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Analysis of anelastic dislocation effects in the presence of an unknown background
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The general problem of analyzing acoustic measurements of dislocation anelasticity in the presence of
unknown background contributions is addressed for situations where material treatments induce changes in the
physical parameters governing dislocation motion. The analytical approach focuses on the derivatives of the
frequency-dependent acoustic damping and velocity with respect to a single experimental variable, such as
irradiation flux, annealing time, or applied stress. The equation of dislocation motion is taken to be that of an
overdamped harmonic oscillator with no restrictions on the specific physical model for the inertial, damping,
and restoring parameters. The problem is simplified by considering all dislocations in a specimen to have the
same values of these parameters, so that the contributions to the damping and velocity have the general form
of Debye functions with a single relaxation time. Although the subsequent discussion remains focused on
dislocations, the analytical approach is framed in such general terms that it can be applied to any relaxation or
overdamped resonance having a Debye form. All possible combinations of changing relaxation strength and
relaxation time are considered, and curves of the derivatives of the damping and velocity and the incremental
exponents of the frequency dependence as a function of the product of the relaxation time and measurement
frequency are presented. Since values for the abscissa in these plots cannot be directly measured in an
experiment, additional practical curves are presented of the ratio of derivatives of the damping and velocity
versus the measurable frequency exponents. For a given set of measurements, approximate values of physical
parameters determined from inspection of these graphs can be used as initial guesses in a least-squares
minimization to determine values of the relaxation time and the relative magnitude of changes in relaxation
strength and relaxation time. Two examples of data from the published literature are used to illustrate the
method of analysis.
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[. INTRODUCTION ius temperature dependence of the relaxation time. Because
of the exponential dependence of the relaxation time on in-
The analysis of anelastic effedtismternal friction in ma-  verse temperature, point-defect damping peaks and velocity
terials is usually complicated by the fact that a number ofdispersions usually appear over relatively narrow tempera-
internal and external mechanisms dissipate acoustic energyre ranges and can be convincingly separated in an analysis
Since the goal of such measurements is to identify and chaby assuming a simple functional form for the temperature
acterize particular physical loss mechanisms through theidependence of the background. A similar approach can
dependence on frequency, temperature, or some other expesemetimes be used with measurements as a function of fre-
mental variable, the contributions from other sources someguency, if the relaxation time falls in an appropriate range. If
how must be removed from the analysis. In this paper, meththe temperature dependence of point-defect relaxations is
ods are presented for analyzing changes in the damping amdeasured as a function of a material treatment, such as irra-
velocity in material with changes in physical parameters thatliation or annealing, the analysis can be even more straight-
significantly affect only one anelastic contribution with a De- forward. In this case, the relaxation times are usually
bye dependence on frequency. Central elements of the aneenstant—only the magnitude of the relaxatiofsopor-
lytical approach are expressed in very general terms, makingional to the point-defect concentratjiomaries with material
them applicable to any mechanism with a Debye form, in-treatment—and the changes in damping and velocity are
cluding point-defect and dielectric relaxations. However, thesimply proportional to the Debye functions.
presentation is focused on measurements of dislocation In studies of dislocations, the separation of anelastic con-
anelasticity, because the problems of background subtractidnibutions is usually much more challenging, because the re-
generally seem to be most severe for such measurementaxation time has a relatively weak temperature dependence
Part of the motivation for pursuing this work has been towith an unknown functional form. Complete characterization
provide a systematic approach for determining the validity ofin the frequency domain has rarely been attempted because
models for the recovery of damping and velocity inZx) of the technical difficulties of performing accurate measure-
(Ref. 1) and ferritic steelgRef. 2 following the application ments over the necessary range of ultrasonic frequencies.
of tensile loads. The relaxation time, in addition to the relaxation strength,
In anelastic studies of point defects, extraction of the deusually changes with material treatments, so that changes in
fect contribution can be relatively straightforward, becausedamping and velocity are not simply proportional to the total
these contributions consist of one or more Debye functionslislocation contributions, as they are for point defects. For
(peaks in the damping and dispersions in the velocity as axample, in the classical string model for dislocation
function of temperature or frequengyeach with an Arrhen-  anelasticity* changes in pinning length affect both the re-
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laxation time and relaxation strength. Irradiation has beerif the acoustic wave has only a shear component with polar-
effectively used to separate the dislocation contributions tdzation parallel to the Burgers vector, the elastic strain of the
internal friction, since it can provide values for the back-surrounding latticee, is equal to the ratio of the acoustic
ground damping(arising from sources other than disloca- stress and the perfect-crystal elastic constant:

tions by essentially immobilizing dislocations with

radiation-induced point defects. However, when performing €= 0/Go. )

$he more general case of arbitrary symmetries of the acous-
%ic wave and dislocation is not considered here. This can be
cluded by introducing an orientation factor in the final ex-
ression for the relaxation strendtfg. (12), below].

The complex elastic complianc w) of a crystal with
dislocations is equal to the ratio of the total strain and stress:

background is not possible. Therefore, the general proble
of analyzing dislocation effects in the presence of an un-
known background has been a major impediment in this field
of research. This paper seeks to address this problem.

