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Symmetrization of Ritz approximation functions for vibrational
analysis of trigonal cylinders
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~Received 22 March 2002; revised 3 January 2003; accepted 5 January 2003!

In the Ritz method of calculating vibrational normal modes, a set of finite series approximation
functions provides a matrix eigenvalue equation for the coefficients in the series and the resonant
frequency. The matrix problem usually can be block-diagonalized by grouping the functions into
subsets according to their properties under the symmetry operations that are common to the
specimen geometry and crystal class. This task is addressed, in this study, for the case of cylindrical
specimens of crystals belonging to one of the higher trigonal crystal classes. The existence of doubly
degenerate resonant modes significantly complicates the analysis. Group-theoretical projection
operators are employed to extract, from series approximation functions in cylindrical coordinates,
the terms that transform according to each irreducible representation of the point group. This
provides a complete symmetry-based block diagonalization and categorization of the modal
symmetries. Off-diagonal projection operators are used to provide relations between the
displacement patterns of degenerate modes. The method of analysis is presented in detail to assist
in its application to other geometries, crystal structures, and/or forms of Ritz approximation
functions. © 2003 Acoustical Society of America.@DOI: 10.1121/1.1558372#

PACS numbers: 43.20.Ks, 43.40.Cw@ANN#
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I. INTRODUCTION

The Ritz method is a variational analytic technique
calculating the vibrational normal-mode displacements
frequencies from the elastic constants and geometry o
object. This method is frequently employed in iterative
version algorithms to determine unknown elastic consta
from measured frequencies. By inserting a finite numbe
approximation functions into Hamilton’s principle, th
method leads to a matrix eigenvalue equation involving v
able parameters of the approximation functions. The ma
equation usually can be block diagonalized by grouping
approximation functions into orthogonal subsets accordin
their general symmetry properties. In this way, compu
code for solving the eigenvalue problem can be made sig
cantly more efficient. Such categorization of approximat
functions also provides insight into common symmetry ch
acteristics of the various vibrational modes and facilitates
prediction of relative coupling strengths for a specified d
tribution of excitation.

The task of symmetrizing Ritz approximation functio
for a given macroscopic geometry, crystal symmetry, a
crystal orientation involves an analysis of the transform
tions of these functions under the symmetry operations of
object ~the operations that leave both the crystal struct
and the geometry unchanged!. Such symmetrizations hav
been performed for a number of geometries and crystal
tems.

Demarest1 presented a classification of the symmetr
of approximation functions for cubes of orthorhombic ma
rial ~belonging to the crystallographic point group that
1826 J. Acoust. Soc. Am. 113 (4), Pt. 1, April 2003 0001-4966/2003/
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denoted byD2h in the Schoenflies system andmmmin the
international system! with the twofold crystal axes perpen
dicular to the cube faces.~For a an overview of the crystal
lographic point groups, including representative graphi
objects, see Ashcroft and Mermin.2! Demarest derived re
strictions on the parities of the three Cartesian component
displacement with respect to reflections across the three
pendicular mirror planes and, in this way, divided appro
mation functions into eight orthogonal sets. These eight s
correspond to the eight irreducible representations ofD2h

derived from group theory and, therefore, provide a blo
diagonalization of the Ritz matrices with minimal sizes
the submatrices for this symmetry.~For a brief summary of
some concepts from group theory, see Appendix A.! Reduc-
ing the macroscopic symmetry~geometry! of the specimen
to orthorhombic~a rectangular parallelepiped with unequ
sides! maintains theD2h symmetry. Therefore, the same cla
sification scheme is valid for this geometry, and it was e
ployed by Ohno.3 Ohno also presented a similar classific
tion of approximation functions for monoclinic crystals (C2h

in the Schoenflies notation; 2/m in the international notation!
in the form of rectangular parallelepipeds, which divid
functions into two sets according to their parity with respe
to the single mirror plane. Since this approach does not c
sider the effects of all the symmetry operationsC2h , it does
not minimize the size of the submatrices. In a subsequ
paper, Ohnoet al.4 extended the analysis ofC2h specimens
to include restrictions derived from the two-fold rotation
this point group and, in this way, separated the approxim
tion functions into four sets and completed the block diag
113(4)/1826/7/$19.00 © 2003 Acoustical Society of America
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nalization. This latter work actually focused on parallele
peds of trigonal material, but the overall symmetry is t
same as that of a parallelepiped of monoclinic material,
cause the rectangular geometry eliminates the three
trigonal symmetry axis.

