

12~v/v0!2

@12~v/v0!2#21@B/~Av0!#2~v/v0!2

2
iLb2

Av0
2

@B/~Av0!#~v/v0!

@12~v/v0!2#21@B/~Av0!#2~v/v0!2
.

~6!

The dislocation contributions toJ(v) are much smaller than
the elastic contribution~first term!, so that the fractional
change in the absolute dynamic compliance8 uJ(v)u relative
to the perfect-crystal complianceJ0 ([1/G0) is closely ap-
proximated by

uJ~v!u2J0

J0
'

Jre2J0

J0

5
G0Lb2

Av0
2

3
12~v/v0!2

@12~v/v0!2#21@B/~Av0!#2~v/v0!2
,

~7!

where Jre is the real part ofJ(v). The dampingQ21 is
approximated by

Q21'2
Jim

J0

5
G0Lb2

Av0
2

@B/~Av0!#~v/v0!

@12~v/v0!2#21@B/~Av0!#2~v/v0!2
,

~8!

whereJim is the imaginary part ofJ(v). The changes in the
measured real elastic constantG and acoustic velocityv are
given by

2~v2v0!

v0
'

uGu2G0

G0
'2

uJu2J0

J0
, ~9!

wherev0 is the velocity in a perfect crystal.
8-2
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ANALYSIS OF ANELASTIC DISLOCATION EFFECTS . . . PHYSICAL REVIEW B 68, 064108 ~2003!
In almost all experimental studies, dislocation motion
found to be overdamped. That is,B/(Av0)@1, andQ21 and
(uGu2G0)/G0 have significant magnitude only at freque
cies much smaller thanv0. In this case,v/v0!1 at all
frequencies of interest, and Eqs.~7!–~9! are closely approxi-
mated by Debye expressions,8

Q21'D
vt

11v2t2
, ~10!

F[
v2v0

v0
'2

D

2

1

11v2t2
, ~11!

where

D[
G0Lb2

Av0
2

5
G0Lb2

K
, ~12!

t[
B

Av0
2

5
B

K
. ~13!

The subsequent analysis presented here is restricted to
case. In addition, all dislocations in the specimen are
proximated as having the same value oft, so that the total
dislocation contributions toQ21 andF maintain the Debye
form of Eqs.~10! and ~11!.

III. PROBLEM OF ANALYZING CHANGES
IN QÀ1 AND F

Suppose that acoustic measurements are performed
function of a single experimental variablex, such as irradia-
tion dose, time, or stress, which affects the anelastic beha
of dislocations in a specimen. Physical parameters affec
the dislocation dynamics vary withx, thus changingD and/or
t. If significant anelastic contributions from other sourc
are also present and the dependence of these contributio
x and v is unknown, then the separate effect ofx on the
dislocation contributions toQ21 or F obviously cannot be
determined. On the other hand, if the contributions fro
sources other than dislocations are assumed, on the bas
physical arguments, to be independent ofx, then information
on the dislocation contribution can be extracted from
relative changes inQ21 and/orF. In particular, if the dislo-
cation contribution is assumed to have a Debye form@Eqs.
~10! and ~11!#, then, in principle, approximate values oft
and D can be determined from a least-squares analysi
measurements ofQ21 and/orF at multiple frequencies per
formed at various values ofx. Such an analysis is mad
much more complicated by the fact that the forms of
dependences ofD andt on x are generally unknown.

Under the assumption that anelastic contributions ot
than that of dislocations are independent ofx, the damping
has the approximate general form

Q21~v,x!'D~x!
vt~x!

11v2t~x!2
1C~v!, ~14!
06410
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whereC(v) is unrelated to dislocations. If measurements
performed at two values ofx, x1 andx2, then the difference
in Q21 is given by

dQ21'D~x2!
vt~x2!

11v2t~x2!2
2D~x1!

vt~x1!

11v2t~x1!2
.

~15!