II. DYNAMIC EQUATIONS Iw) €t €y
w =
The equation of motion of a dislocation with Burgers-
vector magmtudeb under a resolved shear strasscan be 1 Ab? 1— (0l wg)?
approximated a¢ -4
Go  Aw? [1—(0/w)?]?+[Bl(Awg) (@l we)?
d? d .
Ad_32’+ Bd_ltu Ky=bo, 1) iAb? [B/(Awo) |(wl w)
! Aw? [1—(wlwe) 21+ [Bl(Awg) 12wl wg)®

wherey is the displacement averaged over the length of the (6)
dislocation A is an effective dislocation mass per unit length, ) ) o
B is the effective Viscosity, anH is the restoring force. The dislocation contributions t.ﬂ)(w) are much smaller than

The detailed physica| model that is emp'oyed determineéhe e|aStiC Contributior(ﬁrst tern’b, SO that the fraCtional
the dependence @ B, andK on parameters of the disloca- change in the absolute dynamic complighl «)| relative
tion and surrounding crystal. In the string model of Koehler to the perfect-crystal complianck (=1/G,) is closely ap-
and Granato and lake? A is on the order opb?, wherep is ~ Proximated by
the density of the crystal. Taking the dominant first term in
the Granato-Loke® series expansiofthat is, approximating [9(@)[~Jo ~ Jre=Jo

the dislocation displacement as sinusojid# is equal to Jo Jo

m?C/L?, whereC is the effective dislocation line tension and 5

L is the distance between pinning poiffsGranato and _ GoAb

Licke® approximateC as a5,b%/[w(1—v)], whereGy is Aw?

the elastic modulus for shear in the glide plane with polar-

ization parallel to the Burgers vector ands Poisson’s ratio. 1— (w/ wg)?

Various physical mechanisms may contribute Boin the X 210 2 2
string model, including thermoelasticity, interactions with [1= (0l o) "J"+[B/(Awo) [/ wo)
thermal phonons and electrons, and dragging of point )
defects.

Equation(1) is that of a damped forced harmonic oscilla-
tor. If o=opexplwt) (Whereo, is a constantw is the an-

where J,, is the real part of)(w). The dampingQ~?! is
approximated by

gular frequency, andis the time, then the solution fs J
-1 _m
. Q Jo
_ by exp(i wt) @
TR 2wt iBwlA _ GoAb? [B/(Awg)l(w/wg)
where Awd [1—(wlwe)*?+[Bl(Awg)]X(wl wg)?’
®
wo= VK/A. (3 whereJ,, is the imaginary part of(w). The changes in the
. : . . measured real elastic constdhtand acoustic velocity are
The effect of dislocation motion on the propagation of acous—given by
tic waves is derived from the fact that the shear strgjn
produced by the movement of a set of identical dislocations 2(v—vy) |G|-Gy 13| = J,
with densityA is given by = ~— 9
Vo Go Jo
eq=Aby. (4)  wherevy is the velocity in a perfect crystal.
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In almost all experimental studies, dislocation motion iswhereC(w) is unrelated to dislocations. If measurements are

found to be overdamped. That B/(Awy)>1, andQ ! and

performed at two values of, x; andx,, then the difference

(IG]—Gg)/G, have significant magnitude only at frequen- in Q1 is given by

cies much smaller thamwg. In this case,w/wy<1 at all
frequencies of interest, and Edg)—(9) are closely approxi-
mated by Debye expressiofis,

Q71~AL (10

1+ w272
CI)—U—UO A 1 (11)

B Uo 2 14 0?72’
where

Ae GoAb?  GoAb? 12

B Aw% K
B B _B 13
T_Awg_K. (13

wT7(X5) wT(Xq1)

5Q‘1~A(x2)1

Lrarog? L

+ (11)27'(X1)2 .
(15

This equation has four unknowms(x,), 7(x;), A(X,), and
7(X,). Solutions for these unknowns can be obtained in a
least-squares sense from measurements performed at four
frequencies. Similarly, solutions can be obtained from mea-
surements of velocity performed at four frequencies or from
simultaneous measurements of damping and velocity per-
formed at two frequencies. However, there are significant
difficulties with such a direct approach. Equatitib) and

the analogous equation fafv/vg are sufficiently compli-
cated that relatively good initial guesses must be provided
for the unknown parameters, and these are typically unattain-
able through physical arguments. Also, in some cases, broad
ranges of values for the unknowns can provide nearly iden-

The subsequent analysis presented here is restricted to thiga| sums of square deviations in the fit, and valid solutions
case. In addition, all dislocations in the specimen are apmyst be determined through consideration of constraints that

proximated as having the same valuemofso that the total
dislocation contributions t@ ! and® maintain the Debye
form of Egs.(10) and(11).

IIl. PROBLEM OF ANALYZING CHANGES
IN Q"1 AND @

can be fairly complicated when considering an entire set of
measurements.

If measurements of bot ! andv at more than one
frequency are available, a simplified analysis can be per-
formed in terms of a reduced set of parameters associated
with the derivatives ofQ % and® with respect tax, which

are approximated from discrete measurements. A method for
Sd8‘ing this is presented in this paper. The results of such an
. analysis can provide initial guesses in a more complete direct
Qarnalysis of discrete changes in the meas@ed [Eq. (15)]
Ngndv. The subject of this subsequent analysis is not dis-
cussed further in this paper.