The symmetrization of approximation functions forD2h

andC2h specimens is relatively easy to accomplish, beca
all of the normal-mode displacements are either unchan
or reversed in sign by the symmetry operations of the obj
In other words, all vibrational normal modes are nondeg
erate~no two modes have the same frequency!, so that the
application of symmetry operations does not transforma
the displacement pattern of one mode into that of ano
mode. The normal modes remain nondegenerate for sp
mens with fewer symmetry operations. In terms of gro
theory, D2h and lower-symmetry point groups~including
C2h) have only one-dimensional irreducible representatio
The symmetrization of approximation functions for spe
mens belonging to the cubic, tetragonal, and hexagonal p
groups is much more difficult. These point groups have ir
ducible representations with dimension greater than one
that degenerate normal modes are transformed into one
other under some of the symmetry operations.

Mochizuki5 provided a solution to the problem of bloc
diagonalizing Ritz matrices for all crystal classes in spher
coordinates, except for the lower tetragonal and trigo
classes. He took advantage of the fact that the complete
lytical solution for the normal modes of an isotropic sphe
are known.6,7 Using these symmetrized solutions as appro
mation functions, Mochizuki derived restrictions on indic
of the functions for various crystallographic point grou
based on transformation properties of the elastic consta
Although this derivation was presented in the context
spherical specimens, the same functions and classifica
scheme could be used for any specimen with an overall s
metry ~combination of geometry and material symmetr!
equal to a crystal symmetry considered by Mochizuki, w
the limits of volume integrals in the Ritz calculation adjust
to match the geometry.

Although Mochizuki’s analysis provides a solution
the problem of block-diagonalizing Ritz matrices for most
the crystal classes, this solution, since it is expressed in te
of complicated functions of spherical coordinates, is un
tractive for nonspherical geometries. In another publicati
Mochizuki8 considered the symmetry restrictions on appro
mation functions in Cartesian coordinates. Using gro
theoretical projection operators, he categorized approxi
tion functions for right square prisms of tetragonal cryst
and cubes of cubic crystals, in addition to parallelepipeds
lower-symmetry crystals.

Trigonal and hexagonal crystals have received the le
attention in past work. The complete symmetrization of a
proximation functions for such crystals in geometries that
not eliminate symmetry operations has been accomplis
previously only by Mochizuki5 in spherical coordinates.

In the present study, we address the problem of sym
trizing approximation functions, expressed in cylindrical c
ordinates, for vibrational modes of cylindrical crystals b
longing to one of the higher-symmetry trigonal classes,C3v ,
J. Acoust. Soc. Am., Vol. 113, No. 4, Pt. 1, April 2003 W
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D3 , or D3d (3m, 32, or 3̄m in the international notation!.
This analysis has been used in the development of a
algorithm for trigonal cylinders, which is describe
elsewhere.9 Several factors have determined the direction
this work. The focus on trigonal crystal classes arises fr
the important technological role that piezoelectric materi
with this symmetry~including quartz! have in electronic os-
cillators. Currently, there is a particular need for temperatu
dependent measurements of the elastic constants of se
trigonal crystals with the structure of langasite, which m
provide characteristics superior to quartz in some oscilla
applications.10,11The cylindrical geometry of specimens wa
chosen, instead of a rectangular geometry, partly becau
can provide measurements of elastic constants with less
certainty arising from crystal alignment~only one crystal
axis needs to be aligned, instead of two!. This geometry also
has all the symmetry elements of the crystal, so that
overall symmetry of the specimen is the same as that of
crystal and the size of Ritz submatrices can be minimiz
The problem is formulated in cylindrical coordinates, b
cause the conditions on approximation functions arising fr
a consideration of the threefold rotations appear to be int
table in Cartesian coordinates. Cylindrical coordinates all
for a complete categorization of the symmetries of appro
mation functions and the associated minimization of subm
trices. The complete description of modal symmetries w
also pursued because of an interest in characterizing the r
nant modes that are excited with a direct inductive piezoe
tric transduction method recently employed with cylindric
specimens.12

Group-theoretical projection operators are employed
extract, from series approximation functions, the terms t
transform according to each irreducible representation of
point group. This method is presented here in some de
The aim is to illustrate the method completely, so that ot
researchers may be assisted in its application to other sp
men geometries, crystal structures, and/or forms of Ritz
proximation functions.

