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Hydraulically pumped cone fracture in brittle solids
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Abstract

An analysis of inner cone cracks in brittle solids subject to cyclic indentation in liquid is presented. These inner cone cracks, so
named because they form well within the maximum contact circle, are postulated to be driven by a hydraulic pumping mechanism.
Unlike their more traditional outer cone crack counterparts, inner cones do not appear in monotonic loading or even cyclic loading
in the absence of liquid. According to the hydraulic pumping postulate, an expanding contact engulfs surface fissures or flaws, clos-
ing the crack mouths and squeezing entrapped liquid toward the subsurface tips, thereby enhancing downward penetration. Finite
element modeling is used to analyze the stress and displacement fields in the vicinity of the growing cracks and to compute stress-
intensity factors, using soda-lime glass loaded by a spherical indenter in water as a case study. A stepwise incrementing procedure
determines the inner cone crack evolution, i.e., crack depth c as a function of number of indentation cycles n, for this system. The
predicted c(n) response reproduces essential features of experimentally observed behavior, relative to companion outer cone cracks:
notably, a sluggish start in the initial regions, where Hertzian stresses govern, followed by rapid acceleration as hydraulic pumping
activates, ultimately dominating in the steady-state far-field.
Published by Elsevier Ltd on behalf of Acta Materialia Inc.
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1. Introduction

The incidence of fracture from contact loading be-
tween a thick brittle solid and a curved indenter is a
long-standing classical problem, beginning with Hertz
in the 1880s [1] and intensifying over the past four dec-
ades with the advancement of indentation fracture
mechanics [2,3]. Most familiar are the shallow circum-
ferential or ‘‘outer’’ cone or ring fractures that form out-
side an expanding sphere contact in single-cycle loading:
in brittle monoliths the location of these outer surface
rings typically lies within 15% of the contact circle [4];
in brittle coating layers on compliant substrates the sur-
face rings migrate much further out from the contact, as
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a result of superimposed flexural stresses [5]. More re-
cently, with extension of experimentation to cyclic load-
ing in liquid environments, a second kind of cone crack
has been observed to form well within the maximum
contact circle [6]. These so-called ‘‘inner’’ cone cracks
are noticeably steeper and can propagate much deeper
after extended cycling, sometimes leading to penetration
failure in thinner plates [7]. Examples from an earlier
study are shown in Fig. 1 for cyclic loading with a tung-
sten carbide (WC) spherical indenter on glass and porce-
lain in water [6]. Inner cones form only in cyclic loading
in water, so they cannot be explained by an exclusively
time-dependent mechanism such as chemically enhanced
slow crack growth in the same way as outer cone cracks
[6,8,9]. It would appear that some additional, cumula-
tive mechanical driving force associated with the peri-
odic ingress and egress of liquid must operate [7],
c.
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Fig. 1. Cone cracks in brittle material subject to cyclic contact in water
with WC spheres of radius r = 3.18 mm. Half-surface and section
micrographs of cracks in (a) glass (load P = 140 N, n = 104 cycles) and
(b) porcelain (P = 500 N, n = 5 · 104). Shallow outer and steep inner
cracks are evident. Fretting zone due to slip at indenter/specimen
interface within contact can provide starting flaws for inner cone crack
initiation. Micrographs from Kim et al. [6].
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somewhat analogous to the pressure-induced infusion of
lubricant into pitting cracks in metal surfaces during
rolling contact fatigue [10]. Inner cones can become a
dominant mode of failure in hard-coating bilayer sys-
tems in repetitive contact loading in aqueous solutions,
e.g., dental crowns in occlusion function, and are there-
fore of great interest in biomechanical systems [7].

