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Phonons and Static Dielectric Constant in CaTiO; from First Principles
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CaTiOs has a static dielectric constant that extrapolates to a value greater than 300 at zero
temperature. We investigate the origin of this large dielectric response on a microscopic level,
using first-principles plane-wave pseudopotential density functional theory calculations. The
electronic dielectric tensor and the complete set of zone center phonons and ionic Born effective
charges are determined for CaTiO3 in its low temperature 20-atom per cell orthorhombic phase
via frozen phonon electronic structure, polarization and force constant calculations. Dispersion
theory is then used to obtain the dielectric tensor. The dielectric response is dominated by low
frequency (v ~ 90 cm_l) polar optical modes in which cation motion opposes oxygen motion.
The frequencies of these phonons, and thus the dielectric constant, are predicted to be pressure-

sensitive.

PACS numbers:

I. INTRODUCTION

Ceramic solid solutions involving CaTiOs are among
the candidate systems for high-quality microwave dielec-
tric materials[1]. Pure CaTiOgz has a dielectric constant
of about 180 at room temperature. The dielectric con-
stant increases monotonically as temperature decreases
over the measured range from 4.2 to 430 K, and extrapo-
lates to a value greater than 300 at zero temperature[2, 3].
Associated with the trends in dielectric constant is a large
positive temperature coefficient of resonant frequency
(ry = 0f/0T) [4] for dielectric resonators made from
CaTiO3. The solid solution CaTig 54(Al;/2Ta1/2)0.4603,
however, has 7y = 0[1]. As a first step toward un-
derstanding the dielectric properties of CaTiOs-based
solid solutions at the microscopic level, we present a
first-principles investigation of the low-temperature zero-
frequency dielectric response of CaTiOs3.

For T >~ 1580 K, CaTiO3 has the ideal perovskite
structure. As temperature decreases, CaTiOs under-
goes a sequence of phase transitions. Experiments have
not yet pinpointed the number of phases and exact
phase transition temperatures[5]. A recent powder neu-
tron diffraction study[6] suggests that there may be as
many as three phase transitions: (i) from cubic to body-
centered tetragonal at T ~ 1580 K, (ii) to a possible
centered orthorhombic phase at T ~ 1500 K, and (iii)
to the low temperature primitive orthorhombic phase at
T =~ 1380 K. All of the structures are related to the
perovskite structure via small distortions of ions from
their ideal perovskite positions[6]. The structure of the
low-temperature phase is shown in Figure 1. It has
four CaTiO3 formula units in an orthorhombic cell with
a~ b~ 2ap and ¢ ~ 2ag, where qq is the lattice param-
eter of the high temperature perovskite phase. Its struc-
ture can largely be described as an oxygen-octahedron
tilting structure (a~a~c¢" in Glazer’s notation[7, 8]), al-

though the resultant symmetry breaking also displaces
Ca ions from their ideal perovskite positions.

By definition, the relative dielectric permittivity ten-
sor of a material, r,g, is related to its dielectric
susceptibility[9]
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Kag = 504[3 + Xag, (1.2)

where P is the polarization, E the applied electric field,
and d,3 the Kronecker delta function.

It is not possible, however, to calculate the static di-
electric tensor of a material in a plane-wave density func-
tional theory calculation directly from (I.1)-(I.2), because
periodic boundary conditions do not allow a finite macro-
scopic field. Fortunately, there exists an alternate expres-
sion for k in terms of quantities that can be computed
under zero-field boundary conditions. In the classical
dispersion formula for the static dielectric tensor of a
complex lattice[10],
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where Ko, is the electronic dielectric tensor, p labels the
zone-center (q = 0) normal modes of the system, w,
their (angular) frequencies, 7#(1 their effective charges
in Cartesian direction «, V the volume per unit cell, and
€o the permittivity of free space. The mode effective
charge in the a direction for a given mode p is defined as

(Z)a = Z Dy (mo /1) (a,) iy, (I.4)



FIG. 1: Slightly-distorted perovskite experimental room-
temperature structure of CaTiO3z. The origin of the unit
cell is shifted by (-0.25,0.25,0) in cell parameters with
respect to the conventional setting in order to make the
TiOg octahedra more clear.

where Z} is the Born effective charge tensor for ion 7, m;
its mass, (ay ), the component of the normalized dynam-
ical matrix eigenvector for mode p involving ion ¢ in the
~ direction, and mg an arbitrary mass, which is cancelled
by the denominator of (I.3). We choose mg = 1 amu in
this work. Finally, the components of the Born effective
charge tensor for a given ion ¢ are defined as follows:
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where P is the polarization of the system and wu;, the
motion of ion 7 in direction ~.

