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The stability of a composite interface of roughness-induced superhydrophobic surfaces is studied. To have high
contact angle and low contact angle hysteresis, superhydrophobic surfaces should be able to form a composite interface
with air pockets in the valleys between asperities (pillars). However, the composite interface may be unstable and
can be irreversibly transformed into a homogeneous interface. We formulate a stability criterion and analyze the
stability of the composite interface for several typical roughness profiles. To resist destabilizing mechanisms, multiscale
(hierarchical) roughness is required. Such multiscale roughness is found in natural and artificial superhydrophobic
surfaces.

1. Introduction
The wetting of rough surfaces has been investigated since the

1930s;1-3 however, the topic has received special attention in
the past few years because of the development of nanotechnology
applications.4-8 The surface area-to-volume ratio grows with
miniaturization and surface forces become dominant, so the ability
to measure and control surface properties becomes critical. One
of the crucial surface properties for materials in micro/nanoscale
applications is nonwetting or hydrophobicity.9-10It is also usually
desirable to reduce wetting in fluid flow applications in order
for liquid droplets to flow easily along a surface. Some natural
surfaces, including leaves of water-repellent plants such as the
lotus (Nelumba nucifera), legs of insects such as the water strider
(Gerris remigis), and butterfly wings, are known to be very
hydrophobic as a result of the roughness of their surface.11-13

This phenomenon, along with the self-cleaning abilities of very
hydrophobic surfaces, is called in the literature the “lotus effect”.11

There are a significant number of reports in the literature about
the lotus effect and numerous attempts to produce artificial
biomimetic roughness-induced hydrophobic surfaces have been
made,14-22 but many details of the mechanism of roughness-

induced nonwetting are still not well understood. In particular,
it is not clear why the lotus leaf and other natural hydrophobic
surfaces have a multiscale (or hierarchical) roughness structure;
that is, nanoscale bumps superimposed over microscale asperities.
Gao and McCarthy23recently suggested that multiscale roughness
affects the kinetics of droplet motion and the Laplace pressure
at which water intrudes between the bumps. In the present study,
we investigate the effect of multiscale roughness upon the stability
of the roughness-induced hydrophobic interface.

The wetting of a solid by a liquid is characterized by the
contact angle, which is the angle between the solid-air and the
liquid-air interfaces (Figure 1). The greater the contact angle,
the more hydrophobic the material. The value of the contact
angle is usually greater when the liquid is added (the so-called
advancing contact angle) than when it is removed (the receding
contact angle). The difference between the advancing and receding
contact angles constitutes contact angle hysteresis. Contact angle
hysteresis is related to energy barriers, which a liquid droplet
should overcome during its flow along a solid surface, and thus
characterizes the resistance to flow.3 The lower is the adhesion
of a liquid droplet to the solid; the smaller are the energy barriers
and the lower is the value of contact angle hysteresis and the
easier it is for the droplet to flow along the surface. Surfaces with
very high contact angles (>150°) and low contact angle hysteresis
are called superhydrophobic.7,18

Several mechanisms are responsible for the superhydropho-
bicity of natural surfaces, such as lotus leafs. First, these surfaces
are coated with wax, which is hydrophobic itself (with a contact
angle of about 103° 24), Second, they have a complicated
geometrical structure with bumps or asperities (in the case of
plant leaves called papillae) on the microscale (for the lotus leaf,
the typical size of papillae is on the order of 10µm) covered with
much smaller nanoscale bumps or nanometer-scale structures.7,20

In a similar manner, water strider legs are covered with a large
number of oriented tiny hairs (microsetae) with fine nano-
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grooves.13 Neinhuis and Barthlott11 suggested that hierarchical
surfaces are less vulnerable to mechanical damage caused by
nanostructures and therefore maintain their functionality even
after being damaged. Wagner et al.12 showed that hierarchically
structured surfaces are more readily able to repel water even if
the surfaces tension is drastically reduced as compared to surfaces
with only one length scale of roughening. This might be important
in wetlands or other aquatic habitats where water is often polluted
by decaying plant material and other contamination that reduces
surface tension.12 Herminghaus pointed out that certain self-
affine profiles with multiscale roughness may result in super-
hydrophobic surfaces even for hydrophilic materials.25However,
a theoretical explanation of the predominance of hierarchically
structured surfaces in nature remains an important task.