In this study, we analyze the mechanics of inner cone
crack evolution in monolithic brittle solids from cyclic
contact loading in liquid. Any such analysis must ex-
plain how the inner cones initiate at the specimen sur-
face well within the maximum contact circle and
penetrate a highly compressive stress field immediately
beneath the expanding contact before reaching the
indentation far-field. It must also account for a mechan-
ical driving force on these cracks from intrusive liquid,
over and above the usual slow crack growth effects, in
order to explain why these cracks are not apparent in
cyclic loading in air. The mechanism envisaged is one
in which liquid is squeezed into surface fissures toward
the subsurface crack tips as the contact engulfs the flaw
[11]. This is a complex fracture mechanics problem
involving interaction of Hertzian contact and fluid pres-
sure fields, and so we use finite element analysis to ob-
tain numerical solutions for inner cone crack evolution
in a specific material under specific cyclic loading condi-
tions – silicate glass cycled with a WC sphere of pre-
scribed radius in water – for which experimental data
are available. We will show that a hydraulic pumping
model can account for basic data trends. We will also
show that once the cone cracks penetrate the near-con-
tact zone and enter a tensile far-field the hydraulic driv-
ing force peters out, and the crack growth characteristics
asymptotically approach a familiar analytical solution
for center-loaded penny cracks driven solely by slow
crack growth.
2. Liquid entrapment mechanism

The contact variables of interest are depicted in the
schematic of Fig. 2: a spherical indenter of radius r at
load P and contact radius a, with maximum values Pm

and am. The contact is assumed to take place in a liquid
environment over n cycles. Cone cracks located a dis-
tance R from the contact axis form at an angle a to
the top surface and propagate to a length C or depth
c = C sina. Tensile stresses occur outside a drop-shaped
compression zone of approximate radius a beneath the
indenter, shown as the shaded area in Fig. 2. Outer cone
cracks (O) form at RO � 1.15am with aO � 22� [4], and
hence are never subject to compression through the cyc-
lic evolution. Inner cones (I) form at RI � 0.5am with
ai � 50� (Fig. 1), although some variations in these coor-
dinates occur from material to material. This location
represents a compromise between counteracting factors:
if RI were to be smaller than 0.5am then the crack would
open at lower loads but there would not be a large vol-
ume of entrapped liquid to drive the fracture; if RI were
to be larger than 0.5am then the volume of entrapped
fluid would be larger but the range of contact radius
over which this fluid could be forced into the crack be-
fore reaching its maximum at am would be reduced.
The cone angles closely approximate maximum princi-
pal stress trajectories in the Hertzian field at maximum
contact, implying essentially tensile fracture (mode I)
[12]. The inner cones experience small surface tensile
stresses prior to engulfment (a < RI, Fig. 3(a)), but much
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Fig. 3. Schematic demonstrating liquid entrapment model. Shaded
area beneath contact designates approximate compression zone.
(a) Liquid enter crack prior to contact engulfment. (b) Liquid squeezes
toward crack tip as contact expands, causing incremental extension.
Cyclic contact repeats process, forcing more liquid into crack in
successive cycles.
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Fig. 2. Schematic of cone crack system in brittle solid. Spherical
indenter, sphere radius r, contact radius a, load P and cycles n. Cone
cracks of length c = Csina, angle a to surface, located distance R from
contact axis. Label O designates outer cones, I inner cones. Shaded
area indicates compression zone below contact. Contact occurs in
liquid. (Linear crack profiles are simplistic representations of actual
paths in Fig. 4.)
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higher surface compressive stresses after engulfment
(a > RI, Fig. 3(b)). However, even inner cones will expe-
rience tensile stresses at their extremities after engulf-
ment if they can somehow grow sufficiently large so as
to penetrate the compression zone.