Historically, equation (I.3) has mainly found exper-
imental applications to simple systems, such as alkali
halides, for which the phonon eigenvectors are deter-
mined by symmetry[10]. Recently, optical reflectivity
experiments have been used to determine the individ-
ual mode contributions to the dielectric constant in more
complex systems such as Ba(B] ,BY ;)O3 perovskites(11,
12] and BaMg; /3Tay/303[13, 14]. The most complex sys-
tem for which this has been done has 16 infrared active
modes. In its low temperature phase, CaTiO3 has 25 in-
frared active modes, with, as we show later, widely differ-
ent Z;. It thus appears that measurement of the mode-
by-mode contribution to x in CaTiOg is at the limit of
present experimental capabilities.

Even if one could measure the contribution of each

mode to k and thus each 7; experimentally, it is not

possible to break down 7; into the individual phonon

eigenvectors and ionic effective charges via Eq. (I.4) with-
out making additional assumptions (see e.g. Reference
[12]) because Eq. (I1.4) is indeterminate. First princi-
ples calculations have shown that one must be careful in
making assumptions for two reasons: (1) The Born ef-
fective charges of perovskite-related materials frequently
differ significantly from their nominal values[15, 16]. (2)
The eigenvectors of corresponding modes in seemingly
similar systems can be quite different, even in simple
perovskites[17, 18]. In order to understand the origin
of the dielectric behavior of CaTiOg on the microscopic
level in a manner free from assumptions, we turn to first
principles methods.

Lee, Ghosez, and Gonze[19] did a fully first princi-
ples calculation of the static dielectric tensor in rutile
TiO9, a compound with 6 atoms per unit cell and 4 sets
of infrared-active modes, obtaining good agreement with
experiment. In this work, we apply first-principles meth-
ods to investigate the dielectric properties of CaTiOs,
with 20 atoms per unit cell and 25 infrared-active modes.

II. FIRST-PRINCIPLES CALCULATIONS

All calculations are performed using VASP (the Vi-
enna ab initio simulation package[20-23]). VASP is a
code for plane-wave pseudopotential density functional
theory calculations. We used ultrasoft Vanderbilt type
pseudopotentials[24] as supplied by G. Kresse and J.
Hafner[25]. Semicore p electrons were treated as valence
electrons for the Ca and Ti pseudopotentials, but semi-
core s electrons were treated as core electrons. The total
number of valence electrons was 8 for Ca, 10 for Ti, and
6 for oxygen. All of our calculations were done using the
VASP high precision option, i.e. a plane-wave energy
cutoff of 494.6 eV. We used the local density approxima-
tion (LDA) for the exchange-correlation energy. Brillouin
zone integration was obtained by calculating Kohn-Sham
wavefunctions for a set of 128 k points in the Brillouin
zone, positioned so as to be equivalent to an 8 x 8 x 8
Monkhorst-Pack grid for a primitive perovskite cell.

III. RESULTS
A Structure

There is some choice in the CaTiO3 structure on which
to base in the first principles dielectric calculations. First,
there is the experimental structure. Various experiments
report slightly different parameters for the structure of
CaTiOg3. In Table I(A), we report the weighted average
of the four structure refinements tabulated in Ref. [26].
Secondly, there is the structure obtained by fixing the
cell parameters at the experimental value and perform-
ing a first-principles ionic relaxation; these parameters
are shown in Table I(B). Next, one can allow both ionic



positions and cell parameters to relax under the LDA; the
results are given in Table I(C). All of the first-principles
relaxations were done to a convergence of better than
1075 eV per formula unit, with relaxed structures used
as the input for additional relaxations to make certain
that the minimum was achieved. Finally, to contrast the
properties of the ground state of CaTiOs with those of
the high temperature perovskite structure, we present in
Table I(D) the parameters for an ideal perovskite cell
whose volume is the same as that of the experimental
one. The ideal perovskite structure actually has a primi-
tive five-atom cubic cell with lattice parameter 3.8245 A.

TABLE I: Structure of CaTiO3. (A) Weighted average of
four room temperature structure refinements. (B) LDA
ionic relaxation with same cell parameters as (A). (C)
Full LDA ionic and cell relaxation. (D) Ideal perovskite
with same volume as (A). Space group Pbnm, a, b, ¢ in

A.

A B C D

a |5.3804|5.3804|5.2898|5.4086
b [5.4422|5.4422|5.4122|5.4086

c |7.6417|7.6417|7.5374|7.6490
Ca

z 10.9935[0.9903|0.9892 0

y 10.0349]0.0443|0.0480 0

z | 1/4 | 1/4 | 1/4 | 1/4
Ti

x 0 0 0 0

y | 12 | 172 | 172 | 172

z 0 0 0 0
O(1)

x ]0.0707]0.0807]0.0838 0

y 10.4842|0.4783|0.4776| 1/2

2 | 1/4 | 14 | 1/4 | 1/4
0(2)

