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In the Ritz method of calculating vibrational normal modes, a set of finite series approximation
functions provides a matrix eigenvalue equation for the coefficients in the series and the resonant
frequency. The matrix problem usually can be block-diagonalized by grouping the functions into
subsets according to their properties under the symmetry operations that are common to the
specimen geometry and crystal class. This task is addressed, in this study, for the case of cylindrical
specimens of crystals belonging to one of the higher trigonal crystal classes. The existence of doubly
degenerate resonant modes significantly complicates the analysis. Group-theoretical projection
operators are employed to extract, from series approximation functions in cylindrical coordinates,
the terms that transform according to each irreducible representation of the point group. This
provides a complete symmetry-based block diagonalization and categorization of the modal
symmetries. Off-diagonal projection operators are used to provide relations between the
displacement patterns of degenerate modes. The method of analysis is presented in detail to assist
in its application to other geometries, crystal structures, and/or forms of Ritz approximation
functions. © 2003 Acoustical Society of AmericdDOI: 10.1121/1.1558372

PACS numbers: 43.20.Ks, 43.40.GANN ]

I. INTRODUCTION denoted byD,,, in the Schoenflies system amdmmin the

, , _ , , international systeinwith the twofold crystal axes perpen-
Thg Ritz met.hod.|s a variational analypc technique for(ﬁiicular to the cube face¢For a an overview of the crystal-
calculatmg the vibrational _normal—mode displacements an bgraphic point groups, including representative graphical
fre'quenme's from the. elastic constants and 96‘?”‘6@’ O.f agbjects see Ashcroft and Mernfin.Demarest derived re-
ngriicc:ﬁ Tglsogﬁ::g%s dgfe?;eiggyuiwnpg%?ilgst'itsr:gx:t;?;tstrictions on the parities of the three Cartesian components of
9 ) . . 0 isplacement with respect to reflections across the three per-
from measured frequencies. By inserting a finite number o . . . . - .
pendicular mirror planes and, in this way, divided approxi-

approximation functions into Hamilton’s principle, the . : . : ;
method leads to a matrix eigenvalue equation involving Vari_mat|on functions into eight orthogonal sets. These eight sets

able parameters of the approximation functions. The matri)?orresgofnd to the eﬁht wredt:jmbLe refpresentat!((j)ni)gél K
equation usually can be block diagonalized by grouping théje”ve rom group theory and, therefore, provide a bloc

approximation functions into orthogonal subsets according té‘ilagonallzatl_on of the.R|tz matrices with _m|n|mal sizes of
their general symmetry properties. In this way, computet® submatrices for this symmetifzor a brief summary of

code for solving the eigenvalue problem can be made signifiS®Me concepts from group theory, see AppendixReduc-

cantly more efficient. Such categorization of approximation"d the macroscopic symmet(geometry of the specimen
functions also provides insight into common symmetry char{© Orthorhombic(a rectangular parallelepiped with unequal
acteristics of the various vibrational modes and facilitates thé1d€$ maintains thed,, symmetry. Therefore, the same clas-
prediction of relative coupling strengths for a specified dis-Sification scheme is valid for this geometry, and it was em-
tribution of excitation. ployed by Ohnd. Ohno also presented a similar classifica-
The task of symmetrizing Ritz approximation functions tion of approximation functions for monoclinic crystalS.;,
for a given macroscopic geometry, crystal symmetry, andn the Schoenflies notation;r#/in the international notation
crystal orientation involves an analysis of the transformain the form of rectangular parallelepipeds, which divided
tions of these functions under the symmetry operations of théunctions into two sets according to their parity with respect
object (the operations that leave both the crystal structurdo the single mirror plane. Since this approach does not con-
and the geometry unchangedsuch symmetrizations have sider the effects of all the symmetry operatiddg, , it does
been performed for a number of geometries and crystal sygiot minimize the size of the submatrices. In a subsequent
tems. paper, Ohneet al* extended the analysis @, specimens
Demarest presented a classification of the symmetriesto include restrictions derived from the two-fold rotation of
of approximation functions for cubes of orthorhombic mate-this point group and, in this way, separated the approxima-
rial (belonging to the crystallographic point group that istion functions into four sets and completed the block diago-
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nalization. This latter work actually focused on parallelepi-D,, or Dg4 (3m, 32, or 3 in the international notation
peds of trigonal material, but the overall symmetry is theThis analysis has been used in the development of a Ritz
same as that of a parallelepiped of monoclinic material, bealgorithm for trigonal cylinders, which is described
cause the rectangular geometry eliminates the threefoldisewheré.Several factors have determined the direction of
trigonal symmetry axis. this work. The focus on trigonal crystal classes arises from

