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Glass-forming liquids and polymers:
with a little help from computational statistical physics
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The past decade has seen a resurgence in the study
of the glass transition, particularly using computa-
tional approaches. Advances in computer architectures
and algorithms have allowed the study of larger system
sizes for longer time scales, which has enabled com-
putational scientists to explore both new aspects of su-
percooled liquids, glasses, and the glass transition, as
well as to re-investigate old puzzles.

One aspect of these systems in particular that
is currently receiving a great deal of attention, and
which has seen progress in part due to the use of
computational statistical physics, is the elucidation of
the detailed molecular motion and how this motion
changes as a liquid approaches the glass transition.
In particular, simulation has led to the discovery of
dynamical, ordered structures within the disordered,
glass-forming liquid [1–10].

It has long been known that despite the similarity
in structure of a liquid and its glass, relaxation times,
diffusivities and viscosities change by up to 14 or-
ders of magnitude as a liquid is cooled through its
glass transition. Why the dynamics can change so dra-
matically while static structure seemingly changes so
little has been a long standing, open question in the
field of glass research. Clearly, molecular motion be-
comes increasingly difficult as the temperature or spe-
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cific volume decreases, but how precisely does the mo-
tion change, and why does this change lead to such
long relaxation times? Mode coupling theory (MCT)
provides a partial answer to this question for the ini-
tial approach to the glass transition; that is, for tem-
peratures where diffusivities are still orders of mag-
nitude higher than at the glass transition temperature,
Tg [11]. The theory makes specific predictions for the
slowing down of fluids from their equilibrium struc-
ture, which hold asymptotically near a crossover tem-
peratureTMCT, which is typically 1.1–1.5 times higher
thanTg. In hard-sphere, colloidal suspensions, where
Tc ≈ Tg, MCT is able to describe the dynamics closer
to Tg. However, the theory in its current form does not
provide spatial information revealing how the dynam-
ics changelocally in a fluid as it is cooled, nor does it
specify how molecular motion occurs.

Many clues abound that point to a dramatic change
in the mechanism of molecular motion in cold, dense
liquids. One example is provided by the intermediate
scattering functionF(q, t), which measures the de-
cay of density fluctuations and can be obtained di-
rectly by neutron spin echo experiments or through
a Fourier transform of the dynamic structure factor
S(q,ω). At high temperatureT , this function decays
exponentially in time. At lowerT and/or larger den-
sity ρ, it develops a plateau at intermediate times, and
at longer times decays as a stretched exponential with
a characteristic timeτα that grows rapidly with de-
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creasingT [12]. The plateau indicates the temporary
localization or “caging” of molecules, and can also be
observed in a plot of the mean squared displacement
vs. time [13]. Both the appearance of the plateau and
the non-exponential decay indicate an increasing com-
plexity in the fluid dynamics. MCT, which is a theory
based on the caging of molecules and on the collective
motions associated with caging, describes well much
of the behavior ofF(q, t) aboveTMCT [12,14–17].

Another dramatic indication of a change in mole-
cular motion in equilibrium liquids on cooling is
provided by the relationship between translational
and rotational diffusivity and viscosity. At highT ,
these transport coefficients are related by the Stokes–
Einstein (SE) and Stokes–Einstein–Debye (SED) re-
lations. At sufficiently lowT , the SE relation breaks
down, and the diffusion coefficient of a probe in the
fluid is higher (in some instances, by several orders of
magnitude) than would be predicted by the viscosity
from the SE relation [18–21]. This so-called “decou-
pling” of transport coefficients demonstrates a break-
down of continuum hydrodynamics, and an increasing
complexity in the fluid dynamics [22,23].

Through a combination of 4D-NMR experiments,
optical photobleaching, flourescence and solvation
spectroscopy experiments, dielectric hole burning ex-
periments, and computer simulations, there is an abun-
dance of evidence that both stretched exponential re-
laxation and the decoupling of transport coefficients
can be rationalized if glass-forming liquids arespa-
tially heterogeneous in their dynamics (SHD) [19,23–
25]. Indeed, we now believe that as the glass transition
is approached, particle (or molecule) motion becomes
strongly correlated over increasingly larger distances.
This leads to an emergence of increasing dynamical
order in the fluid, and to the appearance of large-scale
fluctuations in the local molecular mobilities.