z 10.7111]0.7093|0.7063| 3/4
y (0.2884/0.2904|0.2927| 1/4

z 10.0372]0.0427(0.0441 0

The theoretical structures generally have larger dis-
tortions from the ideal perovskite structure than the
experimental ones. However, the theoretical calcula-
tion is inherently a zero-temperature calculation. Liu
and Liebermann[27] report the structure parameters for
CaTiOg3 at both 298 K and 673 K. Applying the ther-
mal expansion factors, etc., of their results between 298
K and 673 K to linearly extrapolate the average exper-
imental structure to zero temperature gives a = 5.3565,
b = 5.4316, ¢ = 7.6103, Ca, = 0.9921, Ca, = 0.0410,
O(1), = 0.0784, O(1), = 0.4839, O(2), = 0.7102,
0(2), = 0.2878, and O(2), = 0.0404. We find that
roughly half of the apparent discrepancy between experi-
mental and relaxed ab initio atomic positions in CaTiO3
is due to the fact that the experimental results are at
room temperature and not zero temperature. The rest is
due both to possible systematic experimental errors due
to twinning, grain boundaries, etc., and to systematic er-

rors in the first-principles calculations, in particular the
LDA. In fact, the full minimization leads to a cell vol-
ume that is 3.5 % less than that of the experimental
volume at room temperature and 2.5 % less than that of
the extrapolation of the experimental cell to zero tem-
perature. The error in the cell parameters is about 1%,
typical LDA error for perovskite oxides. The distortion
of the atomic positions is slightly larger in the full LDA
relaxation than the constrained one, showing an inverse
correlation between cell size and amount of distortion.
Full LDA relaxations predict a larger strain than is ob-
served experimentally (b/a = 1.019 vs. 1.011 vs. 1.014
extrapolated low temperature). In summary, a full first-
principles LDA relaxation on CaTiO3 underestimates the
unit cell volume by about 3%, predicts distortions of ions
from their ideal perovskite positions that are about 20%
larger than observed experimentally, and overestimates
the anisotropic strain.

B Born effective charges

We used the King-Smith and Vanderbilt (KSV) [28]
method to calculate the polarizations of perturbed cells
and from this, the Born effective charge tensors of the
ions. The KSV method gives the electronic contribution
to polarization, to which the ionic contribution is added
to obtain the total polarization P. The component of
the electronic contribution to polarization along lattice
vector a, is computed via a set of Berry’s phase calcu-
lations ¢k, along straight-line paths in the Brillouin
zone, where reciprocal lattice vector b, is the path vec-
tor, J the number of evenly spaced k points in the path,
and k,; the component of k orthogonal to b, along the
path. The Berry’s phase is the phase of the complex
product of the determinants of all wavefunction overlap
matrices between successive k points in the path. One
finally obtains
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where Ag,, is the average of A, k, across the Brillouin
zone cross section, A, k, being the difference between
®ak, for the polar phase and ¢, k, for a nonpolar phase
related to the polar phase by an adiabatic transforma-
tion which remains insulating. In practice, we find that
®ak, for nonpolar phases in our calculations are easily
identified as multiples of 7 and do not need to be explic-
itly calculated. See Refs. [28-30] for more details on the
Berry’s phase approach to polarization.

For each structure A-C, we perturbed each atom, in
turn, in the z, y and z directions and calculated the
charge density self-consistently via a total energy calcu-
lation. We then performed non-self-consistent wavefunc-
tion calculations in order to obtain the wavefunctions for
the Berry’s phase calculations. We used J = 10 along z



and J = 14 along x and y. For structure A, we obtained
the cross-section average by averaging the phases for k
on a 4 x4 Monkhorst-Pack grid. To reduce computational
effort for structures B and C, we only calculated wave-
functions for half the points of a 4 x 4 Monkhorst-Pack
grid, and scaled the undetermined phases in the same av-
erage way with respect to structure A as the determined
phases. For structure D, we calculated Born effective
charges using a primitive cell, J = 20, and a centered
4 x 4 Monkhorst Pack grid. The grids used were neces-
sary and sufficient to converge effective charges to about
0.02. In each case, there was a slight (order 0.01 e or
less) deviation from charge neutrality in the sum of the
resultant effective charge tensors due to finite difference
errors. To ensure strict charge neutrality, we added a cor-
rection to each diagonal component of each ionic effective
charge tensor that was proportional to the corresponding
electronic contribution to the component.

The Born effective charge tensors for structures A
through D are shown in Table II. The principle com-
ponents of effective charges, obtained by diagonalizing
the tensors, are shown in Table III, along with the cor-
responding results of Zhong, King-Smith and Vanderbilt
for CaTiO3[15] in the ideal perovskite structure. The
nominal ionic charges of Ca, Ti, and O are, respectively,
2, 4, and —2. The dynamical effective charges are gener-
ally larger in magnitude than the nominal charges, espe-
cially for Ti and for O in the direction of the Ti-O bonds.
These anomalously large effective charges appear to be
a general feature of ABOj3 perovskites [15, 16]. The ef-
fective charges are somewhat sensitive to the structural
details, generally becoming closer to their nominal ionic
values with increasing deviation from the ideal perovskite
structure. In previous studies, it has been found that
effective charges are sensitive to polar distortions, be-
coming closer to their nominal values when ferroelectric
relaxation occurs[16, 31-35]. This work shows that non-
polar relaxation has the same effect. While we did not
study the effect of pressure independently of ionic relax-
ations, previous studies have shown that Born effective
charges are relatively insensitive to pressure[16, 33].