It is believed that in order to be superhydrophobic, a rough
surface should be able to maintain a composite interface with
air pockets or bubbles trapped in the valleys between the
asperities,2-6as opposed to a homogeneous solid-liquid interface.
In many cases both the composite interface and the homogeneous
interface may exist for the same surface; however, only the
composite interface provides the required superhydrophobic
properties. Furthermore, the composite interface is much less
stable than the homogeneous interface, and it may be destroyed
by liquid filling the valleys between asperities and form a
homogeneous interface, whereas the opposite transition has never
been observed.7 The mechanisms of this transition have been the
subject of intensive investigation in recent years.4,6,20,26-27Among
the suggested factors that affect the transition are the effects of
the droplet’s weight and curvature. For small droplets, surface

effects dominate over gravity, and the later is hardly responsible
for the transition, whereas the droplet’s curvature may be
responsible. The above suggests that the stability of a composite
interface is a key issue in the design of roughness-induced
superhydrophobic surfaces. In this article, we formulate a
geometrical stability criterion, and then investigate typical 2D
and 3D surfaces with roughness at several scale levels. We show
that multiscale (hierarchical) roughness may enhance the stability
of a composite interface.

2. Stability of a Composite Interface

The spreading of liquid through porous media with periodic
geometry was studied by several authors;28,29however, stability
of the composite interface has not been studied in detail in the
literature. In this section, a geometrical stability condition for a
composite interface will be formulated on the basis of the free-
energy minimization using the Lagrange method of finding a
minimum of a function of several variables with constrains. First,
we will formulate the extremum criterion and show that it leads
to the well-known Young equation, and then we will mathemati-
cally derive a stability criterion and discuss its physical meaning.

The liquid-air interface is at equilibrium if the free energy
of the solid-liquid-air system reaches its minimum. To find
local conditional minima of the free surface energyW) ASLγSL

+ ASAγSA + ALAγLA with the constant volume constraintV )
V0, the Lagrange function is constructed

whereASL, ASA, andALA are the areas of the solid-liquid, solid-
air, and liquid-air interfaces andγSL, γSA, and γLA are the
corresponding free energies,V0 is the volume, andλ is the
Lagrange multiplier.30 The corresponding change inL is given
by

Note that the arguments ofL are interdependent withδASL )
-δASA whereasδALA consists of two terms,δALA ) δALAT +
δALAV . The first term,δALAT, is due to a change in the position
of the triple line (line of contact between solid, liquid, and air),
and the second,δALAV , is due to a change in the shape of the
liquid-air interface. Furthermore,δALAT ) δASL cos θ from
geometrical considerations.

Suppose the shape of the liquid-air interface is given
parametrically by vectorrb(u, V), whereu andV are parameters
that uniquely characterize any point on a surface and the shape
changes slightly

The change due to the shape of the liquid-air interface is given
by the area of an element of the liquid-air interfaceA(u,V) du
dV times the normal displacement multiplied by the sum of
principal radii of curvaturenb δrb(1/R1 + 1/R2), wherenb is the
normal vector andR1 andR2 are the principal radii of curvature31
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Figure 1. (a) Contact angle with a smooth surface (θ0) and advancing
(θadv) and receding (θrec) contact angles for a droplet moving along
a solid surface. (b) Composite interface air pockets between the
pillars (asperities) dramatically reduce the solid-liquid contact area
and the adhesion of a droplet to the solid.

L(ASL, ASA, ALA, V, λ) ) ASLγSL + ASAγSA +
ALAγLA + λ(V - V0) (1)

δL ) δASLγSL + δASAγSA + δALAγLA + λδV + δλ(V - V0)
(2)

rb(u, V) ) rb(u, V) + δBr(u,V) (3)

3158 Langmuir, Vol. 23, No. 6, 2007 NosonoVsky



where30

The change in volume is given by

Combining eqs 4-6 and settingδL(δASL, δr , δV) ) 0 yields

which results in three equations that should be satisfied
simultaneously. The first is the Young equation for the contact
angleθ0, which should be satisfied at the points of the triple line

The second equation for the Lagrange multipliersλ ) -γLA-
(1/R1 + 1/R2) is satisfied only if the curvature 1/R1 + 1/R2 is a
constant independent ofuandV throughout the entire liquid-air
interface.31 The third equation is just the condition of constant
volumeV ) V0.