This equation has four unknownsD(x1), t(x1), D(x2), and
t(x2). Solutions for these unknowns can be obtained in
least-squares sense from measurements performed at
frequencies. Similarly, solutions can be obtained from m
surements of velocity performed at four frequencies or fr
simultaneous measurements of damping and velocity
formed at two frequencies. However, there are signific
difficulties with such a direct approach. Equation~15! and
the analogous equation fordv/v0 are sufficiently compli-
cated that relatively good initial guesses must be provid
for the unknown parameters, and these are typically unatt
able through physical arguments. Also, in some cases, b
ranges of values for the unknowns can provide nearly id
tical sums of square deviations in the fit, and valid solutio
must be determined through consideration of constraints
can be fairly complicated when considering an entire se
measurements.

If measurements of bothQ21 and v at more than one
frequency are available, a simplified analysis can be p
formed in terms of a reduced set of parameters associ
with the derivatives ofQ21 andF with respect tox, which
are approximated from discrete measurements. A method
doing this is presented in this paper. The results of such
analysis can provide initial guesses in a more complete di
analysis of discrete changes in the measuredQ21 @Eq. ~15!#
and v. The subject of this subsequent analysis is not d
cussed further in this paper.

In Sec. IV, dQ21/dx and dF/dx are expressed in term
of vt and the derivatives ofD andt with respect tox. These
expressions then are rewritten in terms of a new set of
rameters, including a normalization factorh ~dependent on
D, d ln D/dx, and d ln t/dx) and dimensionless paramete
vt andg ~a measure of the relative magnitudes ofd ln D/dx
and d ln t/dx). The normalized derivativeshdQ21/dx and
hdF/dx are plotted versusvt for a number of values ofg
spanning its range from21 to 1. In Sec. V, the ratio of
dQ21/dx and dF/dx ~dependent only ong, vt, and the
sign of dD/dx) is plotted versusvt. Also, the dependence
of dQ21/dx anddF/dx on frequency are expressed in term
of logarithmic derivatives with respect tov, and these are
plotted versusvt. Finally, the ratio ofdQ21/dx anddF/dx
is plotted as a function of these frequency derivatives
various values ofg ~by calculating values of the abscissa a
ordinate for a sequence of values ofvt). Since this last
graphical representation employs measurable quantities
both the abscissa and ordinate, an approximate value fog
for given data can be determined from the plots, and ear
plots can then be used to determine the sign ofdD/dx and
estimates forvt andh. This relatively coarse graphical es
8-3
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WARD L. JOHNSON PHYSICAL REVIEW B68, 064108 ~2003!
timation of parameters can be refined by a least-squares
the measurements to the general expressions fordQ21/dx
anddF/dx.

IV. DERIVATIVES OF DEBYE FUNCTIONS

Both D and t in the Debye expressions@Eqs. ~10! and
~11!# may be dependent on the experimental variablex, so
that the derivatives ofQ21 andF with respect tox are given
by

dQ21

dx
5

dD

dx F vt

11v2t2G1D
dt

dx

d

dt F vt

11v2t2G
5aDF vt

11v2t2G1bDF vt

11v2t2
2

2v3t3

~11v2t2!2G ,

~16!

dF

dx
52

1

2

dD

dx F 1

11v2t2G2
D

2

dt

dx

d

dt F 1

11v2t2G
52

aD

2 F 1

11v2t2G1bDF v2t2

~11v2t2!2G , ~17!

where

a[
1

D

dD

dx
, ~18!

b[
1

t

dt

dx
. ~19!

Measurements can be performed of the quantity (1v)
(dv/dx), and, in essentially all situations, the anelastic co
tribution to v is sufficiently small thatv can be replaced by
v0 in the prefactor to this expression. This measured quan
is, therefore, approximately equal to the derivative ofF:

1

v
dv
dx

'
1

v0

dv
dx

5
1

v0

d~v2v0!

dx
5

dF

dx
. ~20!

