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ABSTRACT 
 

A quasi-Monte Carlo model has been developed to predict the effective 
emissivity for accurate radiometric temperature measurements in rapid thermal 
processing (RTP) furnaces. The hemispherical effective emissivities calculated 
from this Monte Carlo method agree with those calculated from the net-radiation 
method. The Monte Carlo method, however, can also be used to determine the 
directional effective emissivity and the true effective emissivity, which is needed 
to obtain the wafer temperature from the measured spectral radiance temperature 
by the lightpipe radiation thermometer (LPRT). If the wafer is not diffuse, the 
true effective emissivity may be quite different from the hemispherical 
emissivity, especially for specular wafers with emissivities less than 0.6. For the 
RTP system studied here, the largest effective emissivity is obtained with a 
numerical aperture of about 0.5. 
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INTRODUCTION 
 

Rapid thermal processing (RTP) has 
prominent applications in the new century due to 
the continuing advances in semiconductor 
technology [1]. RTP has been replacing batch 
furnaces in several critical manufacturing 
processes for integrated circuits. A significant 
challenge in the development of RTP technology 
is the accurate measurement and control of the 
wafer temperature. Because of the nature of fast 
response and non-intrusiveness, lightpipe 
radiation thermometers (LPRTs) are commonly 
used to monitor the wafer temperature during the 
process. One of the methods to reduce the 

measurement uncertainty caused by the 
emissivity variation and stray light is the usage 
of a cold reflective shield [2-4]. The effective 
emissivity must be precisely determined to 
correct the radiometer reading because LPRTs 
are normally calibrated against blackbodies. 

 
Researchers at the University of Florida 

and National Institute of Standards and 
Technology (NIST) have developed effective 
emissivity models for RTP furnaces based on the 
net-radiation method [3-6]. The results showed 
that, with the highly reflective shield, the 
effective emissivity approaches one and is less 
sensitive to variations of the wafer emissivity. 
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The guard ring and the guard tube have strong 
influence on the local effective emissivity of the 
wafer. Although the algorithm based on the net-
radiation method is fast and convenient, only the 
hemispherical effective emissivity can be 
obtained. The strong temperature non-uniformity 
and the large property variation of the surfaces 
in a RTP furnace may cause significant 
directional dependence of the effective 
emissivity. The hemispherical effective 
emissivity may not be appropriate to use in 
practice, because the LPRT views the wafer in a 
small solid angle, usually much less than 2π sr. 

 
A more complicated statistical approach, 

i.e., the Monte Carlo method, is the preferred 
choice to study the impact of the directional 
dependence of the properties on the radiometric 
temperature measurement. Earlier, Monte Carlo 
methods have been used to predict the effective 
emissivity of nearly isothermal cavities [7-9]. 
Howell [10] gave a comprehensive review on 
the applications of Monte Carlo methods in 
radiative heat transfer. Cole et al. [11] and 
Mazumder and Kersch [12] developed Monte 
Carlo models to study the radiative heat transfer 
in thermal processing. Recently, Adams et al. 
[13] used a Monte Carlo model to predict the 
effective emissivity and considered the effect of 
the bidirectional reflectivity distribution function 
(BRDF). Their ray-tracing algorithm was not 
very efficient and, for this reason, some 
simplifications had to be made in the modeling. 

 
In the present paper, we describe a general 

Monte Carlo model for the study of radiative 
transfer in the lower chamber of RTP furnaces. 
Several definitions of the effective emissivity 
are described in detail. In addition to the 
hemispherical effective emissivity, the model 
can predict the distribution of the directional 
effective emissivity, the effective emissivity 
based on the spot-to-lightpipe geometry, and the 
effective emissivity based on the numerical 
aperture. 