The symmetrization of approximation functions @,  the important technological role that piezoelectric materials
andC,;, specimens is relatively easy to accomplish, becausgith this symmetry(including quartz have in electronic os-
all of the normal-mode displacements are either unchangegillators. Currently, there is a particular need for temperature-
or reversed in sign by the symmetry operations of the objectdependent measurements of the elastic constants of several
In other words, all vibrational normal modes are nondegentrigonal crystals with the structure of langasite, which may
erate(no two modes have the same frequen®o that the provide characteristics superior to quartz in some oscillator
application of symmetry operations does not transformatiorapplications->** The cylindrical geometry of specimens was
the displacement pattern of one mode into that of anothechosen, instead of a rectangular geometry, partly because it
mode. The normal modes remain nondegenerate for speatan provide measurements of elastic constants with less un-
mens with fewer symmetry operations. In terms of groupcertainty arising from crystal alignmerfonly one crystal
theory, D,, and lower-symmetry point groupéncluding  axis needs to be aligned, instead of jwbhis geometry also
C,p) have only one-dimensional irreducible representationshas all the symmetry elements of the crystal, so that the
The symmetrization of approximation functions for speci-overall symmetry of the specimen is the same as that of the
mens belonging to the cubic, tetragonal, and hexagonal poirtrystal and the size of Ritz submatrices can be minimized.
groups is much more difficult. These point groups have irre-The problem is formulated in cylindrical coordinates, be-
ducible representations with dimension greater than one, stause the conditions on approximation functions arising from
that degenerate normal modes are transformed into one aa-consideration of the threefold rotations appear to be intrac-
other under some of the symmetry operations. table in Cartesian coordinates. Cylindrical coordinates allow

Mochizuk? provided a solution to the problem of block for a complete categorization of the symmetries of approxi-
diagonalizing Ritz matrices for all crystal classes in sphericamation functions and the associated minimization of subma-
coordinates, except for the lower tetragonal and trigonatrices. The complete description of modal symmetries was
classes. He took advantage of the fact that the complete analso pursued because of an interest in characterizing the reso-
lytical solution for the normal modes of an isotropic spherenant modes that are excited with a direct inductive piezoelec-
are knowr?” Using these symmetrized solutions as approxi-tric transduction method recently employed with cylindrical
mation functions, Mochizuki derived restrictions on indices specimeng?
of the functions for various crystallographic point groups Group-theoretical projection operators are employed to
based on transformation properties of the elastic constantextract, from series approximation functions, the terms that
Although this derivation was presented in the context oftransform according to each irreducible representation of the
spherical specimens, the same functions and classificatigppint group. This method is presented here in some detail.
scheme could be used for any specimen with an overall symThe aim is to illustrate the method completely, so that other
metry (combination of geometry and material symmegtry researchers may be assisted in its application to other speci-
equal to a crystal symmetry considered by Mochizuki, withmen geometries, crystal structures, and/or forms of Ritz ap-
the limits of volume integrals in the Ritz calculation adjustedproximation functions.
to match the geometry.