II. SYMMETRY OF D3d CYLINDERS

The objective of this work is to symmetrize Ritz ap
proximation functions for resonant modes of specimens w
the symmetry of one of the higher trigonal crystal class
C3v , D3 , or D3d . However, only theD3d class needs to be
considered. Since linear elastic vibrations are insensitive
lack of inversion, the inversion operator can be added to
C3v and D3 point groups, making them equivalent to th
trigonal point group with the greatest number of symme
operations,D3d . This effective equivalence ofC3v , D3 , and
D3d for linear elasticity can also be seen from the fact th
the elastic constant matrices for these crystal classes, w
contain all of the elastic symmetry information, have t
same form.13

The symmetry of aD3d crystal in the form of a cylinder
with the trigonal axis oriented along the cylinder axis
shown in Fig. 1. The cylindrical geometry maintains all t
elements of theD3d point group, including rotations of 2p/3
and 22p/3 ~threefold rotations! about the vertical axis (ẑ),
1827. L. Johnson and P. R. Heyliger: Ritz approximation functions
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rotations ofp ~twofold rotations! about x̂, f̂ , and d̂ ~where
d̂, on the back side of the object, is in the same plane ax̂

and f̂ and halfway between them!, inversion, and the prod
ucts of inversion and the rotations. The labeling of thef̂ and
d̂ axes corresponds to that of Cornwell’s14 Appendix D.
However, the axis labeld employed by Cornwell has bee
changed toẑ, and b̂ has been changed tox̂ to match the
conventions used by Heyliger and Johnson,9 which seem
more appropriate for this geometry.

Corresponding to each of the symmetry operationsT is a
transformation operatorP(T) that acts on vector functions
These transformation operators, when applied to an arbit
function, uW (r ,u,z)5ur(r ,u,z) r̂ 1uu(r ,u,z) û1uz(r ,u,z) ẑ,
yield the following functions:

P~E!uW 5ur~r ,u,z! r̂ 1uu~r ,u,z!û1uz~r ,u,z!ẑ, ~1a!

P~C3z!uW 5ur S r ,u1
2p

3
,zD r̂ 1uuS r ,u1

2p

3
,zD û

1uzS r ,u1
2p

3
,zD ẑ, ~1b!

P~C3z
21!uW 5ur S r ,u2

2p

3
,zD r̂ 1uuS r ,u2

2p

3
,zD û

1uzS r ,u2
2p

3
,zD ẑ, ~1c!

P~C2x!uW 5ur~r ,2u,2z! r̂ 2uu~r ,2u,2z!û

2uz~r ,2u,2z!ẑ, ~1d!

P~C2 f !uW 5ur S r ,2u1
4p

3
,2zD r̂ 2uuS r ,2u1

4p

3
,2zD û

2uzS r ,2u1
4p

3
,2zD ẑ, ~1e!

FIG. 1. Symmetry and definition of axes for an object belonging to theD3d

point group.
1828 J. Acoust. Soc. Am., Vol. 113, No. 4, Pt. 1, April 2003
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P~C2d!uW 5ur S r ,2u2
4p

3
,2zD r̂ 2uuS r ,2u2

4p

3
,2zD û

2uzS r ,2u2
4p

3
,2zD ẑ, ~1f!

P~ I !uW 5ur~r ,u1p,2z! r̂ 1uu~r ,u1p,2z!û

2uz~r ,u1p,2z!ẑ, ~1g!

where the unit vectorsr̂ andû are in the radial and azimutha
directions at a given point.E is the identity operation.C3z

and C3z
21 are rotations aboutẑ by 2p/3 and22p/3, respec-

tively. C2x , C2 f , andC2d are twofold rotations aboutx̂, f̂ ,
and d̂, respectively.I is the inversion operation. The effec
of the additional transformation operators involving inve
sion (IC3z , etc.! can be derived easily from the relation14

P~ IT !5P~ I !P~T!. ~2!