In Sec. IV,dQ ™ Y/dx andd®/dx are expressed in terms
o7 and the derivatives af and r with respect tox. These

of dislocations in a specimen. Physical parameters affecti
the dislocation dynamics vary with thus changing\ and/or

7. If significant anelastic contributions from other sources
are also present and the dependence of these contributions ap
x and o is unknown, then the separate effect>obn the

dislocation contributions t& " or ® obviously cannot be
determined. On the other hand,

physical arguments, to be independenkathen information

on the dislocation contribution can be extracted from th

relative changes i@~ * and/or®. In particular, if the dislo-
cation contribution is assumed to have a Debye fQHEDs.
(10) and (11)], then, in principle, approximate values of

and A can be determined from a least-squares analysis of
measurements @ ! and/or® at multiple frequencies per-
formed at various values of. Such an analysis is made
much more complicated by the fact that the forms of th

dependences &f and 7 on x are generally unknown.

Under the assumption that anelastic contributions othe

than that of dislocations are independentxpthe damping
has the approximate general form

wT7(X)

Q*l(w,x)~A(x)1 +C(w), (14)

+w27'(x)2

if the contributions fromA
sources other than dislocations are assumed, on the basis of

e

expressions then are rewritten in terms of a new set of pa-
rameters, including a normalization factgr(dependent on
dInA/dx, anddIn 7dx) and dimensionless parameters
o7 andvy (a measure of the relative magnitudesddh A/dx
and d In 7/dx). The normalized derivativegdQ */dx and
ndd/dx are plotted versus 7 for a number of values oy
spanning its range from-1 to 1. In Sec. V, the ratio of
dQ Y/dx and d®/dx (dependent only ory, wr, and the
ign ofdA/dXx) is plotted versuso 7. Also, the dependences
of dQ Y/dx andd®/dx on frequency are expressed in terms
of logarithmic derivatives with respect @, and these are

eplotted versuso 7. Finally, the ratio ofdQ~*/dx andd®/dx

is plotted as a function of these frequency derivatives for
yarious values ofy (by calculating values of the abscissa and
ordinate for a sequence of values @fr). Since this last
graphical representation employs measurable quantities for
both the abscissa and ordinate, an approximate value for
for given data can be determined from the plots, and earlier
plots can then be used to determine the sign&fdx and
estimates fow 7 and . This relatively coarse graphical es-
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timation of parameters can be refined by a |east-squares fita 03 [ L o B e e L e R RARImAS e ey
the measurements to the general expressionsl @r/dx 02l ]
andd®d/dx. I
0l
IV. DERIVATIVES OF DEBYE FUNCTIONS 8 0.0 I |
~ -01F} 1
Both A and 7 in the Debye expressiorj&€gs. (10) and & — (a)
(11)] may be dependent on the experimental variableo = 0271 |
that the derivatives o ~* and® with respect to are given 03 .
by 04}
dQ ! dA[ w7 dr d| wr 03T L) ]
= — +A—— _— 0.6 R AT R R AT I R R ERIT) R ERTITENE I N LI TR B AN RAiT
dx dx| 1+ w?7? dx d7| 1+ @272
0.6 [T T
T T 20373 0.5
=aA — ,
1+ w7 1+ w?? (14 w?r?)? 04F
(16) 03 1
8
02y 1
ab__1ds[ 1 | adrdf 1 2 o 1
dx 2 dX| 14+ w22 2dxd7| 14+ w22 0.0
alA 1 N w?7r? a7 |
2 |1+ w?7? (1+ w?7?)? ' 02
_0.3 Lo L1 Lo L L L1l Ll Ll I AT I R
where 10 102 10t 100 10! 10 10°
ot
~1lda FIG. 1. The normalized derivative of the Debye functions plot-
=N dx’ (18)  ted vswr for several values of with @<0. (a) »dQ"Y/dx [Eq.
(23)]. (b) ndd®/dx [Eq. (24)]. Values of y are indicated on the
1dr curves. Solid and dashed lines are usedya0 andy<0, respec-
B="= d_ (19 tively. For >0, the curves and values of are both reversed in
7 dX

sign.

Measurements can be performed of the quantity X1/ An advantage of this choice for (relative to the simple ratio

(dv/dx), and, in essentially all situations, the anelastic con-/g) is that it has a finite range from 1 to + 1. Equations
tribution tov is sufficiently small thav can be replaced by (16) and(17) become
v in the prefactor to this expression. This measured quantity

is, therefore, approximately equal to the derivativelof dQ? Ly (1 lyD)] or , w373
n =LyYy=U=1Yy —cY )
ldv 1dv 1dw—vy) dob 2 dx 1+’ (1+w?r?)? 3
sdx “vodx vg dx ax- %0
2 _
At each point in an experiment, there are four unknown ndi): y w’r? i|7’| 1 , (24)
variables in Eqs(16) and (17): A, a, B, and 7. However, dx 7 (14 w?r?)? 2 14?2

since« and B are both multiplied byA in these equations, ) _ ) )
only three independent combinations of variables can be de¥here the plus sign applies far>0 and the minus sign
termined by a set of measurementa, (@, andg cannot be ~ applies fora=<0. These functions change sign when bath
separately determined through an analysisi@f /dx and ~ @nd y change sign. That is, the functions far<0 with a

d®/dx.) Along with 7, the following combinations of vari- 9iven y are equal to the negative of thelfunctions tor 0
ables are chosen: with — . Therefore, characteristics dQ ™ */dx andd®/dx

can be explored by considering only<0, which is perhaps
B the most commonly encountered case in experiments. The