We have mentioned that inner cone cracks develop
fully only in cyclic loading in liquid, so that there must
be some superposed mechanical force associated with li-
quid intrusion. Consider a starting flaw located at dis-
tance RI from the contact axis on the surface. As the
load increases, the contact at first opens the crack,
allowing liquid to enter by capillary action (Fig. 3(a)).
When the contact circle becomes coincident with the
flaw (a = RI), the crack mouth is sealed (although there
may exist local fluid reservoirs at the indenter/specimen
interface associated with any surface roughness). Fur-
ther increase in load engulfs the crack (a P RI), and
the crack becomes subject to mouth closure stresses
within the drop-shaped compression zone (Fig. 3(b)).
Ingress or egress of liquid is then restricted until the in-
denter is unloaded. Mode I crack opening is induced by
fluid pressure by one or both of two possible mecha-
nisms [11]: (i) liquid is forced into surface fissures, pro-
viding a wedging force in proportion to the Hertzian
pressure; (ii) liquid is forced downward after engulfment
in a ‘‘pinching’’ action, closing the crack mouth but
opening the tip. The second mode is more consistent
with experimental observations where the mouths of
well-developed inner cones are observed to close and
the far ends open up during loading half-cycles [7].
3. Computation of stress-intensity factors

3.1. FEA model

In the case of outer cone cracks, analytical solutions
for incremental cyclic crack growth are available in both
the small-flaw initiation and long-crack propagation
stages, based on slow crack growth models [6,13]. For
inner cones, there currently exist no such analytical solu-
tions, owing to the superposition of complex mechanical
driving forces associated with ingressing fluid in the sur-
face cracks.

Accordingly, finite element analysis (FEA) tech-
niques are here used to demonstrate the feasibility of
the hydraulic pumping mechanism. The basic FEA
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Fig. 4. Calculated crack paths for outer and inner cone cracks in soda-
lime glass indented with WC sphere. Note curvature of crack paths
near surface, relative steepness of inner cone cracks.
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Fig. 5. Mode I stress-intensity factors K as function of crack depth c

for glass indented in water with WC sphere. KO is SIF for outer cone
crack. KI is SIF for inner cone crack without fluid pressure, including
contribution from tensile field after engulfment. Dashed curve is
equivalent K�

I with no engulfment. Kþ
I is SIF with fluid pressure

included. Dashed lines at right are asymptotic K � c�3/2 limits for far-
field cracks.
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procedure has been outlined in previous studies [5,14]. A
flat glass half-space (Young�s modulus E = 70 GPa and
Poisson�s ratio m = 0.22) is indented with a WC sphere
(E = 614 GPa and m = 0.22) of radius r = 1.58 mm in
frictionless axisymmetric contact. In accord with exist-
ing experimental data [7], the indenter is loaded in small
steps to produce an expanding contact a relative to the
surface crack locations RI and RO, up to a maximum
contact am = 130 lm at corresponding load Pm =
120 N. Calculations are performed for outer and inner
cone cracks separately, ignoring any potential interac-
tion between the two. The surface cracks are allowed
to extend downward and outward in increments Dc,
beginning with short flaws of depth c = 1 lm normal
to the surface and with Dc � c at all stages of growth.
The mesh is reconfigured at each crack increment, with
the grid typically consisting of a minimum 80 equispaced
elements along the crack walls (a sufficient number to
ensure convergence in the FEA solutions). Stress-inten-
sity factors at each crack depth c are calculated from no-
dal displacements at the crack walls using the Irwin
parabolic crack-tip COD relation [14]. The kink angle
a of each crack increment is determined by an angular
search algorithm as that which optimizes mode I exten-
sion (i.e., KII = 0) over the entire load spectrum (i.e.,
P 6 Pm). In general, it is found that the cracks follow
a somewhat curved path in the small c region, where
stress gradients are high, and subsequently straighten
out into nearly straight-sided (truncated) cones in the
large c region as the cracks approach the far-field. Of
course, the angular kink search routine becomes less
onerous once the crack straightens out.

These calculations are performed for cracks without
and with entrapped fluid, in the latter case by applying
superposed uniform normal forces at the nodes along
the crack walls to simulate fluid pressure under constant
crack volume conditions (fluid incompressibility
approximation), as described below.

3.2. Outer cone cracks

First we examine the outer cones. FEA computations
for a similar crack system in punch loading have been
well described in the literature by Kocer and Collins
[15], and we present them here only to confirm the valid-
ity of the calculations. Following experimental observa-
tion [7], we set RO = 1.15am = 150 lm at Pm = 120 N.
As indicated, the outer cone crack always remains out-
side the maximum contact circle, with maximum open-
ing at a = am. In this case, confining fluid pressure is
never an issue.