III. RESTRICTIONS ON INDICES OF APPROXIMATION
FUNCTIONS

Following Heyliger and Johnson,9 the components of a
normal-mode displacementuW (r ,u,z) of a D3d cylinder are
approximated in cylindrical coordinates by finite series of t
form

ur~r ,u,z!5 (
a,n,b

aanb
c r a cos~nu!zb

1 (
k,m,g

akmg
s r k sin~mu!zg, ~3a!

uu~r ,u,z!5 (
a,n,b

banb
c r a cos~nu!zb

1 (
k,m,g

bkmg
s r k sin~mu!zg, ~3b!

uz~r ,u,z!5 (
a,n,b

canb
c r a cos~nu!zb

1 (
k,m,g

ckmg
s r k sin~mu!zg, ~3c!

wheren, m, a, b, k, andg are non-negative integers. For
given material density and set of elastic constants, the c
ficientsaanb

c , akmg
s , banb

c , bkmg
s , canb

c , andckmg
s for each

vibrational mode can be determined through Ritz analysis
inserting the approximation functions and the specimen
ometry into a variational equation derived from Hamilton
principle.9

According to group theory, the displacement fielduW of
each of the normal modes is a basis function for one of
irreducible representations ofD3d , which are conventionally
labeledA1g , A2g , A1u , A2u , Eg , and Eu .14 ~See Appen-
dixes A and B.! Barring accidental degeneracies, mod
transforming as one of the first four of these irreducible re
resentations are nondegenerate, and those transformingEg

or Eu are doubly degenerate. Since functions transform
according to different irreducible representations are
W. L. Johnson and P. R. Heyliger: Ritz approximation functions
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thogonal~even if they are not solutions of the elastic eige
value problem!, solutions of the vibrational problem can b
sought using a limited set of approximation functions of t
form given by Eq.~3! with the indices in the functions re
stricted to values that provide the symmetry associated w
a given irreducible representation. In other words, subma
ces can be considered separately in the Ritz calculatio
approximation functions are grouped in this way.

The restrictions on the indices of approximation fun
tions are determined here by applying group-theoretical p
jection operators, which are defined as14

P i j
p [

dp

g (
TPG

Gp~T! i j* P~T!, ~4!

whereGp(T) is the matrix for a symmetry operationT in an
irreducible representation of dimensiondp of a groupG that
containsg symmetry operations~elements!. ~See Appendix
A.! The summation is over all elements in the group, and
asterisk denotes the complex conjugate. ForD3d , g is equal
to 12, theP(T) are given by Eq.~1!, p assumes six arbi
trarily assigned values corresponding to the six irreduc
representations, anddp is either 1 ~for the nondegenerat
representations! or 2 ~for the doubly degenerat
representations!.14 The matrices forD3d are given in Appen-
dix B. For this point group, all of the matrices are real,
that Gp(T) i j* 5Gp(T) i j .

A diagonal projection operatorP i i
p with a given value of

i, when applied to an arbitrary function, extracts the part
the function that transforms as thei th row of the representa
tion Gp. When applied to series approximation functio
such as those given by Eq.~3!, inspection of the extracted
functions leads to a determination of restrictions on the in
ces for functions belonging to a given irreducible repres
tation. For the doubly degenerate representations, the pro
tion operators with iÞ j can be used to determine th
relationship between coefficients in the expansions of
degenerate modes.
J. Acoust. Soc. Am., Vol. 113, No. 4, Pt. 1, April 2003 W
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The application of a projection operator to a series
proximationuW with the form of Eq.~3! yields a functionuW 8:

P i j
p uW 5uW 85ur8~r ,u,z! r̂ 1uu8~r ,u,z!û1uz8~r ,u,z!ẑ, ~5!

with

ur8~r ,u,z!5
dp

g (
a,n,b

@Anb~z!aanb
c r a cos~nu!

1Bnb~z!aanb
c r a sin~nu!#

1
dp

g (
k,m,g

@Cmg~z!akmg
s r k cos~mu!

1Dmg~z!akmg
s r k sin~mu!#, ~6a!

uu8~r ,u,z!5
dp

g (
a,n,b

@Anb~z!banb
c r a cos~nu!

1Bnb~z!banb
c r a sin~nu!#

1
dp

g (
k,m,g

@Cmg~z!bkmg
s r k cos~mu!

1Dmg~z!bkmg
s r k sin~mu!#, ~6b!

uz8~r ,u,z!5
dp

g (
a,n,b

@Anb~z!canb
c r a cos~nu!

1Bnb~z!canb
c r a sin~nu!#

1
dp

g (
k,m,g

@Cmg~z!ckmg
s r k cos~mu!