There is a very good agreement between the effective
charges that we found here for CaTiOg in the ideal per-
ovskite structure and those determined by Zhong, King-
Smith and Vanderbilt[15] (Table III). We suspect that
the main reason for the slight discrepancies is that our
calculations treat the Ti and Ca semi-core s electrons as
core electrons, while they were treated as valence elec-
trons in Zhong, King-Smith, and Vanderbilt.

In the orthorhombic CaTiOg structures, the relatively
large off-diagonal components of the Ti Born effective
charge tensors Z7, and their asymmetries were unex-
pected because the TiOg octahedra are nearly ideal. Cu-
bic local environments imply diagonal, isotropic Z*. The
large off-diagonal components of Z7,; show that Z7, is not
determined solely by nearest-neighbor Ti-O interactions,
but is strongly influenced by further-neighbor interac-
tions which more strongly break cubic symmetry. Z7, in

TABLE II: Born effective charge tensors for each of the
structures shown in Table I (in |e]).

A[BIJ]CI]D A BJ]CTJ]D
Z8awa| 24T | 245 | 2.45 |2.57| Z81 40 |-2.06|-2.07|-2.09|-2.04
Zamy| 017 [0.18 [ 0.18 | 0 | Z5y 4, |-0.13|-0.16|-0.17| 0

Zayz) 0151014 0.15 | 0 |Z§y,,.|0.03]0.02(0.02| 0
ZEayy| 243 | 2.41 | 2.40 |2.57| Z§; | -1.89|-1.89|-1.87(-2.04
Za...| 242 | 2.38 | 2.37 |2.57| Z5; .. |-5.46|-5.37|-5.35|-5.69
Z}inn | 6.91 | 6.88 | 6.79 |7.20| Z85 ., |-3.66|-3.63|-3.58|-3.86
Ziny| 046 [ 047 | 049 | O | Zbs 4y |-1.74]-1.74|-1.69|-1.82
Z}i0. | 0631071072 | 0 |Zgs,.|0.01]0.00|0.00| 0
ZFie |~0.57(-0.63-0.66| 0 |Zgy,.|-1.69|-1.67|-1.65|-1.82
Zhiyy | 697 | 6.94 | 6.94 7.20| Z5.,, |-3.76|-3.73|-3.74|-3.86
ZFiy- |-0.16|-0.23|-0.23| 0 |Z, . |-0.08|-0.09|-0.10
Z3i 2 |-0.77]-0.91-0.90| 0 |Zgy, ...| 0.00 | 0.00 | 0.00
Z3i 2y | -0.04{-0.06|-0.06| 0 |Zp, ., |-0.06/-0.07|-0.07
Z7i... | 6.99 | 6.90 | 6.90 |7.20| Zp, .. [-1.98|-1.96|-1.96 |-2.04

(SIS Y

TABLE III: Principal components of Born effective
charge tensors of Table II (in |e|) and comparison with
results of Zhong, King-Smith, and Vanderbilt (ZKV).

A B C D |ZKV
Ztan| 261 (259|259 | 2.57 | 2.58
Z&a,2| 2.42 | 2.38 | 2.37 | 2.57 | 2.58
Ztis| 229 | 2.27 | 2.26 | 2.57 | 2.58
Z4io | 7.07 | 7.06 | 7.06 | 7.20 | 7.08
Zi.o|6.95%|6.90%|6.86%| 7.20 | 7.08
Zi 5 [6.95%(6.90%|6.86%| 7.20 | 7.08
Zg1,1 |—5.46|-5.37|-5.35|-5.69|-5.65
Z1,2 |—2.03|-2.05|-2.07|-2.04|-2.00
Zi1.5|-1.92|-1.91|-1.89|-2.04|-2.00
Zga,1 |-5.43|-5.38|-5.33|-5.69|-5.65
Z32,2 |—2.03]-2.02|-2.03|-2.04|-2.00
Z8a.5|-1.93|-1.91|-1.91|-2.04(-2.00
complex eigenvalue

*Modulus of

all of the orthorhombic structures is so asymmetric that
two of its eigenvalues are complez. For these eigenvalues,
we report the modulus in Table III.

C Electronic dielectric tensor

To calculate the electronic contribution to the dielec-
tric tensors, we used a modification of the method of
Bernardini, Fiorentini, and Vanderbilt (BFV)[36, 37]. In
the BFV method, an artificial supercell of a homogeneous
nonpolar material extended in the « direction is created,
where the half of the cell with z, < 0.5 is given ionic
polarization P(lo) and the half of the cell with z, > 0.5

is given ‘onic polarization Péo) by small displacements of
the ions in each half.