At each point in an experiment, there are four unkno
variables in Eqs.~16! and ~17!: D, a, b, andt. However,
sincea andb are both multiplied byD in these equations
only three independent combinations of variables can be
termined by a set of measurements. (D, a, andb cannot be
separately determined through an analysis ofdQ21/dx and
dF/dx.! Along with t, the following combinations of vari-
ables are chosen:

g[
b

uau1ubu
, ~21!

h[
1

D~ uau1ubu!
. ~22!
06410
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An advantage of this choice forg ~relative to the simple ratio
a/b) is that it has a finite range from21 to 11. Equations
~16! and ~17! become

h
dQ21

dx
5@g6~12ugu!#

vt

11v2t2
22g

v3t3

~11v2t2!2
,

~23!

h
dF

dx
5g

v2t2

~11v2t2!2
6

ugu21

2

1

11v2t2
, ~24!

where the plus sign applies fora.0 and the minus sign
applies fora<0. These functions change sign when botha
and g change sign. That is, the functions fora,0 with a
given g are equal to the negative of the functions fora.0
with 2g. Therefore, characteristics ofdQ21/dx anddF/dx
can be explored by considering onlya<0, which is perhaps
the most commonly encountered case in experiments.
normalized derivatives witha<0 are plotted in Fig. 1 as a
function of vt for a series of values ofg from 21 to 1.

For g50, the normalized derivatives shown in Fig. 1 a
the Debye functions of Eqs.~10! and ~11! divided by 2D.
The simplest situation withg50 has only the dislocation

FIG. 1. The normalized derivative of the Debye functions pl
ted vsvt for several values ofg with a<0. ~a! hdQ21/dx @Eq.
~23!#. ~b! hdF/dx @Eq. ~24!#. Values of g are indicated on the
curves. Solid and dashed lines are used forg>0 andg,0, respec-
tively. For a.0, the curves and values ofg are both reversed in
sign.
8-4
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ANALYSIS OF ANELASTIC DISLOCATION EFFECTS . . . PHYSICAL REVIEW B 68, 064108 ~2003!
densityL dependent onx @Eqs. ~12!, ~13!, and ~18!–~21!#.
For g521 andg51, all thex dependence resides int; this
occurs if the viscosityB is the only changing physical pa
rameter. The case withg520.5 occurs when onlyK
changes, so that the fractional changes inD andt are equal
~corresponding, in the string model, to only the pinni
length L changing!. Other values ofg correspond to more
than one of the parametersL, B, and K changing withx
@assuming thatG andb in Eq. ~12! are constant#.

From Eqs.~23! and~24!, solutions for the three variable
g, h, and t can be determined at a particular point in
experiment~at a given value ofx) by numerically fitting
measurements performed at more than one frequency.
is, a least-squares minimization can be performed withv as
the independent variable,dQ21/dx and/ordF/dx as the de-
pendent variables, andg, h, andt as adjustable parameter
Because of the powers oft that appear in Eqs.~23! and~24!,
more than one solution for the three parameters may
found if only three measurements are used, so that additi
measurements may be necessary to determine a unique
tion. Some solutions are eliminated by the fact thatg must
be real and thath andt must be positive real.

V. GRAPHICAL DETERMINATION OF PHYSICAL
PARAMETERS

In order to numerically fit measurements ofdQ21/dx and
dF/dx, initial guesses must be determined forg, h, andt.
A graphical determination of approximate values can be p
sued by first taking the ratio of Eqs.~23! and~24! to obtain a
single equation independent ofh. In Fig. 2, this ratio
@(dQ21/dx)/(dF/dx)# is plotted as a function ofvt for a
series of values ofg with a<0. The curves fora>0 are the
same, but the values ofg are reversed in sign. This figure, b

FIG. 2. The ratios of the derivatives,dQ21/dx and dF/dx,
plotted vsvt for several values ofg with a<0. The curves are
marked with the corresponding values ofg, except for the curves
for g50, 0.25, and 0.50, which appear in sequence betweeg
520.25 andg50.75, and the curve forg561, which appears
betweeng50.99 andg520.99. Solid and dashed lines are us
for g>0 and g,0, respectively. Fora.0, the curves are un
changed, but the values ofg are reversed in sign.
06410
at

e
al
lu-

r-

itself, cannot easily be used to analyze data, becausevt is
not directly measurable.

In order to facilitate a nondimensional graphical repres
tation in terms of measurable quantities, the frequency
pendence is expressed in terms of the slopes of the curve
dQ21/dx anddF/dx versusvt. Over a sufficiently narrow
range ofv, the absolute value of a well-behaved functio
f (v) can be approximated by a straight line on a log-l
scale:

lnu f u'n ln~v!1 ln A ~25!

or

u f u'Avn. ~26!