Although Mochizuki’'s analysis provides a solution to
the problem of block-diagonalizing Ritz matrices for most of
the crystal classes, this solution, since it is expressed in terms  The objective of this work is to symmetrize Ritz ap-
of complicated functions of spherical coordinates, is unatproximation functions for resonant modes of specimens with
tractive for nonspherical geometries. In another publicationthe symmetry of one of the higher trigonal crystal classes,
Mochizuk® considered the symmetry restrictions on approxi-C,, , D3, or Dgy4. However, only theD ;4 class needs to be
mation functions in Cartesian coordinates. Using group-<onsidered. Since linear elastic vibrations are insensitive to a
theoretical projection operators, he categorized approximaack of inversion, the inversion operator can be added to the
tion functions for right square prisms of tetragonal crystalsC;, and D5 point groups, making them equivalent to the
and cubes of cubic crystals, in addition to parallelepipeds ofrigonal point group with the greatest number of symmetry
lower-symmetry crystals. operationsP 4. This effective equivalence &, , D3, and

Trigonal and hexagonal crystals have received the leadd 4 for linear elasticity can also be seen from the fact that
attention in past work. The complete symmetrization of apthe elastic constant matrices for these crystal classes, which
proximation functions for such crystals in geometries that dacontain all of the elastic symmetry information, have the
not eliminate symmetry operations has been accomplishesame fornt>
previously only by MochizuKiin spherical coordinates. The symmetry of &34 crystal in the form of a cylinder

In the present study, we address the problem of symmewith the trigonal axis oriented along the cylinder axis is
trizing approximation functions, expressed in cylindrical co-shown in Fig. 1. The cylindrical geometry maintains all the
ordinates, for vibrational modes of cylindrical crystals be-elements of thé® sy point group, including rotations of/#23
longing to one of the higher-symmetry trigonal classes, and —27/3 (threefold rotationsabout the vertical axisZ),

II. SYMMETRY OF D34 CYLINDERS

J. Acoust. Soc. Am., Vol. 113, No. 4, Pt. 1, April 2003 W. L. Johnson and P. R. Heyliger: Ritz approximation functions 1827

Downloaded 17 May 2010 to 132.163.192.143. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



N>

FIG. 1. Symmetry and definition of axes for an object belonging tdtke
point group.

rotations of (twofold rotation$ aboutX, f, andd (where
d, on the back side of the object, is in the same plang& as
andf and halfway between theminversion, and the prod-
ucts of inversion and the rotations. The labeling of thend

d axes corresponds to that of CornweftsAppendix D.
However, the axis labeb employed by Cornwell has been

changed toz, andb has been changed o to match the
conventions used by Heyliger and JohnSowhich seem
more appropriate for this geometry.

Corresponding to each of the symmetry operatidisa
transformation operatoP(T) that acts on vector functions.

4 4 A
P(Cop)i=u,(r,—0— —,—z|F—uy r,— 60— —,—-2|6
3 3
4 ~
U 1,0 5,22, (1f)
P(1)G=u,(r,0+m,—2)F +uy(r,0+m,—2)0
—Uy(r,0+m7,—2)Z, (19

where the unit vectors and 6 are in the radial and azimuthal
directions at a given poink is the identity operationCs,
and ngl are rotations about by 27/3 and —2#/3, respec-
tively. Coy, C, ¢, andC,q are twofold rotations abouk, f,
andd, respectivelyl is the inversion operation. The effects
of the additional transformation operators involving inver-
sion (IC3,, etc) can be derived easily from the relatf6n

PUT)=P()P(T). 2

IlI. RESTRICTIONS ON INDICES OF APPROXIMATION
FUNCTIONS

Following Heyliger and Johnschthe components of a
normal-mode displacemeri(r,#,z) of a D34 cylinder are
approximated in cylindrical coordinates by finite series of the
form

u(r,0,z2)= >, ag,gr “cognf)z?
a,n,

These transformation operators, when applied to an arbitrary

function, G(r,6,z)=u,(r,6,2)F +u,(r,6,2) 8+ u,(r,6,2)2,
yield the following functions:

P(E)G=u,(r,0,2)f +u,(r,6,2) 6+ u,(r,6,2)2, (1a)
21 27 \.
P(Cj3)U=u, r,0+?,z)f+u9 r,0+?,z)6
2
+ U, 1,0+ ?,2)2, (1b)
—1\ = 2w . 2 ~
P(Cy)U=u,|r,0— —,z|f+uy r,0——,z|6
3 3
2
+u, r,a—T,z)i, (1c
P(C2x)6=ur(r,—0,—z)?—u0(r,—0,—2)9
_uZ(r1_61_2)21 (ld)
~ 4 4 R
P(Cop)i=u,r,— 0+ —,—z|f—uyr,— 60+ —,—2|6
3 3
4 .
—u, r,—0+?,—z)z, (1e
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+ > byl sinmo)z”, (33
K,m,y
Ug(r,0,2)= > b4 cogne)z?
a,n,B
+ X bl r<sinme)z?, (3b)
K,m,'y
U (r,0,2)= X 54 cogng)z?
a,n,B
+ X CSp,resinme)z”, (30