By applying classical electrostatics to the “interface”
charge density at o, = 0.5, 0, BFV obtained a formula
for the electronic dielectric tensor components (for the



case of diagonal £+, such as for orthorhombic CaTiO3):
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(Hoo)aoc =
In practice, we have found that it is difficult to de-
termine ¢ unambiguously, because it is spread out over
atomic dimensions along a and because it is small relative
to the fluctuations of charge density due to the atomic-
ity of the material. Instead, we used the energy of the Ti
semicore 2p electrons orthogonal to the macroscopic field
as a “probe” of the local potential. By calculating the
difference of Ti 2p electron energies on different planes,
we determined the macroscopic electric fields Fp, and
Es., and from Fi, and Es,, used
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to obtain K.

In detail, we created 40 atom supercells from the
20 atom CaTiOg cells A-D by doubling in each of the
a = z, y and z directions. Then we moved each ion
in the original cell in the « direction by 0.001a/(Z7,,,)
(a = 3.8245 A) and each ion in the second cell by
—0.001a/(Z},,,), using the values of Z} found in Sec-
tion III. B, in order to make the polarizations in the two
layers equal, in opposite directions, and as uniform as
possible. We found that the local field converges rapidly
with supercell size, and already within 1% for our double
supercells.

The results for electronic dielectric tensor are shown
in Table IV. The values are within 10% for the different
structures, decreasing as the distortion from the ideal
perovskite structure increases. Previous studies have
shown that polar distortions tend to decrease koo[32-34];
here we find that nonpolar distortions have the same ef-
fect. The experimental value is ko = 5.81[15], compared
to our value of 6.12 for CaTiOs3 in its experimental struc-
ture. It is typical for LDA calculations to overestimate
Koo slightly. Fiorentini and Bernardini report £, = 5.87
for CaTiOg in its ideal perovskite structure, using their
method, much closer to its experimental value, but they
do not report the lattice parameter used.

TABLE 1V: Electronic dielectric tensor for each of the
structures shown in Table 1.

A|B|C|D

Fax 6.066.03|5.64(6.19
Ky 6.05(6.02|5.64[6.19
Foes 6.26(6.19/6.06(6.19

(Kaw + Kyy + 122)/3]6.12(6.08]5.786.19

D Phonons

After calculating the residual Hellmann-Feynman
forces on each structure in Table I, we displaced each

ion in turn in each Cartesian direction by +0.01 A and
recalculated the forces. From finite differences, we deter-
mined the force constants matrices. We diagonalized the
corresponding dynamical matrices to obtain the normal
mode frequencies and eigenvectors.

The phonon spectra for structures A-C are shown in
Tables V- IX. Each table gives the spectra for one
or more irreducible representations (irreps) of the point
group of CaTiO3. The mode effective charges, as defined
in Eq. 1.4, are given for each infrared active (polar) mode
in tables V- VIL.

The phonon frequencies are similar for the different
structures. The root mean square variation between cor-
responding phonon frequencies with the same irrep for
the different structures varies between 13 and 40 cm™!.
The phonon frequencies generally increase with pressure
(compare structure C with structures A and B), as is
observed experimentally[38], and as is expected, since
short-range repulsion between ions increases as the dis-
tance between them decreases.

The distortion of the CaTiO3 ground state structure
from the ideal perovskite structure projects entirely onto
modes with irrep A, in the orthorhombic phase. These
modes stiffen significantly as the ions relax to their LDA
ground state, with fixed cell parameters, going from
structure A to structure B. There is a particularly good
agreement between the phonon frequencies of the infrared
modes of structures A and B; thus the anharmonic cou-
pling of the A; modes to the infrared-active modes is
relatively small.

For every infrared-active irrep in structure A and B,
the mode with the highest effective charge has the low-
est frequency. By projecting the eigenvectors onto the
normal mode eigenvectors of CaTiOg in its ideal per-
ovskite structure, we find that these modes are closely
associated with the 140i cm™! ferroelectric instability of
CaTiO3. CaTiOj is nonpolar rather than ferroelectric,
because competing, stronger, octahedron-tilting instabil-
ities at the M and R points freeze in first. Anharmonic
coupling stabilizes the would-be ferroelectric instability
and no ferroelectric phase transition occurs in CaTiOsg.
For structure C, there are no longer single modes within
any infrared-active irrep in which Z* clearly dominates;
rather there is a pair of relatively-low frequency modes
with Z* ~ 2. The would-be ferroelectric instability
is very sensitive to pressure in CaTiOg and significant
eigenvector mixing occurs at the pressures of structure
C.