Therefore, the exponent of the frequency dependence
this range is given by

n5
d lnu f u
d ln~v!

5
v

f

d f

dv
. ~27!

FIG. 3. The exponents of the frequency dependence for the
rivatives of the Debye functions for several values ofg with a
<0. ~a! nq @Eq. ~28!#. ~The unlabeled curve forg50 lies between
the curves forg520.25 andg50.25, and that forg561 lies
between the curves forg520.75 andg50.75.! ~b! nf @Eq. ~29!#.
~The unlabeled curves forg50, 0.25, and 0.50 appear in sequen
between those forg520.25, andg50.75.! Solid and dashed lines
are used forg>0 andg,0, respectively. Fora.0, the curves are
unchanged, but the values ofg are reversed in sign.
8-5
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The frequency exponentsnq and nf for the functions
dQ21/dx and dF/dx, respectively, are determined by in
serting these functions@Eqs.~23! and ~24!# into Eq. ~27!:

nq[
v

~dQ21/dx!

d

dv FdQ21

dx G
5

vt

~hdQ21/dx!

d

d~vt! FhdQ21

dx G
5

vt

~hdQ21/dx!
F @g6~12ugu!#

1

11v2t2

2@8g62~12ugu!#
v2t2

~11v2t2!2
18g

v4t4

~11v2t2!3G ,

~28!

nf[
v

~dF/dx!

d

dv FdF

dx G
5

vt

~hdF/dx!

d

d~vt! FhdF

dx G
5

vt

~hdF/dx! F @2g6~12ugu!#
vt

~11v2t2!2

24g
v3t3

~11v2t2!2G , ~29!

where, again, the plus sign applies fora.0 and the minus
sign applies fora<0. Note thatnq andnf are independen
of h ~sincehdQ21/dx andhdF/dx are independent ofh).
The values ofnq andnf given by Eqs.~28! and~29! gener-
ally change during the course of an experiment, sinceg and
t depend on the experimental variablex.

FIG. 4. The ratios of the derivatives,dQ21/dx and dF/dx,
plotted vsnq for several values of positiveg with a<0. The curves
are marked with the corresponding values ofg. The directions of
increasingvt are indicated by arrows. Fora.0, the curves are
unchanged, but the values ofg are reversed in sign.
06410
Values calculated fornq andnf for a series of values ofg
with a<0 are plotted in Fig. 3 as a function ofvt. Singu-
larities in nq and nf occur wheredQ21/dx and dF/dx,
respectively, pass through zero. In the low- and hig
frequency limits,dQ21/dx is proportional tov and v21,
respectively, except for the case whereg560.5. @In the
limits of low frequencies withg510.5 and high frequen-
cies with g520.5 the two terms involvingdD/dx and
dt/dx in Eq. ~23! cancel, making the frequency dependen
stronger (v3 andv23, respectively!.# dF/dx is independent
of frequency (nf50) in the low-frequency limit, except for
g561, and is proportional tov22 in the high-frequency
limit, except forg521/3.

The values ofnq or nf can be determined at a given poi
in an experiment from measurements at two frequenc
Therefore, a final graphical representation in terms of m
surable quantities is obtained by eliminating the unkno
vt and plotting (dQ21/dx)/(dF/dx) versusnq or nf with
g as the single unknown parameter, as shown in Figs. 4
The plots are generated by inserting a series of values ofvt
into Eqs. ~23!, ~24!, ~28!, and ~29!. Arrows in the figures
indicate the direction of increasingvt. The cases forg>0
andg<0 are plotted in separate figures. In addition, for bo
nq and nf , the curves forg<0 are separated into two

FIG. 5. The ratios of the derivatives,dQ21/dx and dF/dx,
plotted vs nq for several values of negativeg with a<0. The
curves are marked with the corresponding values ofg. The direc-
tions of increasingvt are indicated by arrows. Fora.0, the
curves are unchanged, but the values ofg are reversed in sign.
8-6
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ANALYSIS OF ANELASTIC DISLOCATION EFFECTS . . . PHYSICAL REVIEW B 68, 064108 ~2003!
graphs~Figs. 5 and 7!. To maintain consistency with previ
ous figures, curves forg>0 are solid lines and those forg
,0 are dashed lines.