K,M,y

wheren, m, «, B, x, and y are non-negative integers. For a
given material density and set of elastic constants, the coef-
ficientsag, 5, @ym,, Dongs Dimy s Cang. @andcy,,, for each
vibrational mode can be determined through Ritz analysis by
inserting the approximation functions and the specimen ge-
ometry into a variational equation derived from Hamilton's
principle?®

According to group theory, the displacement figldf
each of the normal modes is a basis function for one of the
irreducible representations Bf;4, which are conventionally
labeledAyy, Azg, Ay, Ay, Eq, andE,."* (See Appen-
dixes A and B). Barring accidental degeneracies, modes
transforming as one of the first four of these irreducible rep-
resentations are nondegenerate, and those transformigyg as
or E, are doubly degenerate. Since functions transforming
according to different irreducible representations are or-
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thogonal(even if they are not solutions of the elastic eigen- The application of a projection operator to a series ap-
value probleny solutions of the vibrational problem can be proximationd with the form of Eq.(3) yields a functiond
sought using a limited set of approximation functions of the

form given by Eq.(3) with t_he indices in the functhns re- PPG=0"=u/(r,0,2)F+u)(r,0,2)6+ui(r,0,2)2, (5)
stricted to values that provide the symmetry associated with

a given irreducible representation. In other words, submatrigiip,
ces can be considered separately in the Ritz calculation, if
approximation functions are grouped in this way.

d
The restrictions on the indices of approximation func- u/(r,0,z)= £ 2 [A nB(z)a‘f,mﬁr”‘cos(ne)
tions are determined here by applying group-theoretical pro- 9 anp
jection operators, which are defined“hs +Bpp(2)a% 41 sin(n6)]
_d p d
Pi=1 1 2, TP, (4) + Ep > [Cony(2)aim,r coSmo)
K,m,y

whereI'P(T) is the matrix for a symmetry operatidnin an

irreducible representation of dimensidp of a groupG that + Dmy(z)aKmyr sin(mo) ], (6a)
containsg symmetry operationgelements (See Appendix

A.) The summation is over all elements in the group, and the p

asterisk denotes the complex conjugate. Bgj, g is equal ui(r, 0,2 E [Ang(2)b ”Br cosné)

to 12, theP(T) are given by Eq(1), p assumes six arbi- .

trarily assigned values corresponding to the six irreducible +Bnﬁ(z)b ngl “ SiN(no)]
representations, and, is either 1(for the nondegenerate

representations or 2 (for the doubly degenerate + — 2 [Cmy( z)bkmyr cogmé)
representations The matrices foD 54 are given in Appen- 9 xmy

dix B. For this point group, all of the matrices are real, so + Dyy(2) DS, < Si(M) 1, (6b)

that I'P(T)5 =T'P(T);; -

A diagonal projection operatd?! with a given value of
i, when applied to an arbitrary functlon, extracts the part of u(r,,2) p E [Anﬁ(z)canﬂr cogné)
the function that transforms as thi row of the representa-
tion I'P. When applied to series approximation functions
such as those given by E¢B), inspection of the extracted
functions leads to a determination of restrictions on the indi- b s .
ces for functions belonging to a given irreducible represen- T E;n:y [Crmy(2)Cem,yr “ cCOSME)
tation. For the doubly degenerate representations, the projec- o
tion operators withi#j can be used to determine the + Dmy(z)c
relationship between coefficients in the expansions of two
degenerate modes. where