V=, (22 normalized derivatives witlw<0 are plotted in Fig. 1 as a
o] +8 function of w7 for a series of values of from —1 to 1.
For y=0, the normalized derivatives shown in Fig. 1 are
_ 1 22) the Debye functions of Eq$10) and (11) divided by —A.
" Ale|+18D)" The simplest situation withy=0 has only the dislocation
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FIG. 2. The ratios of the derivativesiQ™*/dx and d®/dx, I \ ". ':
plotted vsw for several values ofy with «<0. The curves are 1y ' | i
. . B - ] )
marked with the corresponding values @f except for the curves 0 - - - !
for y=0, 0.25, and 0.50, which appear in sequence between ! ‘\\ \\’\*\\\ & } 1
. AR N 1
=-0.25 andy=0.75, and the curve foy==*1, which appears & -1 \ OO (b)
. . 1 4 A\ N A\
betweeny=0.99 andy=—0.99. Solid and dashed lines are used | \ Y MONGL 1
for y=0 and y<O0, respectively. Fore>0, the curves are un- '2, 1 RN
changed, but the values ofare reversed in sign. at ! RISt i
I :I i \ \\\\\\ 1
. -4 r [} l| l| \\ """""""""" "
density A dependent ox [Egs. (12), (13), and (18)—(21)]. I @
For fy: —l and'yz 1, a” thex dependence I’eSIdeSﬂ;lthIS -5 -:; ) |HHH-2\ | ulmu-l\ L 0‘ Loy 1‘ [ \mmz‘ Lol \
occurs if the viscosity is the only changing physical pa- 10 10 10 10 10 10 10

rameter. The case withy=—0.5 occurs when onlyK i
changes, so that the fractional changediand r are equal

FIG. 3. The exponents of the frequency dependence for the de-
(corresponding, in the string model, to only the pinningrivatives of the Debye functions for several valuesjofwith «

length L changing. Other values ofy correspond to more <0. (&) nq [Eq. (28)]. (The unlabeled curve foy=0 lies between
than one of the parameters, B, and K changing withx

the curves fory=—0.25 andy=0.25, and that fory=*1 lies
[assuming thaG andb in Eq. (12) are constarijt

between the curves foy=—0.75 andy=0.75) (b) n, [Eq. (29)].
From Eqgs.(23) and(24), solutions for the three variables (The unlabeled curves foy=0, 0.25, and 0.50 appear in sequence

y, 7, and 7 can be determined at a particular point in anbetween those foy=—0.25, andy=0.75) Solid and dashed lines
experiment(at a given value o) by numerically fitting @€ used fory=0 andy<0, respectively. For_y>(_), the curves are
measurements performed at more than one frequency. Thdfchanged, but the values gfare reversed in sign.
is, a least-squares minimization can be performed withs ) )
the independent variabldQ~*/dx and/ordd/dx as the de-  [1S€lf, cannot easily be used to analyze data, becauses
pendent variables, ang, 7, andr as adjustable parameters, Nt directly measurable. . . .

Because of the powers efthat appear in Eq$23) and(24), _In o_rder to facilitate a nondlmen5|o_n_al graphical represen-
more than one solution for the three parameters may pEation in tgrms of measyrable quantities, the frequency de-
found if only three measurements are used, so that additionﬁ.l%n_dlence is expressed in terms of the slopes of the curves of
measurements may be necessary to determine a unique so /dx andd®/dx versuswr. Over a sufficiently narrow
tion. Some solutions are eliminated by the fact thatnust range ofw, the absqlute value of a vyell—b_ehaved function
be real and thay and  must be positive real. ngl)e.can be approximated by a straight line on a log-log

V. GRAPHICAL DETERMINATION OF PHYSICAL In[f|~nIn(w)+InA (25
PARAMETERS

or
In order to numerically fit measurementsa®~ */dx and

dd/dx, initial guesses must be determined far», andr. |fl~Aw". (26)
A graphical determination of approximate values can be pur-

sued by first taking the ratio of Eq&3) and(24) to obtain a
single equation independent aof. In Fig. 2, this ratio
[(dQ~Y/dx)/(dd/dx)] is plotted as a function ob r for a
series of values of with a<0. The curves for=0 are the dinlf[ o df

same, but the values ofare reversed in sign. This figure, by "= din(w) f do @7)

Therefore, the exponent of the frequency dependence over
this range is given by
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QY da)/(dD/ dz)

S = N W bk W
T — T

L 7

FIG. 4. The ratios of the derivativesiQ™/dx and d®/dx,
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wT—->0

| @

(dQ"Ydz)/(dD/dz)

plotted vsn, for several values of positive with «<0. The curves
are marked with the corresponding valuesyofThe directions of
increasingw 7 are indicated by arrows. Fag>0, the curves are

unchanged, but the values ¢fare reversed in sign.