 
 

MODEL DEVELOPMENT 
 
Figure 1 shows a schematic of the model 

for the lower chamber of RTP furnaces that 

employ a reflective shield and use LPRTs to 
monitor the wafer temperature. It is based on the 
NIST RTP tool [6]. The lower chamber is 
modeled as a cylindrical enclosure. The top 
surface is a silicon wafer with a coplanar guard 
ring, the bottom surface is the shield (a gold-
coated, water-cooled copper plate), and the 
lateral surface is a platinum-coated quartz guard 
tube. The lightpipe, located at the center of the 
shield, views a small portion of the wafer (spot). 
There are four off-center holes in the shield that 
can accommodate other lightpipes. In the actual 
system (not shown in Fig. 1), the wafer is 
supported by three rods, whose length can be 
adjusted to vary the distance between the wafer 
and the shield. An array of quartz-halogen lamps 
heats the wafer from above. 

 
Guard ringWafer

Guard tube

Light pipe Sheath Off-center holes

Spot

Shield
 

 
Figure 1.  Schematic of the lower chamber model for 

RTP furnaces (not to scale). 
 

The radius of the wafer is 100 mm and 
inner radius of the guard tube is 135 mm. In the 
enclosure analysis, it is assumed that the radius 
of the shield is 135 mm, and the inner and outer 
radii of the guard ring are 100 mm and 135 mm, 
respectively. The radii of the sapphire lightpipe 
and the sheath are approximately 1 mm and 2 
mm, respectively. The off-center holes are 
located at 54 mm from the center of the shield 
with a radius of 3.5 mm. The distance between 
the wafer and the shield L is typically 12.5 mm. 
The radius of the spot is experimentally 
determined to be 3/Lrr ps += , where sr  and 



 3

pr  are the radius of the spot and that of the 

lightpipe, respectively. The temperature of the 
wafer is much higher than that of the other 
surfaces. The shield is highly reflective and the 
lightpipe tip, sheath, and holes are almost black. 
The operating wavelength of the LPRT is 0.955 
µm. 
 
The Net-Radiation Method 
 

A brief review of the net-radiation method 
is presented in this section to facilitate the 
discussion of various definitions of the effective 
emissivity. For an opaque, diffusely emitting 
surface, the (hemispherical) reflectivity can be 
adequately represented by a combination of a 
diffuse component and a specular component, 
then [14]: 

 
 

λλλλ ε−=ρ+ρ=ρ 1sd   (1) 
 

 
where superscripts d and s denote respectively 
the diffuse and the specular components and λε  
is the spectral emissivity. 

 
For an enclosure consisting of N such 

surfaces, the (diffuse) spectral radiosity λJ  for 
the ith surface is defined as 

 
 

i
d

iibii HEJ ,,,,, λλλλλ ρ+ε=   (2) 

 
 

where bEλ  is Planck's blackbody emissive 
power, and iH ,λ  is the spectral irradiation that 

can be expressed as 
 
 

∑
=

−λλ =
N

j

s
jiji FJH

1
,,   (3) 

 

where s
jiF −  is the specular view factor between 

surface Ai and surface Aj.  Equations (2) and (3) 
can be combined to eliminate iH ,λ . The 

resulting N linear algebraic equations can be 
solved for the radiosities if the surface 
temperatures are given [5]. The irradiation for 
each surface can then be calculated using Eq. 
(3). 
 

The (spectral) effective emissivity of the 
wafer can be defined as the ratio of the radiant 
energy leaving the wafer by emission and 
reflection to that of a blackbody at the same 
temperature, viz., 

 
 

wbwwwbwweff EHE ,,,,,, ])1([ λλλλλ ε−+ε=ε (4) 

 
 
where subscript w stands for the wafer. The 
effective emissivity from Eq. (4) depends on the 
position on the wafer and therefore it is a local 
property. Another way of defining the effective 
emissivity is to consider the receiving surface 
(such as the lightpipe in Fig. 1). In this case, 
 
 

wbppeff EH ,,, λλ=ε    (5) 

 
 
It can be viewed as the spectral irradiation 

at the lightpipe tip divided by the spectral 
irradiation in a blackbody surrounding at the 
wafer temperature.  

