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Multiple small-angle neutron scattering studies of anisotropic materials
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Abstract. Building on previous work that considered spheri-
cal scatterers and randomly oriented spheroidal scatterers, we
describe a multiple small-angle neutron scattering (MSANS)
analysis for nonrandomly oriented spheroids. We illustrate
this with studies of the multi-component void morphologies
found in plasma-spray thermal barrier coatings.

PACS: 61.12.Ex; 61.43.Gt; 61.72.Qq

The small-angle neutron scattering (SANS) associated with
the concentrated, micrometer-scale voids found in materi-
als of technological interest (porous ceramics, coatings, etc.)
frequently is dominated by multiple scattering. Sizes and
volume-fractions usually obtained by SANS cannot then
be retrieved merely by correcting data. A multiple-SANS
(MSANS) analysis is needed to recover this information
directly from the measurements. Previously, a MSANS for-
malism to do this was developed for an ensemble of spherical
scatterers [1] that has been validated in ceramic sintering
studies [2]. More recently, it has been extended to treat
a random distribution of nonspherical scatterers such as the
coin-shaped pores produced during the sintering of certain
silica gels [3]. The MSANS formalism implicitly assumes the
microstructure and scattering to be axially symmetric about
the incident beam direction, and it cannot directly interrogate
general anisotropic microstructures. However, circularly av-
eraged MSANS data can be analyzed, and then the anisotropy
examined independently. Many anisotropic microstructures
of interest, e.g., thermal barrier coatings (TBC’s), contain
several void systems, which often are axially symmetric about
the normal to the susbstrate. Furthermore, the components
can be distinguished by Porod scattering, which amplifies the
anisotropy [4]. Several parameters are needed to relate the
void components to each other, and the MSANS formalism
thus must be constrained to model only those microstructures
consistent with the measured total porosity and void specific
(Porod) surface area.
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In this paper we present the new MSANS formalism for
anisotropic microstructures and illustrate its application to
one TBC system. Detailed application of the technique can be
found in [5].

1 Theoretical treatment

Previously, it was shown how the mean radius, R0, of
a coarse, concentrated ensemble of spherical scatterers with
known volume fraction, ΦT, is obtainable from the vari-
ation of MSANS beam broadening with incident neutron
wavelength, λ [1]. Refraction and diffraction are included in
deriving the multiple-scattered beam Q-profile, W(Q R0, τs),
after passing through a sample thickness, τs, where Q =
(4π/λ) sin θ is the magnitude of the scattering vector, and 2θ
is the scattering angle. Theoretically, the “radius of curva-
ture”, rc, of the multiple-scattered beam profile (in units of Q)
is given by

rc = lim
Q→0

[
W ′′(Q R0, τs)

W(Q R0, τs)

]− 1
2

, (1)

where ′′ indicates the second derivative with respect to Q. For
measurement purposes, rc is numerically equal to the stan-
dard deviation (in Q) of a Gaussian shape profile fitted to
the MSANS-broadened beam profile in the vicinity of Q = 0.
This does not mean that the beam profile is a convolution
of single-scatter Gaussians using the Central Limit Theorem
(CLT). The CLT does not apply to MSANS, in fact, because
of Q−4 Porod scattering at large Q [1, 3]. The MSANS for-
malism uses first-principles arguments to derive W(Q R0, τs)
by considering in- and out-scatter terms as the neutron beam
passes through the sample to give

W(Q R0, τs)= k2
0 R2

0

2π

∞∫
0

J0(Q R0ζ)e
−z̄[1−q(ζ)]ζdζ , (2)

where k(= 2π/λ) is the magnitude of the incident and scat-
tered wavevector, z̄ is the average number of multiple scatters
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within the sample, J0 is the Bessel function of zero order, ζ is
a dimensionless integration variable, and q(ζ) is a real-space
function discussed below.