Computational statistical physics is helping us to
describe these spatiotemporal fluctuations in the local
mobilities, as well as to elucidate the precipitating
events that we believe initiate high mobility regions.
In particular, computational statistical physics has
allowed us to make specific predictions regarding the
nature of these regions [1–7], including their size,
shape, and dynamical character—predictions that have
now been confirmed in experiments [26–29].

Two of the most often used models for studying
the dynamics of glass-forming liquids and polymers

are the binary Lennard–Jones mixture and bead-spring
model, respectively. We have investigated correlated
particle motion in molecular dynamics simulations of
two different binary mixtures—an 80: 20 mixture and
a 50: 50 mixture, both containingN = 8000 particles.
In both models, the interaction parameters are cho-
sen to prevent phase separation and crystallization. We
have also studied the dynamics of a polymer melt de-
scribed by a bead-spring model, where again the in-
teraction parameters are chosen to prevent crystalliza-
tion. In this system, we simulate roughly 120 chains of
10 monomers each, short enough that the melt is un-
entangled. The details of our simulations are discussed
elsewhere [1–7]. In all systems, we perform simula-
tions in the NVE or NVT ensembles at many different
state points, in equilibrium above or atTMCT. Typi-
cally, TMCT ≈ 1.1–1.5Tg in these models. Our longest
simulations span more than 108 MD steps, or tens to
hundreds of nanoseconds per run in Argon units.

By visualizing the raw data from the simula-
tion and watching the motion of individual particles
(monomers in the case of the melt), it is immediately
apparent that at temperatures below that correspond-
ing to the onset of caging, particle motion becomes
“intermittent” [13]; most of the particles are localized
in cages formed by their neighbors, and only a hand-
ful (between 5 and 12%) escape from their cages at a
time [1,30]. It is also obvious from watching the simu-
lation that below the “onset” temperature, particles es-
cape from their cages in “groups” or “clusters”, and
thus molecular motion becomes spatially correlated
(heterogeneous) on cooling. Thus over long times,
many particles remain fixed relative to their initial po-
sition, and within this “immobile” matrix emerge “flu-
idized patches” within which particles move [23]. It
is also immediately evident from the simulation that
the number of particles involved in a typical cluster
grows with decreasingT , indicating the growing range
of spatially heterogeneous dynamics on cooling.

This heterogeneity can be quantified using methods
from percolation theory and by constructing suitable
correlation functions, such as displacement–displace-
ment correlation functions and four-point, time-de-
pendent density correlation functions [1–10]. Differ-
ent statistical quantities highlight different aspects of
dynamical heterogeneity; some focus on the mobile
regions, and some on the immobile regions, of the
fluid.
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For example, spatially heterogeneous dynamics can
be easily observed by comparing snapshots of a glass-
forming liquid at two different times, provided the
time interval between them is not so short that parti-
cle motion is ballistic (in the case of atomic, molec-
ular or polymeric fluids), and not so long that parti-
cle motion is diffusive. Confocal microscope images
of suspensions of effectively hard-sphere colloids can
be used for this purpose, and the “difference” between
two snapshots separated by a timescale in the plateau
region indicates regions of “activity” and “inactivi-
ty”; that is, regions where particles appear not to have
moved from their initial positions, and regions where
rearrangement has taken place. From these snapshots,
it is possible to construct a correlation functiong4(r, t)

and corresponding generalized susceptibilityχ4(t) re-
lated to the fluctuations in the numberQ(t) of “over-
lapping” particles; that is, particles that appear not to
have moved during the time interval of the compari-
son [9,31–34]. These quantities have been calculated
in simulations, and show that the fluctuations inQ(t)

depend on the time interval of observation, peak near
theα-relaxation timeτα , and increase rapidly with de-
creasingT [9,33,34]. Correspondingly, the correlation
functiong4(r, t) of overlapping particles develops in-
creasing range with decreasingT [34]. Thus a cor-
relation length associated with overlapping particles
can be measured directly in simulations and in mi-
croscopy studies of colloidal suspensions. Our simula-
tions predict that this length begins to increase below
the temperature corresponding to the onset of caging,
and continues to increase on cooling. Theoretical cal-
culations support the simulation predictions, and due
to the mean-field nature of the calculations predict a
diverging length scale atTMCT [32,33].