For the extremum to be a local minimum (rather than the
maximum) ofW, the equilibrium should also satisfy the stability
condition d2W > 0. DifferentiatingW ) ASLγSL + ASAγSA +
ALAγLA twice and usingδALA ) δASL cosθ yields

We ignored the effect of the changing shape of the liquid-air
interface (the term corresponding toδALAV) because it is known
that 1/R1 + 1/R2 ) const provides the minimum (rather than the
maximum) liquid-air interface area condition31 and only the
effect of moving the triple line is of interest to us. Using eq 8,
which is satisfied at the equilibrium, and the fact that cosθ
decreases monotonically withθ in the domain of interest, 0<
θ < 180°, yields

In other words, for the interface to be stable, for an advancing
liquid (increasingASL) the value of the contact angle should
decrease, whereas for a receding liquid the contact angle should
increase. Note also that for a liquid-air interface coming to the
solid surface under the angleθ an advance of the interface results
in the change in energy

Thus, if θ > θ0, the energy decreases and it is energetically
profitable for the liquid to advance, whereas ifθ < θ0, the liquid
would retreat. Therefore, the physical meaning of eq 10 is that
for a small advance/retreat of the liquid it should be more
energetically profitable to return to the original position rather
than to continue advancing/retreating.

For a 2D surface, because a change in angle dθ is equal to the
change in slope of the surface,whether the configuration is stable
depends on the sign of curvature of the surface. The convex
(bumpy) surface leads to a stable interface, whereas a concave
(groovy) surface leads to an unstable interface. The liquid keeps
spreading until both eqs 8 and 10 are satisfied at the triple line
and 1/R1 + 1/R2 ) const at the liquid-air interface, provided
the volume of the liquid is conserved.

In the next section, we will apply the stability criterion (eq 10)
to typical 2D and 3D surfaces with multiscale roughness.

3. Hierarchical Roughness

In this section, we will consider several surfaces with nanoscale
roughness superimposed over larger microscale pillars, and we
will investigate the effect of concave and convex nanoroughness
upon the stability of a composite interface. We will study the
case of an infinitely large reservoir of liquid on top of the pillars.
In most applications, liquid droplets of finite size are in contact
with a rough surface; however, the size of roughness details is
small compared to the size of the droplets, and for practical
purposes, droplet size can be considered to be infinite.

3.1. Two-Dimensional Roughness.Consider a 2D structure
with rectangular pillars of heighth and widtha separated by
distanceb, covered with small semicircular ridges and grooves
of radiusr (Figure 2a). Because the distance between the pillars
is small in comparison with the capillary length and therefore
the effect of gravity is negligible, we can assume that the liquid-
air interface is a horizontal plane and its position is characterized
by the vertical coordinatez. The free energy is given by

whereR ) a cos((r - z)/r) + 2πN is the angle corresponding
to the vertical position of the interfacez, N is the number of a
ridge or groove, andL is the length of the grooves in they
direction, which is required on the basis of the dimensional
considerations. The dependence is presented in Figure 2b for the
cases of hydrophobic (θ0 ) 150°) and hydrophilic (θ0 ) 30°)
materials for both the bumpy and the groovy surface. It is seen
that for the bumpy surface there are many stable equilibrium
states (shown in Figure 2a with dotted lines) separated by energy
barriers, which correspond to every ridge, whereas for the grooved
surface the equilibrium states are unstable. Therefore, the ridges
can pin the triple line and thus lead to a composite interface. In
the case of a hydrophilic surface, each lower position of the
equilibrium state corresponds to a lower value ofW; therefore,
when the liquid advances from one equilibrium state to the next,
the total energy decreases and thus the liquid’s advance is
energetically profitable. When the liquid reaches the bottom of
the valley and completely fills the space between the pillars
forming a homogeneous interface, the total energy decreases
dramatically by the value of

The opposite transition from a homogeneous to a composite
interface requires high activation energy∆Wand is thus unlikely,

δALAV ) ∫ALA
∫nb δh rb(1/R1 + R2)A du dV (4)

A(u, V) ) [(∂ rb
∂u)2(∂ rb

∂V)2
- (∂ rb

∂u
∂ rb
∂V)2]1/2

(5)

δV ) ∫ALA
∫ nb δh rb A du dV (6)

δL ) δASL[cosθ0 -
γSA - γSL

γLA
]γLA +

∫ALA
∫ [γLA( 1

R1
+ 1

R2
) + λ]nb δh rb A du dV + λδV (7)

cosθ0 )
γSA - γSL

γLA
(8)

d2W ) d2ASL[cosθ0 -
γSA - γSL

γLA
]γSL + dALA d(cosθ) > 0

(9)

dASL dθ < 0 (10)

dW ) dASL(γSL - γSA) + dALAγLA )
dASL(γSL - γSA) + dASLγLA cosθ

) dASLγLA(-
γSA - γSL

γLA
+ cosθ) )

dASLγLA(cosθ - cosθ0) (11)

W ) ASLγSL + ASAγSA + ALAγLA )
rLγLA(sin R - R cosθ0) 0 < z < h (12)

∆W ) bL(γSA + γLA - γSL) ) bLγLA(1 + cosθ0)
(13)
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making the transition from composite to homogeneous interface
irreversible. Because the distance between the pillarsb is much
greater thanr, the energy barriers that separate the equilibrium
states, 2πrLγLA cosθ0, are relatively small compared to∆W,
and low activation energy is required for the liquid to spread and
propagate from one equilibrium state to the other.