(dQ21/dx)/(dF/dx), nq , andnf are unchanged if both
a andg are reversed in sign. Therefore, the plots ofnq , and
nf versusvt ~Fig. 3! and (dQ21/dx)/(dF/dx) versusnq
andnf ~Figs. 4–7! are unchanged by a reversal of the sign
a, but the labels forg are reversed in sign.

From an inspection of Figs. 4–7, one can find an appro
mate value of g that yields the measure
(dQ21/dx)/(dF/dx) with the measurednq andnf simulta-
neously. Some care must be taken in such an analys
make sure that the points determined fornq and nf corre-
spond to the same value ofvt. To determine which section
of the curves correspond to the samevt for positiveg, one
must note the direction of increasingvt on curves where
there are two values ofnq or nf for a given value of
(dQ21/dx)/(dF/dx). For example, with g50.90 and
(dQ21/dx)/(dF/dx) positive, (dQ21/dx)/(dF/dx) must
be either increasing withvt in both Fig. 4 and Fig. 6 or
decreasing withvt on both figures. For negativeg, the
analysis is somewhat complicated by the fact that, for so
values of g, there are two ranges ofvt with negative
(dQ21/dx)/(dF/dx). In this case, to ensure that compa
sons are made between equivalent values ofvt, one must
use either Fig. 5~a! with Fig. 7~a! or Fig. 5~b! with Fig. 7~b!.
Having determinedg from an inspection of Figs. 4–7, on
can determinevt from Figs. 2 or 3 and, then,h from Fig. 1.

VI. EXAMPLE 1: HIKATA AND TRUELL

Thus far, few published acoustic studies of dislocat
effects include measurements ofdQ21/dx and dF/dx and
the frequency dependence of both these quantities. One s
that does include such information is that of Hikata a
Truell,9 which explores changes in attenuation and veloc
in aluminum during plastic deformation. The measureme

FIG. 6. The ratios of the derivatives,dQ21/dx and dF/dx,
plotted vs nf for several values of positiveg with a<0. The
curves are marked with the corresponding values ofg. The direc-
tions of increasingvt are indicated by arrows. Fora.0, the
curves are unchanged, but the values ofg are reversed in sign.
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of Hikata and Truell as a function of plastic straine are
shown in Fig. 8, with attenuation converted toQ21 and frac-
tional changes inv referenced to measurements at zero str
@v(0)#.

dF/de is approximately equal to the derivative with re
spect toe of the fractional changes inv referenced tov(0):

d

de Fv~e!2v~0!

v~0! G5
d

de Fv~e!2v0

v~0! G' d

de Fv~e!2v0

v0
G5

dF

de
.

~30!

This approximation rests on the normal assumption that
elastic effects on the velocity are relatively small, so th
v0 /v(0)'1 ~where v0, again, is the perfect-crystal veloc
ity!.

The dependence ofQ21 andv on strain is approximately
linear up to a strain of approximately 831024. Linear re-
gressions to the data in this range are shown in Fig. 8, ex
for the regression to@v(e)2v(0)#/v(0) at 10 MHz, which,
on the scale of the figure, is almost indistinguishable fro
that at 5 MHz. The slopes from these regressions and
corresponding frequency exponents are

dQ21

de
u5 MHz50.16760.024, ~31a!

FIG. 7. The ratios of the derivatives,dQ21/dx and dF/dx,
plotted vs nf for several values of negativeg with a<0. The
curves are marked with the corresponding values ofg. The direc-
tions of increasingvt are indicated by arrows. Fora.0, the
curves are unchanged, but the values ofg are reversed in sign.
8-7
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dQ21

de
u10 MHz50.46360.032, ~31b!

dF

de
u5 MHz528.7160.67, ~31c!

dF

de
u10 MHz527.561.1, ~31d!

nq51.4760.25, ~31e!

nf520.2160.31, ~31f!

S dQ21

de D Y S dF

de D u5 MHz521.923102260.3131022,

~31g!

S dQ21

de D Y S dF

de D u10 MHz526.13102261.031022.

~31h!