1Dmg~z!ckmg
s r k sin~mu!#, ~6c!

where
Anb~z!5zb1@G i j ~C3z! i j 1G~C3z
21! i j #cos~2np/3!zb1D1G~C2x! i j ~2z!b1D1@G~C2 f ! i j 1G~C2d! i j #cos~4np/3!~2z!b

1D2G~ I ! i j cos~np!~2z!b1D2@G~ IC3z! i j 1G~ IC3z
21! i j #cos~np!cos~2np/3!~2z!b1D1D2G~ IC2x! i j cos~np!zb

1D1D2@G~ IC2 f ! i j 1G~ IC2d! i j #cos~np!cos~4np/3!zb, ~7a!

Bnb~z!5@2G~C3z! i j 1G~C3z
21! i j #sin~2np/3!zb1D1@G~C2 f ! i j 2G~C2d! i j #sin~4np/3!~2z!b1D2@2G~ IC3z! i j

1G~ IC3z
21! i j #cos~np!sin~2np/3!~2z!b1D1D2@G~ IC2 f ! i j 2G~ IC2d! i j #cos~np!sin~4np/3!zb, ~7b!

Cmg~z!5@G~C3z! i j 2G~C3z
21! i j #sin~2mp/3!zg1D1@G~C2 f ! i j 2G~C2d! i j #sin~4mp/3!~2z!g1D2@G~ IC3z! i j

2G~ IC3z
21! i j #cos~mp!sin~2mp/3!~2z!g1D1D2@G~ IC2 f ! i j 2G~ IC2d! i j #cos~mp!sin~4mp/3!zg, ~7c!

Dmg~z!5zg1@G~C3z! i j 1G~C3z
21! i j #cos~2mp/3!zg2D1G~C2x! i j ~2z!g2D1@G~C2 f ! i j 1G~C2d! i j #cos~4mp/3!~2z!g

1D2G~ I ! i j cos~mp!~2z!g1D2@G~ IC3z! i j 1G~ IC3z
21! i j #cos~mp!cos~2mp/3!~2z!g2D1D2G~ IC2x! i j cos~mp!zg

2D1D2@G~ IC2 f ! i j 1G~ IC2d! i j #cos~mp!cos~4mp/3!zg, ~7d!
1829. L. Johnson and P. R. Heyliger: Ritz approximation functions
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D1[H 1 for ur8 ,

21 for uu8 and uz8 ,
~8a!

D2[H 1 for ur8 and uu8 ,

21 for uz8 .
~8b!

To illustrate the way restrictions on indices of the a
proximation functions are determined, consider the relativ
simple case of vibrational normal modes that transform
cording to the irreducible representationA1g . The values of
the G11 ~characters! of this one-dimensional representatio
are all equal to 1~Table II!, which corresponds to basis func
tions being unchanged by any of the symmetry operation
D3d . With these values, Eq.~7! reduces to

Anb~z!5@zb1D1~2z!b#@112 cos~2np/3!#

1D2@D1zb1~2z!b#cos~np!

3@112 cos~2np/3!#, ~9a!

Bnb~z!50, ~9b!

Cmg~z!50, ~9c!

Dmg~z!5@zg2D1~2z!g#@112 cos~2mp/3!#

2D2@D1zg2~2z!g#cos~mp!

3@112 cos~2mp/3!#, ~9d!

using the identity cos(4np/3)5cos(2np/3). For ur8 , D1 and
D2 are equal to 1, and Eqs.~9a! and ~9d! become

Anb~z!5@zb1~2z!b#@112 cos~2np/3!1cos~np!

12 cos~np!cos~2np/3!#, ~10a!

Dmg~z!5@zg2~2z!g#@112 cos~2mp/3!2cos~mp!

22 cos~mp!cos~2mp/3!#. ~10b!

Inspection of Eq.~10a! reveals thatAnb(z) is zero un-
less n and b are even andn is a multiple of 3. Similarly,
Dmg(z) is zero unlessm andg are odd andm is a multiple of
3. Thus, only approximation functions with these indices
the radial component need to be considered when searc
for solutions of the vibrational problem that transform
A1g .

The restrictions on indices for the azimuthal and ax
components ofA1g functions are obtained by inserting th
corresponding values ofD1 and D2 @Eq. ~8!# into Eq. ~9!.
Similarly, restrictions on each of the components of fun
tions transforming according to the other irreducible rep
sentations ofD3d are obtained by inserting the correspondi
values ofG11, D1 , andD2 into Eq. ~7!. The results of this
analysis are summarized in Table I. For the doubly dege
ate irreducible representations,Eg andEu , the restrictions on
the indices for the second mode, obtained by insertingG22

into Eq. ~7!, are also included in this table. The first an
second modes ofEg andEu are labeled ‘‘1’’ and ‘‘2’’ in the
second column of the table, corresponding to the row defi
tions implicit in theG matrices, Eq.~B2!.