The calculation begins with a normal starting flaw of
size cO = 1 lm, commensurate with the scale of small
flaws in glass surfaces. The flaw is allowed to increment
its depth through a specified amount DcO. The algorithm
searches for the kink angle aO that maintains the crack
in pure mode I. For outer cones, the maximum KO is al-
ways achieved at maximum load P = Pm, where the ten-
sile stress field is greatest. Crack increments are
continued sequentially. The crack first forms a shallow
collar before curving outward into its characteristic
truncated cone geometry. For soda-lime glass, the cone
angle in the far-field is aO = 22�. The calculated crack
path is indicated by the outer trajectories in Fig. 4.

The function KO(cO) for outer cones determined from
such calculations is plotted as the uppermost curve in
Fig. 5. Note that this curve passes through a maximum
at cO � 8 lm or cO/am � 0.06. The broad shape of this
curve and position of the maximum are similar to the
calculations of Kocer and Collins [15]. Note also that
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the long-crack tail of this curve tends asymptotically to
the familiar relation KO / P=c3=2O (light dashed line) for
well-developed cones [2,3].

3.3. Inner cone cracks

3.3.1. Cracks without fluid

For inner cones, we set RI = 0.5am = 65 lm for
Pm = 120 N as per experimental observation [7]. We first
perform this calculation in absence of any fluid pressure
at the crack walls. Following the procedure in Section
3.2, start with an initial surface flaw at cI = 1 lm and al-
low stepwise incremental extensions DcI. The K terms
are computed at each step from the crack-wall nodal dis-
placements behind the tip. The behavior is now more
complex, because the configuration of maximum KI does
not necessarily always occur at the engulfment load PI

(Fig. 3(a)), nor at the maximum load Pm (Fig. 3(b)).
In other words, inner cone cracks may in some cases
continue to extend after first engulfment. To handle this
complication, we first retain the angle aI from the pre-
ceding crack increment and determine the load P within
0 6 P 6 Pm at which KII = 0. Then we repeat the com-
putation for various aI and choose the value of P = P*
that maximizes KI. For the case study here, this config-
uration occurs at P* < Pm for cI < 1.5am and at P* = Pm

for crack depths cI > 1.5am approximately. The calcu-
lated crack paths are indicated by the inner trajectories
in Fig. 4. As with its outer counterpart, the inner cone
crack curves away from normal near the surface, but
then straightens out to aI � 50� over the long-crack
length for this particular flaw location. The fact that this
crack angle is quite different to that of the outer cone be-
yond the collar region is a manifestation of the fact that
the driving force on the crack can indeed continue to in-
crease during the engulfment stage.

The function KI(cI) for inner cones without fluid pres-
sure is included in Fig. 5. The dashed curve K�

I indicates
the same function but without engulfment, i.e., stopping
the loading at P = PI (Fig. 3(a)). This latter curve has
the same basic shape as KO but with a downward and
leftward shift. The hump in the KI function at cI � 20 l-
m = 0.15am is then due exclusively to additional crack
growth beyond engulfment. Again, this is because longer
cracks begin to experience some increase in tensile stress
intensity in the tip regions as they begin to penetrate the
immediate compressive zone. Such additional post-
engulfment augmentation, although substantial, is still
not large enough to make the inner cone cracks compet-
itive with their outer counterparts in the short-crack
region.

3.3.2. Cracks with fluid pressure

Now consider the effect of superposing a fluid pres-
sure on the inner cone crack walls during loading. The
sequence of computation is as follows. For any given
crack depth cI and kink angle aI evaluated in the previ-
ous section, determine the crack opening displacements
u as a function of coordinate S along the crack path
(Fig. 2) immediately prior to first engulfment at
P = PI (a = RI). Calculate the initial crack volume V0

from the area under the u(S) curve (allowing for the
ever-increasing base radius with increasing S). Then in-
crease the load to P = P* (a = a*), while maintaining
fluid volume constant at V = V0 (incompressible liquid).
This latter is achieved by introducing equal normal
forces over equispaced mesh nodes along the crack
walls, equivalent to an internal hydrostatic pressure,
starting from zero and incrementing (or decrementing)
the forces until the requisite crack volume V0 is attained.
Finally, calculate the stress-intensity factor Kþ

I with
superposed fluid pressure from the new nodal
displacements.