Except fordF/de at 10 MHz, the uncertainties listed fo
the slopes are simply the standard errors of the regress
which may be smaller than the actual uncertainties in
data. Since only two points are included in the regression
dF/de at 10 MHz, no standard error is produced by th
regression analysis. The listed uncertainty in this case is
timated by assuming that each of the two points at 10 M
has the same uncertainty as the standard error from th
MHz regression.

Under the assumption thata is negative, one can deduc
a range of values forg for the initial data of Hikata and
Truell from an inspection of Figs. 4–7~with x[e). First,
note that the plots of (dQ21/dx)/(dF/dx) versusnq show
only two possibilities with values within the margin of erro
of the measurements:~1! 0.40,g,0.49 ~Fig. 4! and ~2!
20.51,g,20.50@Fig. 5~b!#. The first of these possibilities
is consistent with the measurednf ~Fig. 6!, but the second is
not @Fig. 7~b!#. Therefore, ifa is negative,g must be be-
tween 0.40 and 0.49. Ifa is positive,g must be between
20.40 and20.49, since as described in the previous secti
the values ofg labeling the plots in Figs. 4–7 are reversed
sign.

The sign of a can be determined from the plots o
dQ21/dx versusvt in Fig. 1~a!. For a<0 @the case plotted
in Fig. 1~a!# and 0.40,g,0.49,dQ21/dx is negative for all
vt, which is contrary to the observed initial increase
Q21. Therefore,a must be positive, andg must be between
20.40 and20.49.

Having determined the range of possibleg, one can esti-
matevt and h from Figs. 1–3. Figure 3 indicates thatvt
must be between;831022 and ;731021 to match the
experimental value of 1.47 fornq , and Fig. 2 indicates that i
must be in the lower part of this range. Based on these ran
of values forg andvt and the measureddF/dx at 10 MHz
@Eq. ~31d!#, h is determined, from Fig. 1, to be approx
mately 331022. Finally, with initial guesses within thes
ranges forg, vt, andh, the best-fit values forg, t, andh
06410
ns,
e
r

s-
z
5

,

es

are determined from a conjugate gradient minimization
the sum of the squared differences between the meas
values for the derivativesdQ21/de and dF/de at the two
frequencies@Eqs. ~31a!–~31d!# and the general expression
for the derivatives@Eqs.~23! and~24!#. In this minimization
routine, the differences indF/de are multiplied by a factor
equal to the average of the measured (dQ21/de)/(dF/de)
at the two frequencies to provide approximately eq
weighting ofdQ21/de anddF/de. The final best-fit values
areg520.474,t53.0031029 s, andh50.033 which cor-
respond to

dQ21

de
u5 MHz50.169, ~32a!

dQ21

de
u10 MHz50.462, ~32b!

dF

de
u5 MHz528.03, ~32c!

dF

de
u10 MHz528.18. ~32d!

FIG. 8. Measurements by Hikata and Truell~Ref. 9! of Q21 and
fractional change inv as a function of plastic strain in aluminum
The changes inv are referenced to values measured ate50.
8-8
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These values of the derivatives lie within the ranges of
estimated uncertainties in the measured values@Eqs.~31a!–
~31d!#, except fordF/de at 5 MHz, which is very slightly
outside the range.

A value ofg near20.5 is physically plausible. From Eqs
~12!, ~13!, ~18!, ~19!, and~21!, if g520.5 anda.0,

1

K

dK

de
5

1

2

1

L

dL

de
, ~33!

assuming thatB, b, andG are constant. In the string model o
Koehler3 and Granato and Lu¨cke,4 K is inversely propor-
tional to the square of the pinning lengthL ~Sec. II!, so that
Eq. ~33! becomes

1

L

dL

de
52

1

4

1

L

dL

de
. ~34!

If the pinning length were determined entirely by dislocati
network junctions, (1/L)dL/de would be equal to
20.5(1/L)dL/de ~since, in this case,L}L22). On the
other hand, if the pinning length were determined entirely
point defects, (1/L)dL/de would be positive, since the in
crease inL during deformation corresponds to a reduction
the total number of point defects per unit dislocation len
and, also, dislocations break away from point defects du
deformation. Therefore, since the results~with g near
20.5) lie between these two extremes,L during the defor-
mation is determined by a combination of pinning by n
work junctions and point defects with the network junctio
being dominant@making (1/L)dL/de negative#. The fact that
a is found to be positive simply indicates that the increas
L has a greater effect onD than the decreasingL.