(dQ™Ydz)/(dD/ dz)

The frequency exponents, and n, for the functions

dQ Ydx and d®/dx, respectively, are determined by in-

serting these functiond€gs. (23) and(24)] into Eq. (27):

ng= —_—
1 (dQ Ydx) do

where, again, the plus sign applies fer~0 and the minus
sign applies fora<0. Note thain, andn, are independent

D) d[dQt?

dx

ndQ*

T d

" (ndQ Ydx) d(w7)

(7dQ~Ydx)

dx

wT

1
[7—(1—|7|)]m

—[8y+2(1—|y])] +8
[ Y ( |’Y| J(1+w27_2)2 7(1+w272)3

(28)

w272 Wt 1
b

w d
(dP/dx) deo

do

n,= —
4 dx

ndd
dx

T d

(ndd/dx) d(wT)

B T 295 (1] T
= (pddiax | BY DI G5
w373 1

7(1-1— w?7?)? @9

of 7 (sincendQ~/dx and nd®/dx are independent of).

The values ohg andn, given by Eqs(28) and(29) gener-
ally change during the course of an experiment, sin@nd
7 depend on the experimental varialdle

L )
[ , P *
2t LA
F : /I/,,/
3 I
37 Vi
-4 | I3
r WwT0| !
5 | L f W | | 1
-4 -3 -2 -1 0 1 2 3 4

Tiq

FIG. 5. The ratios of the derivativeslQ™*/dx and d®/dx,
plotted vsng for several values of negativg with a<0. The
curves are marked with the corresponding valuey.ofThe direc-
tions of increasingwr are indicated by arrows. Fox>0, the
curves are unchanged, but the valuegyadre reversed in sign.

Values calculated fon, andn, for a series of values oy
with <0 are plotted in Fig. 3 as a function afr. Singu-
larities in nq and n, occur wheredQ ™ Y/dx and dd/dx,
respectively, pass through zero. In the low- and high-
frequency limits,dQ 1/dx is proportional tow and o,
respectively, except for the case wheye- =0.5. [In the
limits of low frequencies withy=+0.5 and high frequen-
cies with y=—0.5 the two terms involvingdA/dx and
d7/dx in Eg. (23) cancel, making the frequency dependence
stronger (° andw 3, respectively.] d®/dx is independent
of frequency (,=0) in the low-frequency limit, except for
y=*1, and is proportional tas~2 in the high-frequency
limit, except fory=—1/3.

The values ohg or n, can be determined at a given point
in an experiment from measurements at two frequencies.
Therefore, a final graphical representation in terms of mea-
surable quantities is obtained by eliminating the unknown
o7 and plotting @Q~Y/dx)/(d®/dx) versusng or n, with
v as the single unknown parameter, as shown in Figs. 4-7.
The plots are generated by inserting a series of valuesrof
into Egs. (23), (24), (28), and (29). Arrows in the figures
indicate the direction of increasingr. The cases fory=0
andy=<0 are plotted in separate figures. In addition, for both
ng and ny, the curves fory<0 are separated into two
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S 27 ] &
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FIG. 6. The ratios of the derivativeslQ /dx and d®/dx, s .0 !
plotted vsn, for several values of positivey with a<0. The s 20 '
curves are marked with the corresponding values.oThe direc- % Lr 1
tions of increasingwr are indicated by arrows. Fo#>0, the = 0 ®)
. . 8
curves are unchanged, but the valuesyadre reversed in sign. = ] i 1
S
graphs(Figs. 5 and 7. To maintain consistency with previ- & -2 ]
ous figures, curves foy=0 are solid lines and those for 371
<0 are dashed lines. 4 ]
(dQ™Ydx)/(dd/dx), ng., andn, are unchanged if both L ‘
« andy are reversed in sign. Therefore, the plotigf and -4 3 4

n, versuswr (Fig. 3 and @dQ Y/dx)/(dd/dx) versusng
andn,, (Figs. 4-7 are unchanged by a reversal of the sign of ) o
a, but the labels fory are reversed in sign. FIG. 7. The ratios of the derivativesQ~*/dx and d®/dx,

From an inspection of Figs. 4—7, one can find an approXiplotted vsn, for several values of negativg with a<0. The
mate value of y that yields the measured curves are marked with the corresponding values.oThe direc-

(dQ~Ydx)/(dd®/dx) with the measured, andn, simulta- tions of increasingws are indicated by arrows. Fow>0, the
neously. Some care must be taken in such an analysis éjrves are unchanged, but the valuesydre reversed in sign.
make sure that the points determined frandn, corre-
spond to the same value ofr. To determine which sections
of the curves correspond to the same for positive y, one
must note the direction of increasingr on curves where
there are two values oh, or ny for a given value of
(dQ~Ydx)/(dd/dx). For example, with y=0.90 and
(dQ Y/dx)/(dd/dx) positive, @Q 1/dx)/(dd/dx) must
be either increasing witlw7 in both Fig. 4 and Fig. 6 or ¢ v(e)—vy| dd
decreasing withw7 on both figures. For negative, the del o0 T de “del T on |T de-
analysis is somewhat complicated by the fact that, for some 0 (30)
values of vy, there are two ranges ob7 with negative