 
Either definition gives a hemispherical 

effective emissivity, whereas the directional 
distribution of the irradiation is in general not 
diffuse. The lightpipe can only view a limited 
solid angle due to the detector optics. It is 
common to use the numerical aperture of the 
lightpipe, defined as 

 
 

hNA θ= sin    (6) 

 
where θh is the half cone angle. The directional 
distribution of the irradiation may influence the 
thermometer reading. Moreover, if more 
surfaces are non-diffuse, the specular view 
factor will be difficult to obtain. While the net-
radiation method is conceptually simple and 
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convenient for programming, it cannot deal with 
complicated situations. 
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Figure 2. Illustration of the position and direction 
variables on the top and bottom surfaces. 

 
 
The Monte Carlo Method 
 

In the Monte Carlo model, the procedure 
begins by emitting ray bundles at random from 
each surface. The number of bundles and the 
energy per bundle are determined from the 
surface area and the spectral emissive power, 
which in turn depends on the surface 
temperature and emissivity. All surfaces are 
assumed opaque and diffusely emitting. In order 
to obtain the local effective emissivity, the 
wafer, the guard ring, and the shield are further 
divided into smaller concentric rings. On each 
ring, the properties and temperature are assumed 
uniform, except for the ring on the shield that 
contains the four off-center holes. In this ring, 
the properties of the holes are evaluated 
separately from the other part of the ring. As 
shown in Figure 2, the position is defined by a 
radius r on the top and bottom surfaces (or a 
height h on the guard tube) and a circumferential 
angle α. The direction is defined by a polar 
angle θ and an azimuthal angle ϕ . Four random 
numbers between 0 and 1 are generated to 
determine the position and direction of emission 
for each bundle, namely )(or  hr RR , αR , θR , 
and ϕR . The radius of the outgoing point on 

each ring is calculated by 

 
2

1
2

1
2 )( −− +−= iiir rrrRr   (7a) 

 
where 1−ir  and ir  are correspondingly the inner 
and outer radii of the ith ring. If the emission is 
from the guard tube, the height is given by 

 
LRh h=     (7b) 

 
where L is the distance between the wafer and 
the shield. The circumferential angle is 

 
απ=α R2     (8) 

 
Because the emission is diffuse, the directional 
angles are calculated by 

 

θ
−=θ R1sin   and  ϕπ=ϕ R2  (9) 
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Figure 3. Flowchart of the Monte Carlo procedure. 
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After each ray bundle is emitted, it will be 
traced in the enclosure until it is absorbed. The 
flowchart for the Monte Carlo simulation 
procedure is shown in Fig. 3. For rays 
originating from the top or bottom surfaces, the 
arriving point ),( 22 αr  on the opposite surface 
can be obtained from the starting point ),( 11 αr  
and direction ( 11, ϕθ ) by: 

 





α+ϕθ=α
α+ϕθ=α

111122

111122

sinsintansin
coscostancos

rLr
rLr

 (10) 

 
For the case in which the calculated 2r  is 

greater than sr  (the radius of the shield or guard 
tube), the ray will strike the guard tube. The 
height 2h  is obtained by replacing 2r  with sr  
and L  with 2h  (or 2hL −  if the emission is 
from the top surface) in Eq. (10). For rays 
originating from the guard tube, the following 
expressions are used to determine the arriving 
position: 

 
 














ϕθα−
αϕ−α=α

ϕθα−
αϕ+α=α

)sin(tansin  

coscotsinsin

)sin(tancos  

sincotcoscos

111

11122
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11122

b

brr

b

brr

s

s

 (11) 

 
 
where b is the displacement in the z direction. 

 
After the arriving point is obtained, one 

more random number is required to determine 
whether this bundle is absorbed or reflected. The 
reflection is considered, in general, to include a 
specular component and a diffuse component. If 
the reflection is specular, the reflection direction 
is opposite to the incident direction. If the 
reflection is diffuse, two more random numbers 
are needed and the reflection direction is 
calculated in the same way as for the emission, 
i.e., according to Eq. (9). 