An example of the change in crack profile for a crack
of length C = 70 lm (depth cI = 50 lm) and V = V0 is
shown in Fig. 6. Note how the crack closes near the
mouth in the engulfed crack at P = P*, simultaneously
opening up the tip region and thereby enhancing KI.
Note also the parabolic contours close to the crack
tip, in accordance with the Irwin crack tip near-field.

The calculations are then repeated for several crack
depths cI, determining a new initial fluid volume V0 at
each cI. This yields the function Kþ

I ðcIÞ for inner cones
with fluid pressure included in Fig. 5. The contribution
from hydraulic pressure is thus the differential
DKI ¼ Kþ

I � KI (not plotted in Fig. 5). An important
part of the hydraulic effect is the systematic increase in
fluid volume V0 with each successive cycle, as liquid is
continually forced in and out of the crack mouth during
unloading and reloading. Hence this contribution is not
a factor in monotonic loading (i.e., DKI = 0). Note that
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the quantity DKI again does not come into play until
cI > 17 lm = 0.13am. (Recall, however, that we are
ignoring possible wedging forces from enforced liquid
penetration at the Hertzian pressure in this short-crack
region.) The hydraulic term DKI considerably enhances
the stress-intensity factor in this intermediate crack size
region. Such enhancement is evident in Fig. 7 as the plot
of the equilibrium fluid pressure needed to maintain
V = V0 at load P = P* as a function of fixed crack depth
c, shown as the solid curve. This bell-shaped curve is
limited to the region 17 lm < c < 110 lm, with a maxi-
mum at c = 35 lm. In principle, once the crack becomes
sufficiently large that its tip penetrates beyond
c > 110 lm in Fig. 7, corresponding to the region be-
yond the compression zone at max load Pm (Fig.
3(b)), the fluid pressure can become negative and there-
by act to restrain the crack. In reality, the water may be
expected to cavitate at this point, effectively wiping out
the hydraulic effect. At this stage the inner cone crack
is well developed and subject entirely to the Hertzian
far-field, with familiar asymptotic KI / P=c3=2I depen-
dence (dashed line in Fig. 5).
4. Crack extension conditions

Consider now how much crack growth takes place in
any given contact cycle. At this stage, it is necessary to
introduce a crack extension condition. For growth un-
der equilibrium conditions, extension occurs at K = Kc,
where Kc is the toughness. However, Kþ

I ðcIÞ in Fig. 5
does not exceed the toughness Kc = 0.75 MPa m1/2 for
soda-lime glass until c � 30 lm, so small flaws could
never extend under such conditions. In reality, crack
growth in brittle materials in liquid environments occurs
at K < Kc under kinetic conditions, down to K levels be-
low Kc/3. This kinetic condition is reasonably well rep-
resented by a power law crack velocity relation [16,17]

t ¼ t0ðK=KcÞN ð1Þ

with N = 17.9 an exponent and t0 = 2.4 mm s�1 a coef-
ficient for soda-lime glass in water [18]. Under these con-
ditions, inner cone cracks represented in Fig. 5 are
subject to significant extension.

The velocity equation can then be used to calculate
the evolution for outer cone cracks over a number of
contact cycles n at frequency f via a seemingly straight-
forward numerical time-incrementing procedure.
The number of cycles Dn to propagate a crack of given
depth cO through DcO = tDt sinaO can be written
Dn = fDt/b = fDcO/bt sinaO, where the K term used to
evaluate t in Eq. (1) is calculated at P = P* (maximum
mode I configuration) and b is a coefficient (<1) to allow
for the fact that the crack is not subject to maximum K

over an entire cycle [6]. With evaluations of this kind at
specific crack lengths, Dn can be integrated numerically
to determine c(n).