Because the change in angle dθ for a 2D surface is equal to
the change in surface slope, based on eq 10, whether the
configuration is stable depends upon the sign of curvature of the
surface. The convex (bumpy) surface leads to a stable interface,
whereas the concave (groovy) surface leads to an unstable
interface. The liquid keeps spreading until both eqs 8 and 10 are
satisfied at the triple line and 1/R1 + 1/R2 ) const at the liquid-
air interface, provided the volume of the liquid is conserved.

3.2. Three-Dimensional Pillars with Ridges and Grooves.
Consider now a 3D structure with circular pillars of heighth and
radiusR separated by distanceb and distributed hexagonally
with a density ofη ) 2/[x3(2R + b)2] pillars per unit area,
covered with small ridges and grooves of radiusr (Figure 3a).
As in the preceding section, the free energy per areaS is given
by the circumference of a pillar 2πR times the number of pillars
ηS times rγLA(sin R - R cosθ0):

The similarity between eqs 12 and 14 is noted. Both energy
profiles are different only in their normalization constant, so the
dependence of the free energy upon the position of the interface
presented in Figure 2b for the case of 2D pillars has the same

profile in a qualitatively sense as for the case of 3D pillars. In
a similar manner to the case of 2D pillars, the ridges can pin the
triple line.

3.3. Three-Dimensional Surface.In the previous sections,
we considered 2D nanoscale ridges and grooves superimposed
over 2D and 3D pillars. Real superhydrophobic surfaces, such
as plant leaves, are 3D with 3D nanobumps. For 3D surfaces,
the shape of the liquid-air interface may be quite complex, and
thus the stability of the composite interface is difficult to analyze.
To consider a 3D configuration that allows for a planar horizontal
liquid-air interface, we will investigate the surface, composed
of circular pillars of heighth and radiusRseparated by distance
b with a density ofη ) 2/[x>3(2R + b)2] pillars per unit area
(following the hexagonal distribution pattern shown in Figure
3), which are formed from layers of small spheres of radiusr,
packed according to the hexagonal pattern (Figure 4a). The
packing density of the spheres is equal to 1/(2x3r2) spheres per
unit area in every horizontal layer. The liquid-air interface area

Figure 2. Two-dimensional pillars with semicircular bumps/grooves.
(a) Schematic of the structure. The bumps may pin the triple line
because an advancing LA interface results in a decrease in the contact
angle (θ < θ0), making the equilibrium stable. Grooves provide
equilibrium positions that satisfy the Young equation; however, the
equilibrium is unstable because an advancing LA interface results
in an increase in the contact angle (θ > θ0). (b) Energy profiles for
configurations in part a with bumps and grooves for hydrophilic (θ0
) 30°) and hydrophobic (θ0 ) 150°) materials. Energy (normalized
by LrγLA) is shown as a function of the vertical position of the
interfacez (normalized by the radius of bumps/groovesr). Bumps
result in stable equilibria (energy minima), whereas grooves result
in unstable equilibria (energy maxima).

W ) 2πRηSrγLA(sin R - R cosθ0) 0 < z < h
(14)

Figure 3. Schematic of the spatial distribution of 3D pillars with
semicircular bumps/grooves upon a surface.

Figure 4. Three-dimensional pillars consisting of small solid spheres.
(a) Schematics of the structure. (b) Energy (normalized byA0γLA)
as a function of the vertical position of the interfacez (normalized
by the radius of bumps/groovesr) for π2R2/(2x3r2) ) 1.
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is now given by the total flat area of the surface,A0, minus the
cross-sectional area of spheres under water. The latter is given
by

whereη is the pillar density,πR2 is the pillar area, 1/(2x3r2) is
the packing density of the spheres, andπ(r sin R)2 is the cross-
sectional area of an individual sphere under water. The solid-
liquid interface area is equal to the total surface area of the
spheres under water

whereηA0π
2R2/(2x3r2) is the number of spheres, 4πr2N is the

spheres’ surface area multiplied by the number of layers, and
π(z2 + 2z(2r - z)) is the area of the spheres in the layer, which
is only partially under water. Using sin2 R ) 1 - cos2 R ) 1
- ((r-z)/r)2 ) 2z/r - (z/r)2, the free energy is now given by

The dependence of the free energy, normalized byA0γLA, upon
the vertical positionz is presented in Figure 4b for the cases of
hydrophobic (θ0 ) 105°) and hydrophilic (θ0 ) 75°) materials.