Bnﬁ(z)cﬁmﬁr“ sin(n#)]

xmy! “SIN(MO)], (60

Ans(2)=ZP+[T};(Csij + T(C3,0)i1cog 2nm/3) 2P+ AT (Cyy)ij (— 2)P+ Ag[T(Cy ¢)ij + T'(Caq)ij Icog 4nm/3) (— 2)P
+A,I (1) cognm)(—2)P+ A [ T(1C3,);; + [(1C 3 Jcog nm)cog 2nmr/3) (— 2)P+ A1 A,T'(1C )i cognr) 2P
+A1A2[F(|C2f)ij+F(ICZd)ij]COS{I‘MT)COS4H7T/3)ZB, (7a)

Bns(2)=[~T'(Csy)ij+I'(Cg;)ijIsin(2nm/3) 2+ A4 [T (C, )i — I'(Caq)y Isin(4n/3)(—2)P+ A,[ =T (ICay);
+T(1C3Jcosgnm)sin(2nm/3)(—2)P+ A1 A5 [ T (IC, )i — T'(1C,q);; Jcos n ) sin(4nm/3) 27, (7b)

Cmy(2)=[T(C3,)ij —T'(C3,);;1sin(2mm/3) 27+ A4[T'(Cy ¢)i; — I'(Coq)ij ISiN(4m/3) (— 2) Y+ A,[ T (1C3,);;
— F(Icgzl)ij Jeogmar)sin(2mar/3)(—2) 7+ A1 A,[T'(1C; ¢)i; —I'(1C4q)ij Jcog mr) sin(4m/3) 27, (7¢)

Dmy(2)=2"+[T'(Cap)jj + T'(C3;1)ijcod 2mar/3) 27— AT ()i (—2) "= A4[T(Co )i+ T(Coq)ij Jcod 4mar/3) (— 2)
+A,T(1);; coymm)(—2) "+ A,[T (1C3,);; + T(1C 3,5 Jcog mar) cog 2mar/3)(— 2) ' — A1 A,T'(1C ,);; cod mar) 27
- AlAZ[FUCZ f)ij + F(ICZd)IJ ]CO&m’IT)COS4m7T/3)Zy, (7d)
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1 for u’ TABLE |. Parities of indices of approximation functiofigg. (3)] for each
A= re (83 of the irreducible representatiorisr.) of Dsy. (E=even, O=odd.) The
-1 for u, and u,, values ofn andm also must be multiples of 3 fokyg, Agg, Ay, Ay and
must not be multiples of 3 foE, andE, . The second column lists the row
1 for ur’ and ué' indices of the doubly degenerate irreducible representafiogs(B2)].
A= / (8b) )
-1 for u;. i.r. Row Component n B m y
To illustrate the way restrictions on indices of the ap- Ur E E o o
proximation functions are determined, consider the relativelys Ug g 8 5 E
simple case of vibrational normal modes that transform ac- Uz
cording to the irreducible representatién, . The values of Uy ¢} o E E
the I'y; (characters of this one-dimensional representation Az Uy E E o %
are all equal to 1Table Il), which corresponds to basis func- Uz o E E o
tions being unchanged by any of the symmetry operations of Uy ¢} ¢} E E
Djq4. With these values, Ed7) reduces to E, 1 Uy E E o) o
u, O E E O
Ang(2)=[2°P+A1(—2)P][1+2 cog2nm/3)]
uy E E o) 0
+ A [AZP+ (—2z)P]cognr) Eq 2 P o o} E E
u, E O (6] E
X[1+2 cog2nm/3)], 9
[1+2 cog2n/3)] (%) . ot & o
Bns(2)=0, (9b)  Awu Uy E 0 o) E
u, 0 o] E E
Cmy(z) = 0! (90) ur E O O E
— Y _ _ Y A2u Uy (e} E E (@]
Dmy(2)=[2"—A1(—2)"][1+2 cog2mm/3)] 0 £ £ o o
_AZ[A]_Z‘Y_(_Z)V]COXI'TWT) u, E o o) E
E, 1 Uy 0 E E 0
X[1+2 cog2mr/3)], (90 0 £ E o o
using the identity cosf@#r/3)=cos(2a/3). Foru,, A, and u, o E E o
A, are equal to 1, and Eg&a) and(9d) become E, 2 Uy E 0 o E
u, 0 0 E E

Ang(2)=[2°+(—2)P][1+2 cog2nm/3) +cognm)