Our analysis of the polar I' point mode frequencies
agrees well with previous work by Zhong, King-Smith,
and Vanderbilt[15] (Table X), and we have extended their
results by determining the frequency of the nonpolar I'o5
mode and all the modes at the X, M and R points.
We find both a ferroelectric instability of the perovskite
structure and octahedral tilting instabilities at both M
and R. Instabilities have been found for all perovskite ti-
tanate systems studied to date[18, 39]. Systematic trends
in the instabilities with increasing lattice parameter can
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FIG. 2: Comparison of soft modes in the perovskite ti-
tanates CaTiOj3, SrTiO3, PbTiO3, and BaTiO3. All re-
sults are from first principles calculations on materials
with the ideal perovskite structure. Imaginary frequen-
cies indicate harmonic instabilities. The data for PbTiOg3
and BaTiOg are compiled in [18]. The data for SrTiOj
are reported in [39]. The data for CaTiO3 are from the
present study.

be identified. For example, the soft modes involving Ti
motion against O along the Ti-O chains, such as the soft-
est antiferroelectric M3 mode, tend to become more un-
stable as the lattice parameter increases (see Figure 2).
The octahedral tilting modes (e.g. Rgs) tend to become
more stable. The trend in the ferroelectric I'5 instability
is not monotonic with size; however we do find a trend
in the nature of the ferroelectric instability eigenvector.
The normalized ferroelectric instability dynamical matrix
eigenvector for perovskite CaTiOsz is (Ca,Ti,0.,01, Oy)
= (0.6338,0.1535,-0.5027,-0.5027,-0.2632). By compari-
son with the other perovskite systems for which the fer-
roelectric eigenvector has been reported[18], we find that
the Ti and O motion along Ti-O bonds (O)) increases
as the lattice parameter increases, and the A cation and
transverse O motion (O ) decreases.

A number of studies have reported infrared[38, 40] and
Raman[38, 41-43] spectra for CaTiO3. Interpretation of
the data is difficult because, as Table VIII shows, there
are so many Raman-active modes in CaTiOj3 that signif-
icant overlap between peaks is expected. Furthermore,
the relative intensity of different Raman peaks in CaTiO3
is very sensitive to temperature[38]. Because the experi-
mental peak intensity is sensitive to temperature and be-
cause we did not calculate theoretical Raman scattering
strengths, we will not attempt here to correlate predicted
and measured Raman frequencies.

Perry et al. interpreted infrared reflectivity measure-
ments on CaTiOs in terms of two polar phonon triplets
at 148 ecm™! and 178 cm™! and a split triplet at 443
cm~! and 549 ecm~!. A material with an ideal perovskite
structure has three polar phonon triplets. Although sym-
metry analysis of the orthorhombic CaTiOgs phase yields
25 polar phonon singlets, if the distortion from the ideal
perovskite structure is small, there should be three pseu-
dotriplets of phonons with large Z*. By studying the evo-

lution of the interpolated dynamical matrix eigenmodes
as the structure is distorted from from structure D to
structures A, B, and C, we find that the ideal perovskite
625 cm ™! polar mode evolves to a pseudotriplet of modes
in the 500-550 cm~! range in each case. For structure A,
the pseudotriplet of modes at 88-94 cm ™! emanates from
the 140¢ cn ™1 ferroelectric instability, while the 151-174
cm~! pseudotriplet emanates from the ideal perovskite
200 cm~! modes. For structures B and C, there is in-
creasing mixing among the low-frequency sets of modes.
By comparing the results of Perry et al. with our cal-
culations for structure A, we conclude that: The experi-
mental 549 cm ™! peak corresponds to the pseudotriplet
in the 519-536 cm ™! range. The experimental 443 cm ™!
peak corresponds to the calculated medium-Z - peaks in
the 423-434 cm~! range with B;, and Bz, symmetry,
which are actually most closely associated with the anti-
ferroelectric Ti-motion 460 cm~! Ros mode of the ideal
perovskite structure. The 148 cm™! and 179 cm~! exper-
imental peaks actually correspond to peaks in the same
pseudotriplet. Finally, there is a calculated pseudotriplet
in the 85 to 104 cm™! range with very large 7" which
was not observed experimentally. There is some discrep-
ancy between the predicted and measured frequencies.
Whether this is due to finite temperature effects or LDA
errors remains to be seen.

Finally, the contribution of each infrared active mode
to the static dielectric tensor is given in tables V-VII,
using equation (I.3) with w, = 27v,. The total static
dielectric tensor, obtained by summing up the mode con-
tributions and the electronic dielectric tensor, are given
in Table XI. Table XI also gives the “average dielectric
constant” for the material, %(f-@m + Kyy + Ks), which
is the dielectric constant that one would measure for an
ideal ceramic sample of a material with an anisotropic di-
electric tensor. These values range from 100 for structure
C to 275 for structure B.

TABLE V: Normal modes frequencies (in cm™!), effective
charges (in |e|), and contribution to dielectric suscepti-
bility for infrared-active modes with irreducible represen-
tation By, of point group Dy, for structures A, B and C
of Table I.