 

The local effective emissivity of the wafer 
can be calculated by 

bbemitted

wreflectedwemitted
weff N

NN

,

,,
,

+
=ε  (12) 

 
 
The numerator is the sum of emitted and 
reflected bundles from a ring, and the 
denominator is the number of bundles that 
would be emitted by a blackbody at the same 
temperature and area. Equation (12) gives a 
hemispherical effective emissivity. Because only 
the bundles reaching the lightpipe from the spot 
contribute to the radiometer reading, another 
effective emissivity, called true effective 
emissivity, can be defined, 

 
 

bbps

ps
pseff N

N

,
,

−

−
− =ε    (13) 

 
 
The numerator is the number of bundles (emitted 
and reflected) from the spot to the lightpipe tip, 
and the denominator is the number of bundles 
from the spot to the lightpipe if the spot were a 
blackbody. The denominator can be directly 
calculated from the view factor and the 
blackbody emissive power.  
 

The effective emissivity based on the ray 
bundles that strike the lightpipe can be expressed 
as 

 

bbstrike

strike
peff N

N

,
, =ε    (14) 

 
The denominator is the number of bundles that 
strike the lightpipe tip from a blackbody 
surrounding at the wafer temperature. This 
definition can also be extended to give the 
directional effective emissivity by considering 
only bundles within a small interval about θ for 

π<ϕ≤ 20 . Furthermore, because the lightpipe 
collects radiation within a certain numerical 
aperture, another effective emissivity may be 
defined based on the half angle of the 
acceptance cone: 
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,bbwithinstrike

hin strike wit
eff

h

h

h N

N

θ

θ
θ =ε

  
,   (15) 

 
Equation (15) gives the hemispherical 

effective emissivity when °=θ 90h  (i.e., NA = 
1). Because the radius of the lightpipe is much 
smaller than the radius of the spot, the results of 
Eq. (13) and Eq. (15) are nearly the same. Either 
Eq. (13) or Eq. (15) gives the true effective 
emissivity value that should be used in the 
working equation of LPRTs. The emissivities 
defined in this section are all spectral, though the 
word spectral has been omitted. 

 
 

Methods for Random Number Generation 
 
Because the Monte Carlo method is a 

statistical method, for complicated problems, the 
choice of algorithm for the random number 
generation is very important. The functions 
implemented in most programming languages 
are based on the linear congruential generator 
[15,16]. The simplest pseudo-random number 
sequence can be obtained by dividing an integer 
sequence by the modulus m (often the largest 
integer in the computer): 

 
mIR jj /=    (16a) 

 
The integer sequence is generated from 

 
caII jj += −1 (mod m),  j = 1, 2, …(16b) 

 
where a and c are positive integers, which can 
be selected so that the period of the sequence 
approaches m. The "mod m" in the parentheses 
of Eq. (16b) is a mathematical notation that 
indicates that jI  is subtracted by m as many 

times as needed to yield a positive integer less 
than m. The random numbers obtained from Eq. 
(16a) are in the domain [0, 1]. An arbitrary 
initial value may be assigned as 0I , which is 
called the seed. This random number sequence 
satisfies the test for pseudo-random numbers 
and, if a, c, and m are carefully chosen, any seed 

choice is as good as any other in a one-
dimensional space. However, in a k-dimensional 
space (k > 1), the sequences are no longer 
independent between the dimensions. 
 

For the simulation of the RTP radiation 
process, four random numbers are required to 
determine the position and direction of emission 
from the surfaces. Those random numbers 
should be independent. Therefore, the quasi-
random sequences are employed in the present 
study [15,16]. The corresponding Monte Carlo 
method is often called the quasi-Monte Carlo 
method. The scheme of this kind of sequence 
can be conceptually interpreted by the Halton’s 
sequence. In one dimension, the jth number jI  in 

the sequence is obtained by the following two 
steps: (i) Write j as a number in base d where d 
is some prime number; (ii) Reverse the digits 
and put a radix point in front of the number 
obtained previously. In a space of k dimensions, 
each component is taken from the Halton’s 
sequence with a different prime base. The 
advantage is that the successive points will fill in 
the gaps in the previously generated distribution. 
In our calculation, the advanced procedure of the 
Antonov-Saleev variant of the Sobol’s sequence 
is employed [15]. Figure 4 shows the 
comparison of the point distributions on the 
wafer spot between the quasi-random sequences 
and the linear congruential generator ( 0I  = 7) in 
the Monte Carlo model. Obviously, the quasi-
random number sequences yield more uniformly 
distributed points. It has been shown that the 
linear congruential random number generator 
may produce erroneous results for the true 
effective emissivity [17]. In the quasi-Monte 
Carlo model described in the present paper, the 
quasi-random sequences are used for the 
location and direction of the emitted ray bundles 
and an improved linear congruential generator is 
used to obtain additional random numbers for 
the absorption and reflection. 