The overlapping particles described above are dom-
inated by localized particles, but a simple replacement
of Q by N − Q in the theory essentially transforms
localized regions into delocalized regions and vice
versa [9]. To gain further insight into the dynamically
heterogeneous nature of these liquids, and to specif-
ically explore the high-mobility fluctuations, correla-
tions functions of particles that incorporate the scalar
or vector displacement can be used. We constructed
such a correlation function whose corresponding gen-
eralized susceptibility is proportional to the fluctua-
tions in the total system displacementU in a given
time interval [4,35]. By construction, the correlation

function is most heavily weighted by particles with
large displacements. The susceptibilityχU(t) and cor-
responding correlation functiongU(r, t) display qual-
itatively the same time-dependent and temperature-
dependent behavior asχ4(t) andg4(r, t), but peak and
have the longest range, respectively, at a timet in the
late beta/early-alpha relaxation regime; i.e. at a time
that precedes, and scales withT differently than,τα .
This suggests that many high mobility fluctuations—
that is, spatially correlated particle rearrangements—
are necessary for structural relaxation. In both the
80 : 20 LJ mixture and the polymer melt,χU(t) is
well fitted by a power law with singular temperature
Tc = TMCT. Although we do not necessarily expect
a true divergence of the susceptibility or correlation
length atTMCT, the behavior of the data demonstrates
the rapidity with which these regions grow. Whether
these quantities cross over to slower growth below
TMCT, become constant, or even shrink will require
further investigation of substantially lowerT simu-
lations, which currently poses a substantial computa-
tional challenge because of the prohibitively long re-
laxation times required to equilibrate the liquid.

To further characterize the nature of the mobile
regions of glass-forming liquids, we have performed
detailed studies of the clustering of highly mobile
particles (i.e. particles that, in a given time interval,
exhibit the largest scalar displacement) [3,5,6,30]. We
find that these particles form non-compact, highly
ramified clusters whose size depends on the time
interval of observation (Figs. 1 and 2). This behavior
is consistent with the time-dependent behavior of the
susceptibilitiesχ4(t) andχU(t). Notably, the largest
clusters are observed at a characteristic time which
scales withT like the MCT β-relaxation timescale
τε [30]. The cluster size distribution approaches a
power law asT → T +

MCT with an exponent near
two, and the mean cluster size grows rapidly; in the
polymer system, the maximum weight-average cluster
size grows from roughly two to nearly 20 monomers
over the range ofT studied. Depending on the system,
we have found both power laws and Vogel–Fulcher
expressions fit the data well. It is important to note
that in all systems studied, and at any given{T ,ρ},
a highly mobile subset of particles can be found
that maximizes the mean cluster size. This subset
constitutes between roughly 5 and 12% of the total
particles in the system [30].
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Fig. 1. Example of a large cluster of particles in the 80: 20 LJ
liquid imaged from the subset of particles that exhibit the largest
displacement in a time interval near the end of the plateau (caging)
regime. The cluster is composed of many individual sub-groups of
particles that move coherently in one-dimensional “strings”, where
each particle moves nearly one particle diameter in the direction
of its highly mobile neighbor. The actual motion within a string is
relatively fast, and thus different strings within a single cluster may
be “active” at different times. From [3].

Upon closer inspection, we find that within any
group of mobile particles, smaller subsets move to-
gether coherently, following each other to form a
quasi-one-dimensional “string” [2]. In the case of the
80 : 20 LJ mixture, these strings have an exponential
length distribution, with an average size that grows
slowly with decreasingT . If fitted by a power law over
the relatively narrow range of temperatures simulated,
the average string length would appear to diverge at a
temperature near the Kauzmann temperature, signifi-
cantly outside the range of our simulations [7].