94 |2.67| 176 |87 (2.84| 236 |129|1.11| 17
12210.17 0 |112({1.31| 30 |[157|2.08| 40
1741196 28 |171(1.19| 11 |202(2.10| 25

240|0.17| 0 |251]0.39] 1 |283]0.59| 1
428|0.65| 1 |423]|0.74] 1 |438(0.84| 1
490(0.06| O |468|0.04] 0 |501(0.06f O
530|1.63| 2 |508|1.36| 2 |540(1.63| 2




TABLE VI: Same as Table V, for By, modes.
A B C
v Z%y | (K| v | 25 | (Bu)yy| v [ 2%y |[(Fu)yy
0|0 0 OO0 0 0O 0
88 12.99| 253 |104|3.10| 197 |145|2.30| 57
157|1.35| 16 |161|1.29| 14 |183|2.11| 30

195|0.59| 2 |217]0.38] 1 |238|0.50| 1
233|0.14| 0 |250(0.55| 1 |268]0.54| 1
29010.75| 1 |294(0.75| 1 |314|1.13| 3
320|0.11 0 |332(0.18] 0 |362(0.17| O
485(0.22) 0 |480(0.47| 0 ]496|0.25| O
519|1.54| 2 |505(1.20| 1 |529|1.50| 2
547|0.05| 0 |546(0.12| 0 |565|0.06| O

TABLE VII: Same as Table V, for Bs, modes.

A B C
v Z5% | (Ku)en| V| 27| (Kp)aa| v |27 |(0)as
0|0 0 0] 0 0 0] 0 0
89 12.78| 216 |85 |3.15| 298 |141|2.41| 67
151|1.74] 29 |160({0.94| 8 |[175/1.94| 28
19110.07f 0 |199|0.50| 1 |221{0.53] 1
245/0.12| 0 |271]0.01] O |286(0.04] O
29210.58| 1 |311]0.64| 1 [331/0.80| 1
345|0.36| 0 |362]0.29| 0 [386(0.35| O
43410.68| 1 |424]/0.80| 1 |447]0.96| 1
484(0.01| 0 |483|0.04] 0 |495]|0.07| O
536|1.46| 2 |525(1.24| 1 |549/1.36| 1

IV. DISCUSSION

The measured dielectric constant of CaTiOs in the
limit of zero temperature ranges from about 330 for a
ceramic sample[3] to greater than 350 for a single crys-
tal (of undetermined orientation)[2]. The experimental
results are about 30% greater than the calculated results
for structures A and B, based on the experimental lat-
tice parameters, but more than three times the calcu-
lated dielectric constant of 100 for the fully-relaxed LDA
structure. Clearly, first principles calculations do a better
job predicting the dielectric constant if the experimental
lattice parameters are used rather than the LDA lattice
parameters. The remaining discrepancies between com-
puted and measured dielectric constants can be explained
by LDA errors in force constants. By modifying the force
constant matrices for structures A and B and recomput-
ing the dielectric constants, we find that errors as small
as 5% in the force constants involving bonding along Ti-
O chains can account for the 30% difference between the
computed and measured dielectric constants.

The calculated average stress on structure B, with
LDA ionic relaxation and experimental lattice parame-
ters, is —6.75 GPa. Adjusting the external pressure to
correct for the LDA volume error, structure C is the pre-
dicted structure of CaTiOg under 6.75 GPa pressure, and
we predict that the dielectric constant of CaTiO3 will de-
crease to about 100 at this pressure.

TABLE VIII: Frequencies (in cm™!) for Raman active
normal modes. Second row gives irreducible representa-
tions

A B C
Ag |Big|Bag|Bsg| Ay | Big|Bag|Bsg| Ag | Big| Bag | Bsg
14 14 14 14 14 14 14 14 14 14 14 14
100|137 | 155 [ 174|140 177|189 | 184 | 158 | 193|206 | 206
139|162 | 224 | 325|168 189 | 226 | 327 |182| 206 | 239 | 340
225(195| 342|439 | 243|219 | 348 | 444|265 | 241|371 | 459
268346 [ 512|518 290|354 | 494 | 496 [306| 373 | 532 | 540
314(431|746 807 |337| 438 | 718 | 783|361 |455| 757|816
446469 447476 465(493
533|774 515|753 551|782

TABLE IX: Frequencies (in cm 1) for normal modes with
irreducible representation A,. These modes are neither
infrared nor Raman active.
A|B|C
v 14 14
119(107(125
135]122|156
1421140|164
1781194213
266(274|292
426421|439
4721439|484
510|498|522

The dielectric constant is predicted to be sensitive to
pressure, but less sensitive to nonpolar relaxation, as can
be seen by the small difference in dielectric constant be-
tween structures A and B. For single crystals, we predict
an anisotropy in dielectric constant along different axes
that is of order 30-40%, an effect that has yet to be in-
vestigated experimentally. The axis of largest dielectric
constant does depend on the details of the structure, be-
ing in the y direction for structure A and the x direction
for structure B.