(dQ~Y/dx)/(dd®/dx). In this case, to ensure that compari- This approximation rests on the normal assumption that an-
sons are made between equiva'ent Va'ueﬁ)ﬁ,f one must elastic effects on the Velocity are relatively Sma”, sSo that
use either Fig. &) with Fig. 7(a) or Fig. 5b) with Fig. 7(b).  vo/v(0)=1 (wherev,, again, is the perfect-crystal veloc-
Having determinedy from an inspection of Figs. 4—7, one ity).

can determine»~ from Figs. 2 or 3 and, then; from Fig. 1. The dependence @ " andv on strain is approximately
linear up to a strain of approximately>80 4. Linear re-

gressions to the data in this range are shown in Fig. 8, except

for the regression tpv(e) —v(0)]/v(0) at 10 MHz, which,
Thus far, few published acoustic studies of dislocationon the scale of the figure, is almost indistinguishable from

effects include measurements @@ /dx andd®/dx and that at 5 MHz. The slopes from these regressions and the

the frequency dependence of both these quantities. One studprresponding frequency exponents are

that dé)es include such information is that of Hikata and 4ot

Truell,” which explores changes in attenuation and velocity _

in aluminum during plastic deformation. The measurements de ls wrz=0.167£0.024, (313

of Hikata and Truell as a function of plastic strainare
shown in Fig. 8, with attenuation converted@o * and frac-
tional changes im referenced to measurements at zero strain
[v(0)].

dd/de is approximately equal to the derivative with re-
spect toe of the fractional changes in referenced tw(0):

v(e)—v(0)] d v(e)—vo} d

VI. EXAMPLE 1: HIKATA AND TRUELL
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dQ ! 7
Tllo muz= 0.463+0.032, (31b —
O S5MHz
O 10MHz
do o o o |
E|5 Muz= —8.71+0.67, (319 =2
S i
do g 1@
E'lo mHz=— 7.5+ 1.1, (310 & 5 4 i ]
ng=1.47+0.25, (31e
ng=—0.21+0.31, (311)
dQ™* do o .
(—de )/ (E)'S Muz= —1.92<107“+0.31x 10" 4, ~
Bl S
dQ™h) /(d® _2 _2 s |
(W)/ (E |10 MHz=—6.1X10"“*£1.0x 10" “. ; i 1)
(31h % 10: o
AT o
Except ford®/de at 10 MHz, the uncertainties listed for < 0 o
the slopes are simply the standard errors of the regressions— 12 I = o Oo
which may be smaller than the actual uncertainties in the ;41 c

data. Since only two points are included in the regression for —_— :
0.0 0.2 0.4 0.6 0.8 1.0 12

dd/de at 10 MHz, no standard error is produced by this e (102

regression analysis. The listed uncertainty in this case is es-
timated by assuming that each of the two points at 10 MHz g g, Measurements by Hikata and Trugef. 9 of Q% and
has the same uncertainty as the standard error from the eactional change inv as a function of plastic strain in aluminum.
MHz regression. The changes im are referenced to values measuredat.

Under the assumption that is negative, one can deduce
a range of values fory for the initial data of Hikata and
Truell from an inspection of Figs. 4—{@vith x=¢). First,
note that the plots ofdQ ™ Y/dx)/(d®/dx) versusng show
only two possibilities with values within the margin of error

of the measurementg1) 0.40<y<0.49 (Fig. 4 and (2) ¢, the derivativedE T
) ) o gs.(23) and(24)]. In this minimization
._0'51<. V< —O_.50[F|g. Sb)]. The f|_rst of these p053|b|llt|(_as routine, the differences id®/de are multiplied by a factor
is con_3|stent with the meas_ureg (Fig. 6), but the second is equal to the average of the measured( /de)/(dd/de)
not [Fig. 7(b)]. Therefore, ifa is negative,y must be be- 5" the two frequencies to provide approximately equal

tween 0.40 and 0.49. I is positive, y must be between aighting ofdQ~/de anddd/de. The final best-fit values
—0.40 and—0.49, since as described in the previous sectlonarey: —0.474,7=3.0010"? s, andy=0.033 which cor-

the values ofy labeling the plots in Figs. 4—7 are reversed in

are determined from a conjugate gradient minimization of
the sum of the squared differences between the measured
values for the derivativedQ '/de and d®/de at the two
frequencied Egs. (319—(31d)] and the general expressions