These strings may represent the fundamental par-
ticle motions underlying the back-flow process on
which mode-coupling theory is based. Additionally,
they may represent the cooperative groups envisioned
by Adam and Gibbs. It appears that these strings are
not perfectly coherent in theT range of our simu-

Fig. 2. Weight-averaged cluster sizeS plotted vs. time for different
state points as indicated. Data obtained from a simulation of a
bead-spring polymer melt. At short times, the mean cluster size
is given by the value corresponding to grouping nearest neighbor
particles from a randomly chosen subset of monomers (subset
contains 6.5% of the total number of monomers). At later times,
the monomers within the subset become increasingly spatially
correlated, as indicated by the increasing value ofS. Beyond the
peak time, monomer motion becomes less spatially correlated, as
indicated by the decreasing value ofS at late times. In the diffusive
regime (not shown),S again equals the random value [5].

lations, since particles do not perfectly replace other
particles. If they did, these string-like motions would
not contribute directly to the decay of density fluctu-
ations, since the system before and after a perfectly
coherent, string-like rearrangement would be identi-
cal. Instead, the strings appear to facilitate the mo-
tion of their neighbors by perturbing the neighborhood
around them. This idea is supported by studies of tran-
sitions between basins of the potential energy land-
scape, which at and belowTMCT appear to be facili-
tated by the string-like motion of large groups of par-
ticles, which accompany many small displacements of
surrounding particles [10]. Thus clusters of highly mo-
bile particles as discussed above consist of both strings
and particles whose motion is facilitated by strings. As
T decreases, more and more mobile particles appear to
move in strings [2].

Simulations clearly indicate the presence of a
rapidly growing dynamical correlation length, despite
the absence of a significantly growing static correla-
tion length. However, the local dynamics of a mole-
cule should be related in some way to the structure
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of its neighborhood. Preliminary results [36] indicate
a positive correlation between the Voronoi volume of
a highly mobile particle and its mobility, so that the
larger the volume, the larger the mobility, in agreement
with previous studies. This result is consistent with
previous findings that highly mobile particles tend to
have a larger potential energy before becoming mo-
bile [3], implying that the immediate neighborhood
around a particle may become slightly expanded just
prior to motion. Detailed investigations of this are on-
going [36].

With some help from simulation, the spatially het-
erogeneous nature of the dynamics of glass-forming
liquids is now clearly established, but many open ques-
tions remain, and many connections remain to be made
between the different phenomena that accompany the
glass transition. Presumably, the increasing dynamical
correlation length—which corresponds to the distance
over which particle motion is correlated—is responsi-
ble for the increasing relaxation times that plague liq-
uids as they are cooled. Indeed, the correlation length
associated with “overlapping” regions of the fluid ap-
pears to be largest at a time that scales withT like the
structuralα-relaxation time. Can a revised mode cou-
pling theory, which includes higher order density cor-
relations and goes beyond the usual Gaussian approxi-
mation, predict our results? How universal is spatially
heterogeneous dynamics; for example, does the pres-
ence or details of SHD depend on the fragility of the
glass-former? How do the length scales observed in
the simulation of simple model liquids map onto real
systems, or more realistic (i.e. atomistic) simulations?
How are the mobility fluctuations observed in simula-
tions aboveTMCT related to those observed in exper-
iments nearTg? The growing mobility fluctuations in
glass-forming liquids are reminiscent in some respects
of growing density fluctuations in liquids near critical
points; how useful is such an analogy? What happens
to spatially heterogeneous regions in liquids quenched
to the glass state? Do high mobility regions become
trapped in the glass, and govern aging, creep, shear
banding, etc? What about supercooled liquids prior to
nucleation and growth of the crystal phase? Are their
dynamics spatially heterogeneous, and, if so, what are
the ramifications for theories of nucleation? Are force
chains present in glass-forming liquids with attractive
interactions, and how are these structures related, if at
all, to SHD? Can we use information on cooperative

or correlated dynamics to construct acceleration algo-
rithms for glassy systems, especially at lowT where
dynamics may be dominated by rare events? Compu-
tational statistical physics will help to answer some of
these questions, and will continue to make important
contributions to the general understanding of liquids
and the glass transition.
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