For inner cone cracks, the procedure becomes more
laborious, because the term DKI from fluid pressure is
superposed onto the K-field. Recall that this contribu-
tion is only important during the intermediate stage of
growth in Fig. 5, corresponding to penetration through
the compression zone. The complication arises because
the entrapped fluid within the inner cone crack walls will
be redistributed over a greater crack length as extension
proceeds, causing the pressure to relax during extension
and thereby diminishing DKI within any single loading
cycle. This relaxation is illustrated for three cracks
depths (A, B and C) as dashed lines in Fig. 7. To accom-
modate this relaxation, we adopt the following proce-
dure: (i) as above, for a given initial crack depth cI,
determine the initial crack volume V0 at first engulfment
and calculate KI at P = P* while keeping V = V0; (ii) at
the selected value of cI, extend the crack depth in small
stepwise increments dcI at P and V constant, recalculat-
ing KI at each point, as shown in Fig. 8 (how far KI dec-
lines down these curves during any one complete cycle
will depend on the loading frequency); (iii) integrate
dcI/t in conjunction with Eq. (1) until the condition

Z DcI

0

dcI=t sin aO ¼ b=f

is satisfied, thereby identifying the extension DcI within a
complete cycle; (iv) repeat for selected values of cI and
thereby determine the functional dependence DcI(cI);
(v) numerically integrate DcI over all cycles to determine
cI(n).

The resulting cI(n) functions for a specific case study,
glass/water for maximum load Pm = 120 N and fre-
quency f = 1 Hz, are plotted as the solid lines in
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Fig. 9. This example is chosen because of availability of
corresponding experimental data [7]. Data for outer
cone cracks are shown as the unfilled symbols, for inner
cone cracks as the filled symbols. The theoretical curves
are evaluated using an adjusted b = 0.1 to give a best fit
to these data. The curves reproduce the main trends in
the experimental data: for outer cones, initiation within
the first cycle, followed by steady growth thereafter into
a fully developed cone; for inner cones, relatively slow
growth in the initial, short-crack region followed by an
abrupt hydraulically driven spurt at n = 600 cycles in
the intermediate region, slowing finally into a steady
growth phase in the long-crack region. This last region
tends asymptotically to the far-field limiting dependence
c � n2/3N (N = 17.9), obtained by combining the K �
P/c3/2 relation for center-loaded penny cracks with the
velocity function t � KN [6]. The dashed curve in Fig.
9 represents the growth of inner cone cracks without
fluid pressure. Note whereas growth is still possible in
the absence of hydraulic effects, the predicted growth
rate is too slow in relation to observed behavior.
5. Discussion

We have presented a model here, foreshadowed by
others [11], of hydraulically assisted crack growth in
brittle solids in cyclic contact with spherical indenters
in liquids. The cracks of interest are penetrative inner
cones within the maximum contact circle, ordinarily
not observed in monotonic loading in any environment
or in cyclic loading in the absence of liquid. The
mechanics are complicated by the fact that the inner
cone cracks may continue to grow even after engulfment
by the expanding contact, where compressive stresses in
the immediate subsurface contact zone act to close the
crack mouth yet tensile stresses just beyond this zone
open the crack mouth. After an initial period of slow
growth from Hertzian stresses alone, liquid entrapment
delivers a fluid pressure which drives the crack at an
accelerated rate. Continued reloading enables more li-
quid to enter in successive cycles to build up the pressure
with each cycle, counterbalancing the near-contact clo-
sure forces. The model envisions progressive squeezing
of entrapped liquid towards the subsurface crack tip in
a kind of pumping mode, driving inner ring cracks
through an otherwise inhibiting compressive contact
zone into full cones. Once they penetrate into the far-
field the inner cone cracks are driven by remote tensile
stresses. Because of the complexity of the cyclic prob-
lem, involving periodic crack extension from superposed
mechanical and chemical forces, resort to FEA has here
been made to evaluate the inner cone evolution. Analy-
sis of a specific case study, that of contact of a glass sur-
face with a WC sphere in water, reproduces the main
features of the inner cone evolution in Fig. 9: namely,
a slow start relative to its outer cone crack counterpart,
but subsequent acceleration with cycling to become the
dominant mode of fracture. Ultimately, in the large-
crack region all cone cracks, inner and outer, tend
asymptotically to a simple far-field limit c � n2/3N.