; respond to
sign.
The sign of a can be determined from the plots of
dQ ™ Ydx versuswr in Fig. 1(a). For <0 [the case plotted dQ*
in Fig. 1(a)] and 0.46< y<0.49,dQ~/dx is negative for all de |5 mrz=0.169, (323

w7, which is contrary to the observed initial increase in
Q1. Therefore,a must be positive, angh must be between 4o
—0.40 and—0.49.
Having determined the range of possibleone can esti- de |10 mnz=0-462, (32h)
mate w7 and » from Figs. 1-3. Figure 3 indicates thatr
must be between-8x10 2 and ~7x10"! to match the
experimental value of 1.47 far,, and Fig. 2 indicates that it di’| — 803 (320
must be in the lower part of this range. Based on these ranges de 'S MHz o
of values fory and w7 and the measuredid®/dx at 10 MHz
[Eqg. (31d)], # is determined, from Fig. 1, to be approxi-
mately 3x10 2. Finally, with initial guesses within these d£| - _818 (320)
ranges fory, w7, and, the best-fit values foy, =, and de '10 MHzT B2 S
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the initial relaxation strengtiA; and plotted versus 7 on a
log-log scalesee Eq(10)]. The point marked on this curve
is atw7=0.188, the value for 10 MHz determined from the
above analysis of slopes. The upper curv@is' at a value
of e that has resulted in a tenfold increase If y remains
approximately constant at-0.474 (the value determined
from the above analysisduring this process, therB
=—0.901x [from Eg. (21)] and, from the definitions of
and B8 [Egs.(18) and(19)],

dinA

dinwt
=-0.901+——-, (35
de de

with @ constant. During the deformation that increadelsy
a factor of 10,w7 decreases to 0.024narked on the upper
curve andQ ™! at 10 MHz increases by 30%.

Since there appears to be considerable scatter in the mea-
surements oy during the latter stages of deformation, no
attempt is made here to perform a detailed analysis past the
approximately linear region. However, assuming thaton-
tinues to increase andcontinues to decrease as deformation
proceeds, one may note that the change in sign of the slope
of Q! vs ¢ [Fig. 8@)] can be explained only by decreas-
ing below —0.50 [see Fig. 1a) with dQ Y/dx and vy re-
These values of the derivatives lie within the ranges of theversed in sigh Such a decrease iy corresponds to the
estimated uncertainties in the measured val@@s.(31a—  magnitude of (1#)dr/de becoming greater than that of
(310)], except ford®/de at 5 MHz, which is very slightly ~(1/A)dA/de or, within the framework of the string model,
outside the range. the rate of decrease of the pinning length becoming more

Avalue of y near— 0.5 is physically plausible. From Eqs. significant relative to the increase of the dislocation density.

(12), (13), (19), (19), and(21), if y=—0.5 anda>0, Hikata et al° present qualitative conclusions about the
dependence o ! andv on e that are consistent with the

above analysis. They suggest that the increase in dislocation
density during the initial stages of deformation causes the
observed increase i® ! and decrease in and that dislo-
assuming thaB, b, andG are constant. In the string model of cation interaction forces at larger deformations impede the
KoehleP and Granato and lake? K is inversely propor- movement of dislocations and cauge * to decrease after
tional to the square of the pinning lendth(Sec. I), so that  passing through a maximum.

Eq. (33) becomes

107! 10° 10! 10?
Tt

102

FIG. 9. The general situation resulting in change®in' as a
function of e during the measurements of Hikata and Try&ef.
9), deduced from an analysis of the initial slopes shown in Fig. 8.
Solid curve: initialQ " vs w7 (at e=0), normalized to the initial
relaxation strength\; . The point marked on this curve corresponds
to 10 MHz. Dashed curve: normalizé@ * vs w7 at a value ofe
that has induced a tenfold increaseAn The marked point again
corresponds to 10 MHz.

1dK 11dA

Kde 2A de’ (33

VII. EXAMPLE 2: SIMPSON, SOSIN, AND JOHNSON
1dL 11dA

Lde  4A de’ (34 Measurements of Simpson, Sosin, and JohHsoan be

used to illustrate an approach for a partial analysis of the

If the pinning length were determined entirely by dislocationderivatives ofQ ! and® in the absence of information on
network junctions, (1/)dL/de would be equal to the frequency dependence. Simpstral. found that, in sev-
—0.5(1A)dA/de (since, in this caseAxL™?). On the eral pure copper specimenb,increased monotonically and
other hand, if the pinning length were determined entirely byQ~? displayed a peak as a function of electron irradiation.
point defects, (1/)dL/de would be positive, since the in- The results from one such specim@i3) are translated into
crease iM\ during deformation corresponds to a reduction inthe terminology of the current paper and shown in Fig. 10.
the total number of point defects per unit dislocation lengthThe plotted values ob are equal to half the values AfE/E
and, also, dislocations break away from point defects duringresented by Simpscet al. [see Eq(9)] and are referenced
deformation. Therefore, since the resulfwith y near to a specimen with a post-irradiation heat treatment that was
—0.5) lie between these two extremésduring the defor- assumed to produce nearly complete pinning of dislocations.
mation is determined by a combination of pinning by net-Simpsonet al. proposed that the peak @ could be ex-
work junctions and point defects with the network junctionsplained by a point-defect drag mechanism determining the
being dominanfmaking (1L)dL/de negativd. The fact that  coefficientB, such that increasing numbers of irradiation de-
« is found to be positive simply indicates that the increasingfects causea 7 to rise above Ipassing through the peak in
A has a greater effect av than the decreasing. the Debye function Since this mechanism could not fully

Figure 9 shows the situation f@ ' in the initial stage of  explain the changes i, a second dislocation species with
deformation. The lower curve ©® ! at e=0 normalized to  decreasind- was introduced into the model.
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FIG. 11. The ratio of irradiation-induced changeQn* and®
in copper measured by Simpson, Sosin, and Johri&af. 11
| (specimen E-§ calculated from the discrete differences in the data
1) points shown in Fig. 10.

tion densityA is expected to be constant. Therefake(pro-
portional toL? in the string modélis expected to decrease
with radiation, and this corresponds &< 0.