The expressions forBnb(z) andCmg(z) @Eqs. ~7b! and
~7c!# provide explicit information about the relationship b
1830 J. Acoust. Soc. Am., Vol. 113, No. 4, Pt. 1, April 2003
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modes that transform asEg or Eu . Once the displacemen
field uW for a mode transforming according to the first row
Eg or Eu is found, the displacement fielduW 8 of the second
mode of the degenerate pair is given by Eqs.~5!–~8! with i
52 andj 51. For example, inserting the values forG21 of Eg

@Eq. ~B2!# into Eq. ~7!,

Anb~z!50, ~11a!

Bnb~z!52)@zb2D1~2z!b#sin~2np/3!1)D2@D1zb

2~2z!b#cos~np!sin~2np/3!, ~11b!

Cmg~z!5)@zg1D1~2z!g#sin~2mp/3!1)D2@D1zg

1~2z!g#cos~mp!sin~2mp/3!, ~11c!

Dmg~z!50. ~11d!

These equations reduce to the same expressions for all
of the components,ur8 , uu8 , andur8 :

Bnb~z!524)zb sin~2np/3!

5H 26zb if n5113h,

6zb if n5213h,
~12a!

Cmg~z!54)zg sin~2mp/3!5H 6zg if m5113k,

26zg if m5213k,
~12b!

TABLE I. Parities of indices of approximation functions@Eq. ~3!# for each
of the irreducible representations~i.r.! of D3d . (E[even, O[odd.) The
values ofn andm also must be multiples of 3 forA1g , A2g , A1u , A2u and
must not be multiples of 3 forEg andEu . The second column lists the row
indices of the doubly degenerate irreducible representations@Eq. ~B2!#.

i.r. Row Component n b m g

ur E E O O
A1g uu O O E E

uz E O O E

ur O O E E
A2g uu E E O O

uz O E E O

ur O O E E
Eg 1 uu E E O O

uz O E E O

ur E E O O
Eg 2 uu O O E E

uz E O O E

ur O E E O
A1u uu E O O E

uz O O E E

ur E O O E
A2u uu O E E O

uz E E O O

ur E O O E
Eu 1 uu O E E O

uz E E O O

ur O E E O
Eu 2 uu E O O E

uz O O E E
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whereh andk are non-negative integers, andn andm are still
restricted to the parities indicated in Table I. Equation~12!
also applies to the transformation between degenerate f
tions of Eu . Note that the prefactordp /g in the general
expressions forur8 , uu8 , andur8 @Eq. ~6!# is equal to 1/6 for
Eg andEu . Therefore, the expansion for the second funct
(uW 8) in a degenerate pair is equal to that for the first funct
(uW ) with sine functions replacing cosine functions, cosi
functions replacing sine functions, and coefficients mu
plied by 1 or21 @depending on the values ofn or m, accord-
ing to Eq.~12!#.

IV. CONCLUSION

Group-theoretical projection operators provide
straightforward, although somewhat cumbersome, appro
for symmetrizing Ritz approximation functions for cylinde
of crystals belonging to one of the higher trigonal class
For nondegenerate vibrational modes, this approach actu
does not need to be employed, since restrictions on the f
tions can be derived by considering, in turn, each symm
operation and the corresponding entries in the chara
table. However, the doubly degenerate modes introduc
complexity that has been addressed here by employing
full power of group theory through the projection operato
The final results for the specific set of series approximat
functions given by Eq.~3! are simple restrictions on the in
dices of the series coefficients~Table I! that divide the func-
tions into subsets corresponding to the irreducible repre
tations of D3d . These results are used by Heyliger a
Johnson9 to formulate a Ritz algorithm for calculating th
modal displacements and frequencies of trigonal cylinde

APPENDIX A: GROUP-THEORETICAL TERMINOLOGY

A brief summary of several relevant concepts fro
group theory is presented here for the benefit of readers
have little familiarity with this theory. Readers interested
complete mathematically rigorous definitions of term
should refer to the cited literature.