The principal value of the present FEA analysis is a
demonstration of the feasibility of the hydraulic pump-
ing model. At the same time, we acknowledge certain
limitations of the current analysis. We have conducted
just one case study, that of a specific material/inden-
ter/environment system. The role of such variables as
sphere radius r, maximum load Pm and cyclic frequency
f would require a great deal more unwieldy, time-con-
suming numerical analysis. For this reason, we would
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not advocate FEA as means for predicting general
behavior. Quite apart from inaccuracies arising from
crack increment problems, there are several assumptions
that are open to question: (i) The hydraulic model is
based entirely on a squeezing mechanism whereby intru-
sive liquid is forced toward the crack tip by closure stres-
ses at the mouth. We have ignored possible wedging
stresses from forced entry of liquid from local reservoirs
at a rough indenter/specimen interface into the crack
mouth under Hertzian pressure. Such wedging action
is more likely to occur in the small flaw region, thereby
enhancing and broadening the hump in the Kþ

I curve in
Fig. 5. (ii) Possible negative fluid pressures in the long-
crack region, where contact engulfment actually acts
to increase rather than decrease the confining volume,
have been neglected. It has been simply assumed that
no such stresses will activate, because of cavitation of
the entrapped liquid. In reality, cavitation will not occur
until the negative pressure has achieved some non-zero
value, thereby acting to inhibit the crack extension in
this region. (iii) A fixed location RI = 0.5am has been as-
sumed for the inner surface ring. This midway location
balances counteracting factors: higher RI/am would in-
crease the stress intensity acting on the surface flaws
prior to engulfment; lower RI/am would increase the
stress intensity after engulfment. (iv) Interactions be-
tween the inner cone and preceding outer cone have
been ignored in the computation. Such interactions
could reduce the K-field on an adjacent inner cone crack,
further contributing to a shift toward lower RI/am.
(v) An attempt has been made to maintain small crack
increments, especially in the short-crack region. Stress
inhomogeneities are extremely large in this region, so
inaccuracies in the increment size and angle are likely
to be greatly magnified in the resultant K determinations
[19]. Consideration of these factors as a whole suggests
that our calculations, if anything, probably underesti-
mate the scale of the hydraulic pumping effect.

The crack law used here to describe the rate depen-
dence of crack growth is the power-law velocity function
t(K) in Eq. (1) [17]. Such a function is able to account
wholly for the fatigue responses of outer cone cracks [6].
In principle, we may apply the same law to systems in
any liquid environment, simply by changing the exponent
and coefficient in this function. However, a simple-power
law relation does not hold for all liquids, e.g., alkanes,
where the t(K) curve exhibits multiple branches, attribut-
able to diffusion rates of trace water within the alkane liq-
uids [20]. This simplymeans that the time integration over
the indentation cycling would have to be conducted en-
tirely numerically. Somematerials like silicon are not sus-
ceptible to slow crack growth at all. The inner cone cracks
could extend only if the Kþ

I ðcÞ curve in Fig. 5 were to ex-
ceed Kc. In principle, any fatigue would then be solely
mechanical, from the hydraulic pumping effect alone,
i.e., from continual cyclic augmentation of the entrapped
fluid volume V0 within the crack walls. Such equilibrium
growth could in principle be induced by increasing the ap-
plied load to extremely high values,manifested inFig. 5 as
a scaling up of the Kþ

I ðcÞ curve.
The inner cones, by virtue of their steep angles to the

surface, can become a dominant mechanism of failure in
thin specimens or in bilayers, e.g., dental crowns [7].
Extension of the current analysis to that case is under
way.
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