+2 cognm)cog 2nm/3)], (109 - . .
tween coefficients in the expansions for the degenerate
Dmy(2)=[2"=(=2)"][1+2 cog2mmn/3) — cog mr) modes that transform &Sy or E,. Once the displacement
field U for a mode transforming according to the first row of
—2 cogmar)cog2mm/3)]. (10b)

Eg4 or E, is found, the displacement field' of the second

Inspection of Eq(109 reveals thatA,4(z) is zero un-
lessn and B are even and is a multiple of 3. Similarly,
Dm,(2) is zero unlessn andy are odd anan is a multiple of

mode of the degenerate pair is given by E@8—(8) with i
=2 andj = 1. For example, inserting the values 105, of E
[Eq. (B2)] into Eq.(7),

3. Thus, only approximation functions with these indices for
the radial component need to be considered when searching
for solutions of the vibrational problem that transform as
Aqg.

The restrictions on indices for the azimuthal and axial
components ofA,4 functions are obtained by inserting the
corresponding values af; and A, [Eq. (8)] into Eq. (9). ) )
Similarly, restrictions on each of the components of func- +(—2)?]cogmm)sin(Z2m/3), (119
tions transforming accor_ding to 'the olther irreducible repre- Dpy(2)=0. (110
sentations oD 34 are obtained by inserting the corresponding ) )
values ofl';;, A;, andA, into Eq. (7). The results of this These equations reduce to the same expressions for all three
analysis are summarized in Table I. For the doubly degeneff the componentsy; , uy, anduy :
ate i_rreglucible representatiors, andE,, _the restri_ctions on Bns(2) = —4v3Z° sin(2nm/3)
the indices for the second mode, obtained by inserfing

Ans(2)=0, (113

Bng(2)=—V3[Z°— Ay (—2)P]sin(2n/3) +V3A [ A, 2P
—(—2)#]cognm)sin(2n/3), (11b

Cony(2)=V3[27+ Ay(—2)"]sin(2mar/3) +V3A [ A 27

into Eq. (7), are also included in this table. The first and B —62° if n=1+3h, 1
second modes dE; andE, are labeled “1” and “2” in the |6z if n=2+3h, (129
second column of the table, corresponding to the row defini- 6 it L3k
tions implicit in thel” matrices, Eq(B2). _ yei |6z i m=1+3K,
The expressions foB, ;(z) andC,,(2) [Egs.(7b) and Ciny(2)=4V32" sin(2mm/3) = —62” if m=2+3Kk,
(7c)] provide explicit information about the relationship be- (12b
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whereh andk are non-negative integers, anéndmare still  TABLE Il. Character table foDy .
restricted to the parities indicated in Table I. Equati@g)

also applies to the transformation between degenerate func- h X2 X X s Xe
tions of E,. Note that the prefactod,/g in the general A 1 1 1 1 1 1
expressions fou, , uj, andu; [Eq. (6)] is equal to 1/6 for A% ; j _é ; 711 _é
Ey andE, . Therefore, the expansion for the second functionA?u 1 1 1 1 1 1
(d") in a degenerate pair is equal to that for the first functiona,, 1 1 -1 -1 -1 1
(4) with sine functions replacing cosine functions, cosineEg, 2 -1 0 -2 1 0
functions replacing sine functions, and coefficients multi-
plied by 1 or—1 [depending on the values ofor m, accord-
ing to Eq.(12)]. d

P(T) (M= 2 T(T)matm(1), (A2)
IV. CONCLUSION whereP(T) is an operator that transforms the coordinates of

n(F) according to the symmetry operatidn The function
Group-theoretical projection operators provide a . is said to transform as theth row of G.