The ability of first principles to reproduce the large ex-
perimental dielectric constant of CaTiO3 to within 30%
allows the microscopic origin of this large dielectric con-
stant to be determined. Normal mode analysis shows
that 85-90% of the dielectric constant magnitude is due
to a single pseudotriplet of modes with v ~ 90 ecm™! and
large Z*. The large Z* of these modes is due both to
anomalously large ionic Born effective charges in CaTiO3
(if the dynamical charges had their nominal values, x
would be only about 100 for structures A and B), and
the nature of the phonon eigenvector, which involves sig-
nificant motion of all ions, with cation motion opposing
oxygen motion (see Figure 3). Decrease of x with pres-
sure is due to the hardening of the low-frequency phonons
with pressure, but the magnitude of Z* for the lowest fre-
quency modes also decreases significantly.

Experimentally, x« in CaTiOz decreases rapidly
with temperature, with a value of 170-190 at room



TABLE X: Frequencies (in cm~1!) for ideal perovskite
CaTiOs normal modes. Full results for high symmetry
points in the Brillouin zone are given in columns. For
a given point, phonons are grouped by irreducible repre-
sentation. A, TO, and LO indicate acoustic, transverse
optical, and longitudinal optical, respectively. Values in
parentheses for I'" are those reported by Zhong, King-
Smith and Vanderbilt[15].

T15(A) 0 X, [270] M; | 440 | Ry | 913

T15(TO)|140 i (153 i)| X, [538| My | 620 |Ryo/| 592
I'15(TO)| 200 (188) |Xo |203| My | 70 | Rys| 86
I'15(TO)| 625 (610) |Xo |836| Ms |207 i| Rys | 426
I'15(LO)| 136 (133) | X5 |201|Ms | 148 | Rys [219 i
Iy5(LO)| 428 (427) | X5 |81 |Ms | 591 |Ras | 460
I'15(LO)| 864 (866) | Xs5|159| My | 878

25 130 X5 |608| Ms | 278
Xy | 20 | M5 | 48 i
X |283| Ms/ | 238
Ms/| 505

TABLE XI: Phonon contribution to, and total static di-
electric tensor (k = Koo + Kphonon) for structures A-C.

A|lB|C
(Kphonon)zz | 249]310/100
(K/phonon)yy 275|216| 95
(K/phonon)zz 207(279| 85

Kax 255(316|106
Koy 281(222/100
Koo 214/286| 91

(Kaw + Kyy + K22)/3]250{275| 99

temperature[2, 3]. In fact, the dielectric constant as a
function of temperature follows a Curie-Weiss law ap-
propriate for an “incipient ferroelectric” with a nega-
tive T.[3, 44]. First-principles effective Hamiltonians
based on projecting the ionic degrees of freedom of fer-
roelectrics to those responsible for the ferroelectric phase
transition[45] correctly reproduce their Curie-Weiss di-
electric behavior[46, 47]. This suggests that a similar ap-
proach be applied to computing the temperature depen-
dence of the dielectric response of CaTiOg. For a success-
ful effective Hamiltonian approach to dielectric behavior,
it is necessary that the bulk of the dielectric response
be due to a set of soft modes emanating a subspace of
normal modes of the ideal perovskite structure which is
invariant under cubic symmetry. This is indeed the case
for CaTiO3, where most of the dielectric behavior is due
to a pseudotriplet of modes which emanate from a I'y5
instability of the ideal perovskite structure. The situa-
tion in CaTiOj is complicated, however, by the compet-
ing octahedron tilting instabilities which give rise to the
observed structural phase transitions, as well as the cou-
pling of these modes to the soft polar modes. A previous
attempt to derive an effective Hamiltonian for CaTiOg in
terms of ferroelectric and octahedral tilting instabilities

FIG. 3: Eigenvector for 94 cm~! By, mode of structure

A

and their coupling to each other resulted in a model[48]
which did not correctly reproduce the observed ground
state, probably due to the lack of sufficient anharmonic
terms in the Hamiltonian. Nonetheless, with sufficient
anharmonic terms, the use of the effective Hamiltonian
method to calculate the temperature dependence of the
dielectric properties of CaTiOg should be straightforward
in principle, if complicated in detail.

V. CONCLUSIONS

We have used first-principles methods to success-
fully compute the low-temperature phonon and dielectric
properties of CaTiOs. Using dispersion theory, we relate
the dielectric properties to the phonon properties and
have shown that the large dielectric constant in CaTiOg
is mainly due to a pseudotriplet of low frequency phonons
with large mode effective charge. First-principles classi-
fication of phonon properties is ideally suited for inves-
tigating the microscopic physical origin of the dielectric
constant of systems with complex structures where ex-
perimental determination of phonon properties is diffi-
cult.
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