 
 

RESULTS AND DISCUSSION 
 
In the calculation, the temperature of the 

wafer is set to 800 °C and the temperature of all 
other surfaces is set to 25 °C.  The reflectivity of 
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(a) the linear congruential generator ( 0I  = 7) 
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(b) the quasi-random sequence 

Figure 4. Point distributions on the spot for different 
random number generators. 

 
 

the shield is 0.993. The emissivity of the guard 
ring and guard tube is 0.1. The emissivity of the 
lightpipe, sheath, and off-center holes is 
assumed to be the same as sapphire, which is 
0.925. The emissivity of the wafer is 0.651 at 
800 °C. Because the wafer emissivity varies for 
different batches or even during the thermal 

processing, it is important to know the influence 
of the wafer emissivity on the effective 
emissivity. The emissivity of the wafer is 
therefore taken as a variable. In general, the 
reflectivity can have a diffuse component and a 
specular component. For the Monte Carlo 
simulation results presented here, the guard ring 
and the guard tube are assumed to reflect 
diffusely, while the shield (including the 
lightpipe, sheath, and off-center holes) is 
assumed specular. The wafer is specular in most 
cases and may have both specular and diffuse 
components in some cases. The Monte Carlo 
simulation obtains the hemispherical and true 
effective emissivities in the same run. It takes 
about 2 million bundles from the spot for the 
results of the true effective emissivity to 
converge within ±0.003. The total number of 
emitted bundles (almost all of them are from the 
wafer) is 1.1 billion and it takes about 8 hours 
for each run on a 600 MHz Pentium III 
computer. That is to say that the average time 
for each ray bundle is about 30 µs. Because the 
off-center holes are far away from the center, 
their influence on the effective emissivities at 
the center is negligibly small. Nevertheless, the 
capability of including off-center holes is a 
unique feature of this Monte Carlo program. 
 

Figure 5 compares the true effective 
emissivity and the hemispherical emissivity 
calculated with the quasi-Monte Carlo method 
for a specular wafer versus the wafer emissivity. 
The  hemispherical values predicted from the 
net-radiation method are also shown for 
comparison. Due to the limitations of the net-
radiation method, the shield is assumed diffuse 
and the guard ring is assumed specular with the 
same reflectivity as that of the wafer. The use of 
diffuse shield slightly over-predicts the 
hemispherical effective emissivity, and the use 
of the wafer reflectivity for the guard ring 
slightly under-predicts the effective emissivity. 
The calculated hemispherical emissivity based 
on the spot is consistent between the Monte 
Carlo method and the net-radiation method. The 
hemispherical effective emissivity based on the 
lightpipe is consistently lower; this can be 
understood by the fact that the irradiation on the 
lightpipe includes direct contributions of the 
cold guard ring and guard tube. It is noteworthy 
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that, as the wafer emissivity is changed from 0.3 
to 0.8, the true effective emissivity changes from 
0.945 to 0.990, whereas the hemispherical 
effective emissivity (from the Monte Carlo 
model) will vary from 0.853 to 0.987. This 
suggests that the true effective emissivity is less 
sensitive to the wafer emissivity, a desired 
feature for the radiometric temperature 
measurement. For wafer emissivities less than 
0.6, the difference between the true effective 
emissivity and the hemispherical effective 
emissivity can be significant. 
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Figure 5. The relationship between the effective 

emissivity and wafer emissivity. 
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Figure 6. Effective emissivity vs. specular fraction of 
the wafer reflectivity. 