straightforward, although somewhat cumbersome, approach  There are an infinite number of representations of each
for symmetrizing Ritz approximation functions for cylinders crystallographic point group. However, almost all of these
of crystals belonging to one of the higher trigonal classesgre reducible, which means that all the matrices in such a
For nondegenerate vibrational modes, this approach actualjgpresentation can be simultaneously block diagonalized
does not need to be employed, since restrictions on the fungnrough the application of an appropriate similarity transfor-
tions can be derived by considering, in turn, each symmetryaiion. For each crystallographic point group, there are only
operation and the corresponding entries in the characte{ fe\w submatrices that appear in any completely block di-
table. However, the doubly degenerate modes introduce gyonalized representatidapart from similarity transforma-
complexity that has been addressed here by employing thgyns of the submatricésThese submatrices are the irreduc-
full power of group theory through the projection operators.jp|e representations of the point group.
The final results for the specific set of series approximation g 5 given point group, basis functions which belong to
functions given by Eq(3) are simple restrictions on the in- gifferent irreducible representations or different rows of the
dices of the series coefficientSable | that divide the func-  same irreducible representation are orthogonal. This group-
tions into subsets corresponding to the |rredu0|ble.represeqheoreticm result is central to the current paper, because the
tations of Dgq. These results are used by Heyliger andsoriing of series approximation functions according to their
JohnsoR to formulate a Ritz algorithm for calculating the irreducible representation@nd rows, for two-dimensional
modal displacements and frequencies of trigonal Cy””ders-representationjsjeads to a block diagonalization of the Ritz

matrices.

APPENDIX A: GROUP-THEORETICAL TERMINOLOGY APPENDIX B: IRREDUCIBLE REPRESENTATIONS OF

A brief summary of several relevant concepts fromDsq

group theory is presented here for the benefit of readers who  t14re are six irreducible representations of the crystal-
have little familiarity with this theory. Readers interested inlographic point grouDs4: four one-dimensional represen-
complete mathematically rigorous definitions of terms,iions which normally are labelefl,,, Ay, Ay, A,
. . 1 g g u:? u:?
should refer to the cited literature. and two two-dimensional representations labefegd and
A crystallographic point grouiss is the set of all sym- E,.' The subscripts §” and “u” indicate that the corre-

metry operationgelement$ not including translations, that sponding basis functions are even and odd, respectively, un-
leave a crystal structure unchanged. Depending on the c:rystaEr inversion.

structure, these operations may include rotations about an  pppreviated information on the symmetries of basis
axis, inversion through a fixed point, reflections across gynctions for the irreducible representations is given by the
plane, rotation reflections, and/or rotation inversions. characters, which are presented in Table II. The column la-

A matrix representatio” of G is a set of nonsingular |5 i this table designate the classes, which are defined to
square matrices with the properties thatfbr every element include the following element¥

T; of G, there is a corresponding matrix(T;) and 2, for

every pair of elementd; and T;, matrix multiplication cor- x1=E, (Bla
responds to successive application of symmetry operatfons: -
p pp Y y op x2=Cs,,C3,', (B1b)
L(T,T)=T(T)I'(T;). (A1)
R _ x3=C2,C2¢,Coq, (Blo
All of the matrices in a representation have the same number
of rows, and this number is the dimensidmf the represen- Xa=1, (B1d)
tation. The characFer of each matrix is defmgd to be the trace. X5=1Cs,,1C31, (Ble)
A set of functionsy,4,,...,¢4 is a basis for a repre-
sentation ofG if X6=1Coy,IC5¢,ICyqy. (B1f)
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rectly from the table: the functions are either unchanged or \: W- Ashcroft and N. D. MerminSolid State PhysicéHolt, Rinehart,
and Winston, New York, 1976

reversed in.Sign by an operation, dependi.ng on whether the| onno, “Free vibration of a rectangular parallelepiped crystal and its
corresponding character is 1 erl, respectively. For these  application to determination of elastic constants of orthorhombic crys-
representations, the single entry in the maffid) for each tals,” J. Phys. Earttp4, 355-379(1976.

symmetry operatiofl is simply the character of that
The matrices folEy, as presented by Cornwéfl are

1
1“(E)=1“(|)={0 1l

I'(Cs,) _% _%‘/g
3z) =
VR

r(C3H=
r<c2x>={

I(Cyp)= ,

;3

[(Con)=
W3

1
2

(B2a)

(B2b)

(B2¢)

(B2d)

(B2e)

(B2f)

The additional matrices involving inversiofil’(ICs,),
T'(IC3Y, etc] are the same as the corresponding matrices,186-190.

above that do not involve inversion. The matricesEQrare
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matrix element reversed in sign.
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