While originally derived for spheres, it was recognized [3]
that the formalism can be applied to a random distribution of
nonspherical scatterers, since the scattering remains axially
symmetric about the incident beam. In fact with axial sym-
metry, not even a random orientation distribution is necessary.
The q(ζ) can be expressed in terms of any axially symmetric
average of the single-scatter cross-section, σ(Q, ν0), and the
corresponding total cross-section, σT, such that:

q(ζ)= 2π

k2
〈σT〉Ω

∞∫
0

J0(Q R0ζ) 〈σ(Q, ν0)〉Ω QdQ . (3)

The neutron phase shift parameter, ν0 = 2R0|∆ρ|λ, signals
that both refraction and diffraction are significant for large
scattering features. The orientational averages, 〈· · · 〉Ω , are
over the scatterer orientation distribution for a fixed sample
orientation. These can be determined readily for axial sym-
metry about the incident beam direction, which is attained
by circularly averaging the MSANS beam-broadening data.
Any actual MSANS anisotropy observed for a given sam-
ple orientation is treated separately. For nonrandom scatterer
orientation distributions, 〈σ(Q, ν0)〉Ω and 〈σT〉Ω depend on
the sample orientation, as does z̄, which equals nT 〈σT〉Ω τs,
where nT is the total number density of scatterers. To derive
the functional form for the orientationally averaged single-
scatter cross-sections assumptions must be made concerning
the shape and orientation distribution of the scatterers. One
versatile model shape for the scatterers is an oblate or pro-
late spheroid of aspect ratio, β, and three orthogonal radii, R0,
R0, and βR0. At a given angle, η, of the βR0 spheroid axis
with respect to the direction of Q it can be shown [3] that
σβ,χ(Q, ν0) = ∣∣ fβ,χ(Q, ν0)

∣∣2
, where

fβ,χ(Q, ν0) = ikR2
0 K(β, χ) ×

1∫
0

J0(Q R0 K(β, χ)ξ)
[
1 − eiβν0

√
1−ξ2/K(β,χ)

]
ξdξ , (4)

and K(β, χ) = [
1 + (β2 −1)χ2

] 1
2 ; χ = cos η, and ξ is a di-

mensionless integration variable, different from ζ in (3). Fur-
thermore, σχ,T = πR2

0 Aχ(β, ν0), with

Aχ(β, ν0) = K(β, χ)

[
2 + 4

c2
(1 − cos c− c sin c)

]
(5)

and c = βν0/K(β, χ).
For a random orientation distribution, the orientational av-

erages can be determined from the integrals, 〈σ(Q, ν0)〉Ω =∫
σβ,χ(Q, ν0)dχ and 〈σT〉Ω = ∫

σχ,Tdχ over the interval χ =
(0, 1). For a nonrandom distribution, axially symmetric about
the incident beam, these integrals can be weighted over
different parts of the χ range by assuming that the direc-
tion of Q lies approximately in the plane perpendicular
to the incident beam. With the incident beam parallel to
the symmetry axis, this orientational weighting directly re-
flects the axially symmetric microstructure. For an orth-
ogonal sample orientation, a coordinate transformation is

needed to give the orientation distribution with respect to
the new incident beam direction. This distribution must then
be circularly averaged to give the axially symmetric distri-
bution for the circularly averaged MSANS. Typically, the
anisotropic MSANS data are averaged in 15◦-wide sectors
around the incident beam, and a simple scatterer orientation
distribution is expressed in terms of the probability of find-
ing the βR0 spheroid axis, in each of the ranges 0◦–30◦,
30◦–60◦, and 60◦–90◦ with respect to the axis of symme-
try. For given ΦT and nT, it is possible to follow the equa-
tions back from (5) through (1) to model the MSANS rc
versus λ data. As with a random scatterer orientation, de-
termination of q(ζ) from (3) is simplified because the inte-
gral need only be taken over the range 0 < Q < 4π/λ, and
in determining W(Q R0, τs) from (2), the integrand is non-
zero only for 0 < ζ < 2 when β < 1, and for 0 < ζ < 2β
when β > 1 [3]. In modelling the MSANS anisotropy ob-
served with the incident beam orthogonal to the symmetry
axis, the anisotropic variation is assumed to follow that of the
single-scatter cross-section, averaged over the orientation dis-
tribution. At least in the diffraction limit of ν0 << 1, this vari-
ation is proportional to [R0 K(β, χ)]−1 for a fixed spheroid
orientation.