The influence of the specular fraction of the 
wafer is shown in Fig. 6, where the emissivity of 
the wafer is 0.651. The specular fraction is 
defined as λλ ρρ /s , see Eq. (1). In principle, the 
true effective emissivity should be the same as 
that of the hemispherical one for a diffuse wafer. 
The difference of about 0.003 is caused by the 
uncertainty in computing the true effective 
emissivity because the view factor between the 
spot and the lightpipe is very small. The 
hemispherical effective emissivity is the 
maximum if the wafer reflection is diffuse and 
decreases slightly (about 0.004 from the 
completely diffuse to the completely specular). 
On the contrary, the true effective emissivity 
increases as the specular ratio increases and 
reaches the maximum with specular reflection. 
The true effective emissivity changes for about 
0.014 from the completely diffuse to the 
completely specular. The difference between the 
true effective emissivity and the hemispherical 
emissivity for a specular wafer is about 0.015, 
corresponding to a 1 °C difference in LPRT 
reading at temperature 1000 K for a bandpass 
around 1 µm. The difference in the true effective 
emissivity between specular wafer and diffuse 
wafer would be larger for lower wafer 
emissivities. Although the reflection of actual 
surfaces may be better represented by the 
BRDFs, Adams et al. [13] showed that the 
predicted effective emissivity with measured 
BRDFs lies somewhere between completely 
diffuse and completely specular cases. 

 
The angular distribution of the directional 

effective emissivity at the lightpipe is shown in 
Fig. 7 for wafer emissivities of 0.3 and 0.651, 
where the interval in θ is 3° in the calculation. 
The directional effective emissivity is close to 
that of the wafer at °→θ 0 . This is because of 
the high emissivity of the lightpipe and sheath 
coupled with specular reflections; that is, there is 
little or no enhancement in the normal effective 
emissivity. The directional effective emissivity 
increases with θ, reaches a maximum, and then 
decreases as θ further increases. The decrease at 
large angles is caused by the cold guard ring and 
guard tube. If the striking bundles follow the 
Lambert’s cosine law, the directional effective 
emissivity   should  be  a  constant  for  all  polar 
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Figure 7. Angular distribution of the directional 
effective emissivity at the lightpipe for different 

wafer emissivities. 
 
 
 
angles. Figure 7 shows that the directional 
effective emissivity varies sharply with the polar 
angle, especially with small wafer emissivities. 
This is the reason why the reverse method in 
which the rays are emitted from the lightpipe 
(presumably following the Lambert's cosine 
law) and collected at the wafer would yield an 
error for nearly specular wafers [13]. 

 
The effective emissivity calculated from 

Eq. (15) versus the numerical aperture of the 
lightpipe is shown in Fig. 8. The half angle of 
the spot viewed from the center of the lightpipe 
is 22.6° (NA = 0.384), the resulted 

heff θε ,  is 

almost the same as the true effective emissivity 
calculated from Eq. (13). Similar to Fig. 7, 

heff θε ,  increases first and then decreases as the 

numerical aperture increases. There exists a 
numerical aperture where the effective 
emissivity is the greatest. The half cone angle 
corresponding to the maximum 

heff θε ,  is about 

25° for 3.0, =ελ w  and increases to 50° for 

8.0, =ελ w . A choice of the half cone angle close 

to 30° (NA = 0.5) is recommended because, at 
large wafer emissivities, the effect of the 
numerical aperture on the effective emissivity is 
not so strong. 
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Figure 8. The effective emissivity 
heff θε ,  calculated 

from Eq. (15) vs. the numerical aperture. 
 

 
 

SUMMARY AND CONCLUSIONS 
 

A Monte Carlo model has been developed 
to analyze the radiative transfer in the lower 
chamber of RTP furnaces. The uniqueness of the 
model presented here includes the use of quasi-
random sequences, the addition of off-center 
holes, and the definition of the true effective 
emissivity that should be used to correct the 
reading of the radiation thermometers. The 
results show that for non-diffuse wafers, the true 
effective emissivity may deviate from the 
hemispherical value due to the directional 
dependence of the incoming radiation on the 
lightpipe. The deviation is even greater for 
specular wafers with an emissivity less than 0.6. 
There exists an optimized numerical aperture 
that yields the highest effective emissivity. For 
the conditions studied here, a numerical aperture 
of 0.5 (i.e., half cone angle of 30°) is 
recommended. 
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