Figure 9 shows the situation forQ21 in the initial stage of
deformation. The lower curve isQ21 at e50 normalized to

FIG. 9. The general situation resulting in changes inQ21 as a
function of e during the measurements of Hikata and Truell~Ref.
9!, deduced from an analysis of the initial slopes shown in Fig
Solid curve: initialQ21 vs vt ~at e50), normalized to the initial
relaxation strengthD i . The point marked on this curve correspon
to 10 MHz. Dashed curve: normalizedQ21 vs vt at a value ofe
that has induced a tenfold increase inD. The marked point again
corresponds to 10 MHz.
06410
e
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h
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the initial relaxation strengthD i and plotted versusvt on a
log-log scale@see Eq.~10!#. The point marked on this curve
is at vt50.188, the value for 10 MHz determined from th
above analysis of slopes. The upper curve isQ21 at a value
of e that has resulted in a tenfold increaseD. If g remains
approximately constant at20.474 ~the value determined
from the above analysis! during this process, thenb
520.901a @from Eq. ~21!# and, from the definitions ofa
andb @Eqs.~18! and ~19!#,

d ln vt

de
520.901

d ln D

de
, ~35!

with v constant. During the deformation that increasesD by
a factor of 10,vt decreases to 0.024~marked on the uppe
curve! andQ21 at 10 MHz increases by 30%.

Since there appears to be considerable scatter in the m
surements ofv during the latter stages of deformation, n
attempt is made here to perform a detailed analysis pas
approximately linear region. However, assuming thatD con-
tinues to increase andt continues to decrease as deformati
proceeds, one may note that the change in sign of the s
of Q21 vs « @Fig. 8~a!# can be explained only byg decreas-
ing below 20.50 @see Fig. 1~a! with dQ21/dx and g re-
versed in sign#. Such a decrease ing corresponds to the
magnitude of (1/t)dt/de becoming greater than that o
(1/D)dD/de or, within the framework of the string mode
the rate of decrease of the pinning length becoming m
significant relative to the increase of the dislocation dens

Hikata et al.10 present qualitative conclusions about t
dependence ofQ21 andv on e that are consistent with the
above analysis. They suggest that the increase in disloca
density during the initial stages of deformation causes
observed increase inQ21 and decrease inv and that dislo-
cation interaction forces at larger deformations impede
movement of dislocations and causeQ21 to decrease afte
passing through a maximum.

VII. EXAMPLE 2: SIMPSON, SOSIN, AND JOHNSON

Measurements of Simpson, Sosin, and Johnson11 can be
used to illustrate an approach for a partial analysis of
derivatives ofQ21 andF in the absence of information o
the frequency dependence. Simpsonet al. found that, in sev-
eral pure copper specimens,F increased monotonically an
Q21 displayed a peak as a function of electron irradiatio
The results from one such specimen~E-3! are translated into
the terminology of the current paper and shown in Fig.
The plotted values ofF are equal to half the values ofDE/E
presented by Simpsonet al. @see Eq.~9!# and are referenced
to a specimen with a post-irradiation heat treatment that
assumed to produce nearly complete pinning of dislocatio
Simpsonet al. proposed that the peak inQ21 could be ex-
plained by a point-defect drag mechanism determining
coefficientB, such that increasing numbers of irradiation d
fects causedvt to rise above 1~passing through the peak i
the Debye function!. Since this mechanism could not full
explain the changes inF, a second dislocation species wi
decreasingL was introduced into the model.

.

8-9
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The interpretation provided by Simpson, Sosin, a
Johnson for their results is disconcerting, considering that
measurement frequency was only 600 Hz and ot
studies12,13of pure copper have shown maxima in dislocati
damping at much higher frequencies. Granato5 suggested
that the results can be explained with a single Debye re
ation havingvt!1 through the entire experiment, and h
successfully analyzed some of the data considering boB
andK to be dependent on the irradiation dose.