Multiple void components must now be accommodated
into the formalism. In plasma-spray TBC’s, the three main
void types are intrasplat cracks, denoted C and mainly per-
pendicular to the substrate, interlamellar pores, denoted P
and mainly parallel to the substrate, and globular pores, de-
noted G. To model the MSANS data, each of the C and P
void systems are assumed to comprise networks of oblate
spheroidal elements with aspect ratios, βc and βP , with mean
oblate radii, R0C and R0P , and with different orientation dis-
tributions with respect to the axis of symmetry. The globular
pores are assumed to be spheres of mean radius, R0G . The
porosities, Φc, ΦP and ΦG , number densities, nc, nP and
nG , and many of the previously-defined parameters can be
divided into contributions from the three void components.
However, a key point is that inspection of (2) and (3), if ex-
pressed in terms of R0C , shows that

z̄q(ζ) = z̄cqc(ζ)+ z̄ PqP(ζP)+ z̄GqG(ζG) , (6)

where ζP = ζR0C/R0P , z̄c = ncσcτs, etc. Thus, the orienta-
tionally-averaged scattering from each void component can
be computed separately using (3)–(5) and then combined in
(2) using the result of (6) to give the predicted MSANS rc
value defined by (1). For analysis of the MSANS anisotropy,
the component anisotropies are weighted both by z̄ and
R−1

0 to account for the relative widths of the single-scatter
functions.

The aspect ratios of the spheroidal elements are set to
βc = 1/10 and βP = 1/5. Other model parameters must be
adjusted empirically to satisfy the constraints for MSANS
beam broadening and anisotropy, for ΦT, and for the total
void specific (Porod) surface area, ST, (with the com-
ponent surface areas calculated from standard expressions
for a spheroid [4]). For plasma-spray deposits, typically
R0P/R0C ≈ 1 and R0G/R0C falls in the range (1.3 − 1.8).
The only free parameter left is R0C . Fitting is insensitive
to the spheroid assumptions for the C and P void systems
because their contributions to the MSANS broadening are
dominated by the short (βR0) dimensions. The mean open-
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ing dimension, 〈O.D.〉 = 4βR0/3, in each case, is the one of
interest.

2 Experimental

We demonstrate the use of the new MSANS formalism in
characterizing the void components in a yttria-stabilized zir-
conia (8%Y2O3 by mass) plasma-sprayed ceramic deposit,
prepared from a spheroidized powder feedstock. Free stand-
ing deposits were studied in the as-sprayed state, and an-
nealed at 1100 ◦C, 1200 ◦C, 1300 ◦C and 1400 ◦C for 1 h. Full
details are given in [5].

All SANS and MSANS measurements were performed at
the 8 m SANS instrument [6] at the NIST Center for Neutron
Research. The anisotropic Porod scattering was measured at
λ = 8 Å, with the incident beam perpendicular to the spray di-
rection (symmetry axis). The MSANS beam broadening was
measured at wavelengths of 10 Å, 12 Å, 14 Å, 16 Å, and 18 Å,
∆λ/λ = 15%, with the incident beam both perpendicular
and parallel to the spray direction. The Porod scattering and
MSANS anisotropies were determined by sector-averaging,
as described above.

3 Results and discussion

With the above MSANS methods, the component porosities
and surfaces areas, 〈O.D.〉′ s for the C and P void systems,
their orientation probabilities, and the mean globular pore
diameter, 2RG , were measured as a function of annealing.
Estimated fractional standard deviations were ±10% for the
component porosities, and ±5% for the other parameters.
Figure 1 presents the component porosities versus sintered
density. As annealing progresses the analysis predicts a loss
of cracks and interlamellar pores through sintering as an-
nealing progresses, and a corresponding increase in globular
porosity.

This picture is qualitatively confirmed by SEM studies but
it is SANS and MSANS that quantify the changes and link
these to properties [5]. Such changes in the anisotropic void
microstructures can have profound implications for the TBC
properties.
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Fig. 1. MSANS-derived component porosities versus density for as-sprayed
YSZ deposit (lowest density) and after annealing for 1 h at 1100 ◦C,
1200 ◦C, 1300 ◦C and 1400 ◦C (highest density). Lines are guides to the
eye.

4 Conclusion

We have presented a MSANS formalism applicable to
anisotropic multi-component microstructures. We have il-
lustrated its application in the characterization of plasma-
sprayed thermal barrier coatings.
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