A crystallographic point groupG is the set of all sym-
metry operations~elements!, not including translations, tha
leave a crystal structure unchanged. Depending on the cr
structure, these operations may include rotations abou
axis, inversion through a fixed point, reflections acros
plane, rotation reflections, and/or rotation inversions.2

A matrix representationG of G is a set of nonsingula
square matrices with the properties that 1!, for every element
Ti of G, there is a corresponding matrixG(Ti) and 2!, for
every pair of elementsTi andTj , matrix multiplication cor-
responds to successive application of symmetry operation14

G~TiTj !5G~Ti !G~Tj !. ~A1!

All of the matrices in a representation have the same num
of rows, and this number is the dimensiond of the represen-
tation. The character of each matrix is defined to be the tr

A set of functionsc1 ,c2 ,...,cd is a basis for a repre
sentation ofG if
J. Acoust. Soc. Am., Vol. 113, No. 4, Pt. 1, April 2003 W
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P~T!cn~rW !5 (
m51

d

G~T!mncm~rW !, ~A2!

whereP(T) is an operator that transforms the coordinates
cn(rW) according to the symmetry operationT. The function
cn is said to transform as thenth row of G.

There are an infinite number of representations of e
crystallographic point group. However, almost all of the
are reducible, which means that all the matrices in suc
representation can be simultaneously block diagonali
through the application of an appropriate similarity transf
mation. For each crystallographic point group, there are o
a few submatrices that appear in any completely block
agonalized representation~apart from similarity transforma-
tions of the submatrices!. These submatrices are the irredu
ible representations of the point group.

For a given point group, basis functions which belong
different irreducible representations or different rows of t
same irreducible representation are orthogonal. This gro
theoretical result is central to the current paper, because
sorting of series approximation functions according to th
irreducible representations~and rows, for two-dimensiona
representations! leads to a block diagonalization of the Ri
matrices.

APPENDIX B: IRREDUCIBLE REPRESENTATIONS OF
D3d

There are six irreducible representations of the crys
lographic point groupD3d : four one-dimensional represen
tations, which normally are labeledA1g , A2g , A1u , A2u ,
and two two-dimensional representations labeledEg and
Eu .14 The subscripts ‘‘g’’ and ‘‘ u’’ indicate that the corre-
sponding basis functions are even and odd, respectively,
der inversion.

Abbreviated information on the symmetries of bas
functions for the irreducible representations is given by
characters, which are presented in Table II. The column
bels in this table designate the classes, which are define
include the following elements:14

x1[E, ~B1a!

x2[C3z ,C3z
21, ~B1b!

x3[C2x ,C2 f ,C2d , ~B1c!

x4[I , ~B1d!

x5[IC3z ,IC3z
21, ~B1e!

x6[IC2x ,IC2 f ,IC2d . ~B1f!

TABLE II. Character table forD3d .

x1 x2 x3 x4 x5 x6

A1g 1 1 1 1 1 1
A2g 1 1 21 1 1 21
Eg 2 21 0 2 21 0
A1u 1 1 1 21 21 21
A2u 1 1 21 21 21 1
Eu 2 21 0 22 1 0
1831. L. Johnson and P. R. Heyliger: Ritz approximation functions
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The effect of each symmetry operation on basis fu
tions of the one-dimensional representations can be rea
rectly from the table: the functions are either unchanged
reversed in sign by an operation, depending on whether
corresponding character is 1 or21, respectively. For thes
representations, the single entry in the matrixG(T) for each
symmetry operationT is simply the character of thatT.

The matrices forEg , as presented by Cornwell,14 are

G~E!5G~ I !5F1 0

0 1G , ~B2a!

G~C3z!5F 2 1
2 2 1

2)

1
2) 2 1

2

G , ~B2b!

G~C3z
21!5F 2 1

2
1
2)

2 1
2) 2 1

2

G , ~B2c!

G~C2x!5F21 0

0 1G , ~B2d!

G~C2 f !5F 1
2 2 1

2)

2 1
2) 2 1

2

G , ~B2e!

G~C2d!5F 1
2

1
2)

1
2) 2 1

2

G . ~B2f!

The additional matrices involving inversion@G(IC3z),
G(IC3z

21), etc.# are the same as the corresponding matri
above that do not involve inversion. The matrices forEu are
the same, except that those involving inversion have e
matrix element reversed in sign.
1832 J. Acoust. Soc. Am., Vol. 113, No. 4, Pt. 1, April 2003
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