Analysis of the data of Fig. 10 using the expressions
rived in Secs. IV and V is facilitated by first estimating th
ratio (dQ21/dt)/(dF/dt) ~Fig. 11!. Since Simpsonet al.
performed measurements at only a single frequency, no
formation is available with respect tonq or nf , and some
assumption about the frequency regime must be mad
proceed with the analysis. Considering that the frequenc
the measurements is relatively low, one may assume
vt!1 during the entire irradiation~although this assump
tion is at odds with the model of Simpson, Sosin, a
Johnson!. Under this assumption, the curves in Fig. 2 sh
that, for a single Debye function, a situation whe
(dQ21/dt)/(dF/dt) starts out positive and drops to a neg
tive value ~as in Fig. 11! will occur only if g is initially
greater than 0.5 and drops below 0.5 with radiation, ass
ing thata,0. The sign ofa can be deduced by considerin
that the pinning lengthL is expected to decrease with a
increase in radiation-induced point defects and the dislo

FIG. 10. Measurements by Simpson, Sosin, and Johnson~Ref.
11! of Q21 andF as a function of irradiation time in pure coppe
~specimen E-3!.
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tion densityL is expected to be constant. Therefore,D ~pro-
portional toL2 in the string model! is expected to decreas
with radiation, and this corresponds toa,0.

In this scenario,t increases with irradiation, sinceg is
positive @Eqs. ~19! and ~21!#. Although the relaxation
strength decreases with radiation,t initially increases
enough thatQ21 at the measurement frequency increases.
irradiation proceeds, the changes in ln(t) become less than
those of lnD, and Q21 at the measurement frequency d
creases. The peak inQ21 corresponds tog50.5.

Although the analysis of these data in terms of the deri
tives of Q21 andF serves to demonstrate the types of co
clusions that can be made from limited measurements,
type of analysis may be unnecessary for this particular se
results. As mentioned above, Simpson, Sosin, and John
performed measurements on a specimen that they believe
have dislocations almost completely immobilized, and th
used this as a reference forF. Since they also measure
Q21 for this reference specimen, this value can be subtrac
from theQ21 of other specimens during irradiation to sep
rate the dislocation contributions from the backgroun
Therefore, the Debye equations@Eqs. ~10! and ~11!# can be
used to calculatevt andD directly from the data:

vt5
Qd

21

2F
, ~36a!

D52
~2F!21~Qd

21!2

2F
, ~36b!

whereQd
21 is the dislocation contribution toQ21. Granato5

used these equations to analyze data from a different sp
men of Simpson, Sosin, and Johnson and arrived at con
sions that are consistent with those obtained from the an
sis of the derivatives presented here. A complete analysi
the data of Fig. 10 using Eq.~36! is beyond the scope of th
current paper. However, it should be noted that values

FIG. 11. The ratio of irradiation-induced changes inQ21 andF
in copper measured by Simpson, Sosin, and Johnson~Ref. 11!
~specimen E-3!, calculated from the discrete differences in the da
points shown in Fig. 10.
8-10
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tained from Eq.~36a! confirm the assumption thatvt!1
throughout the course of the experiment.

VIII. CONCLUSION

Although acoustic measurements can be highly sens
to anelastic dislocation effects, the analysis of such meas
ments often has been seriously impeded by an inability
separate dislocation effects from contributions arising fr
other sources of anelasticity or external damping. This pr
lem is addressed in this paper for situations where change
Q21 and velocity occur as a function of some experimen
variable that significantly affects only the contribution of d
locations to the anelasticity. The analytical approach assu
that bothQ21 and velocity are measured at two frequenci
It considers all possibilities for the ratio of fractional chang
in the relaxation strength and relaxation time, and this int
duces a variety of frequency-dependent curves fordQ21/dx
in

06410
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es
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s
-

anddF/dx. By including all these possibilities, the discu
sion has gone beyond the most common approach of con
ering only changes in pinning length or dislocation density
the analysis of changes in dislocation anelasticity.

This formulation of the problem represents dislocatio
with respect to their acoustic response, as overdamped o
lators with no specific physical model forA, B, or K in the
equation of motion@Eq. ~1!#. In addition to the string mode
of Koehler3 and Granato and Lu¨cke,4 the approach is valid
for models that describe the anelasticity of dislocations
terms of kink motion.
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