4. Results and Discussion

We studied three different surface profiles with large-scale
pillars and small-scale roughness superimposed over the pillars.
It is observed from Figures 2b and 4b that for both the hydrophobic
and hydrophilic materials a convex surface leads to stable
equilibria whereas a concave surface leads to unstable equilibria.
Therefore, convex small-scale roughness can pin the liquid-air
interface even in the case of a hydrophilic material. This may
be important for producing reliable superhydrophobic surfaces
because the factors destabilizing the liquid-air interface, such
as nanodroplet condensation,20,32chemical surface heterogene-
ity,33 and capillary waves,26 are scale-dependent and therefore
multiscale roughness is required to control the stability.

An experiment suggesting that the sign of curvature is indeed
important for hydrophobicity was conducted by Sun et al.21They
produced both a positive and a negative replica of a lotus leaf

surface by nanocasting using poly(dimethylsiloxane), which has
a contact angle with water of about 105°. This value is close to
the contact angle of wax, which covers lotus leaves (about 103° 24).
The positive and negative replicas have the same roughness factor
and thus should produce the same contact angle in the case of
a homogeneous interface; however, the values of the surface
curvature are opposite. The value of the contact angle for the
positive replica was found to be 160° (which is the same as for
lotus leaf), whereas for the negative replica it was only 110°.
This result suggests that the high contact angle of the lotus leaf
is due to the composite rather than the homogeneous interface
and that the sign of surface curvature indeed plays a critical role
in the formation of the composite interface.

Natural and successful artificial superhydrophobic surfaces
exhibit hierarchical multiscale roughness. Thus, the lotus leaf
has microscale bumps (papillae) with a typical height and radius
of 10-20µm; these bumps are covered with hydrophobic paraffin
wax. Upon these bumps much smaller nanobumps are found,
with typical submicrometer sizes. Artificial biomimetic super-
hydrophobic surfaces should also have multiscale roughness.

Tosummarize,biommimetic superhydrophobicsurfacesshould
satisfy the following requirements: they should have a hydro-
phobic coating, high roughness factors, providing a high contact
angle, and the ability to form a composite interface. To achieve
a stable composite interface, a hierarchical roughness structure
with nanoscale bumps upon microscale asperities and valleys is
required.

5. Conclusions
The mechanism of roughness-induced hydrophobicity is

complicated and involves effects over various scale ranges. For
most superhydrophobic surfaces, it is important that a composite
solid-liquid-air interface is formed. A composite interface
dramatically decreases the area of contact between the liquid
and solid and therefore decreases the adhesion of a liquid droplet
to the solid surface and contact angle hysteresis. The formation
of a composite interface is also a multiscale phenomenon that
depends upon the relative sizes of the liquid droplet and roughness
details. The composite interface is fragile, since transition to a
homogeneous interface is irreversible. Therefore, the stability of
a composite interface is crucial for superhydrophobisity and
should be addressed for the successful development of super-
hydrophobic surfaces. We have demonstrated that multiscale
roughness can help to resist the destabilization, with convex
surfaces pinning the interface and thus leading to a stable
equilibrium and preventing the filling of gaps between the pillars
even in the case of a hydrophilic material. The effect of roughness
on wetting is scale-dependent, as are mechanisms that lead to
the destabilization of a composite interface. To resist these scale-
dependent mechanisms, multiscale roughness is required. Such
multiscale roughness was found in natural and successful artificial
superhydrophobic surfaces.
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ALA ) A0(1 - ηπ2R2 sin2 R
2x3 ) (15)

ASL )
ηA0π

2R2

2x3r2
[4r2N + (z2 + 2z(2r - z))] (16)

W ) ALAγLA + ASL(γLA - γSA) ) γLA(ALA + ASL cosθ0)

) A0γLA(1 - ηπ2R2

2x3
{2z

r
- (zr)2

- [4πN + (zr)2
+

2(zr)(2 - z
r)]cosθ0})(17)
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