In this scenario,r increases with irradiation, since is
positive [Egs. (19) and (21)]. Although the relaxation
strength decreases with radiatior, initially increases
enough thaQ ! at the measurement frequency increases. As
irradiation proceeds, the changes inAdnpecome less than
those of ImA, and Q! at the measurement frequency de-
creases. The peak @ ! corresponds tay=0.5.

Although the analysis of these data in terms of the deriva-
The interpretation provided by Simpson, Sosin, andtives of Q! and® serves to demonstrate the types of con-
Johnson for their results is disconcerting, considering that thelusions that can be made from limited measurements, this
measurement frequency was only 600 Hz and othetype of analysis may be unnecessary for this particular set of
studie$?**of pure copper have shown maxima in dislocationresults. As mentioned above, Simpson, Sosin, and Johnson
damping at much higher frequencies. Granasaggested performed measurements on a specimen that they believed to
that the results can be explained with a single Debye relaxhave dislocations almost completely immobilized, and they

ation havingwr<1 through the entire experiment, and he used this as a reference fdr. Since they also measured
successfully analyzed some of the data considering Both Q™ for this reference specimen, this value can be subtracted
andK to be dependent on the irradiation dose. from theQ ! of other specimens during irradiation to sepa-

Analysis of the data of Fig. 10 using the expressions derate the dislocation contributions from the background.
rived in Secs. IV and V is facilitated by first estimating the Therefore, the Debye equatiofisgs. (10) and (11)] can be
ratio (dQ~Y/dt)/(d®/dt) (Fig. 11). Since Simpsoretal. used to calculate»r andA directly from the data:
performed measurements at only a single frequency, no in-
formation is available with respect tw, or n,, and some Q;t
assumption about the frequency regime must be made to 0TS (363
proceed with the analysis. Considering that the frequency of
the measurements is relatively low, one may assume that ) 1
wr<1 during the entire irradiatiofalthough this assump- ~(29)"+(Qq ")
tion is at odds with the model of Simpson, Sosin, and - 20 ’
Johnson Under this assumption, the curves in Fig. 2 show
that, for a single Debye function, a situation Wherewherng1 is the dislocation contribution t@ ~*. Granatd
(dQ~1/dt)/(dd/dt) starts out positive and drops to a nega-used these equations to analyze data from a different speci-
tive value (as in Fig. 13 will occur only if y is initially men of Simpson, Sosin, and Johnson and arrived at conclu-
greater than 0.5 and drops below 0.5 with radiation, assunsions that are consistent with those obtained from the analy-
ing thata<<0. The sign ofa can be deduced by considering sis of the derivatives presented here. A complete analysis of
that the pinning lengthL is expected to decrease with an the data of Fig. 10 using E@36) is beyond the scope of the
increase in radiation-induced point defects and the dislocasurrent paper. However, it should be noted that values ob-

0 10 20 30 40
Time (min)
FIG. 10. Measurements by Simpson, Sosin, and Joh(Reh

11) of Q" and® as a function of irradiation time in pure copper
(specimen E-B8

(36b)
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tained from EQ.(368 confirm the assumption thab7<<1 andd®/dx. By including all these possibilities, the discus-

throughout the course of the experiment. sion has gone beyond the most common approach of consid-
ering only changes in pinning length or dislocation density in
VIIl. CONCLUSION the analysis of changes in dislocation anelasticity.

. ) _ This formulation of the problem represents dislocations,
Although acoustic measurements can be highly sensitivg;ith respect to their acoustic response, as overdamped oscil-

to anelastic dislocation effects, the analysis of such measurgsiors with no specific physical model fé, B, or K in the
ments often has been seriously impeded by an inability tQquation of motiorfEq. (1)]. In addition to the string model
separate dislocation effects from contributions arising fromyf Koehlef and Granato and lake? the approach is valid

othe_r sources of a_mela_lsticity or extt_arna! damping. This pfOb_for models that describe the anelasticity of dislocations in
lem is addressed in this paper for situations where changes {g8yms of kink motion.

Q! and velocity occur as a function of some experimental
variable that significantly affects only the contribution of dis-
locations to the anelasticity. The analytical approach assumes
that bothQ ! and velocity are measured at two frequencies.
It considers all possibilities for the ratio of fractional changes Dr. Andrew Granato provided many suggestions and com-
in the relaxation strength and relaxation time, and this introiments that were very helpful in the development and presen-
duces a variety of frequency-dependent curvesifor Y/dx  tation of this work.
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