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Sharp interface limit of a phase-field model of crystal grains
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We analyze a two-dimensional phase field model designed to describe the dynamics of crystalline grains.
The phenomenological free energy is a functional of two order parameters. The first one reflects the orienta-
tional order, while the second reflects the predominantally local orientation of the crystal. We consider the
gradient flow of this free energy. Solutions can be interpreted as ensembles of(graitnéch the orientation
is constant in spageseparated by grain boundaries. We study the dynamics of the boundaries as well as the
rotation of the grains. In the limit of an infinitely sharp interface, the normal velocity of the boundary is
proportional to both its curvature and its energy. We obtain explicit formulas for the interfacial energy and
mobility, and study their behavior in the limit of a small misorientation. We calculate the rate of rotation of a
grain in the sharp interface limit, and find that it depends sensitively on the choice of the model.
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[. INTRODUCTION by an energy and a mobility. These quantities may depend on
the misorientation of the adjacent grains and the inclination
The characterization and evolution of microstructureof the boundary. We should note that one of the original
forms a cornerstone of materials science. In particular, thenotivations of phase field modeling was the idea that a dif-
grain structure of a polycrystalline material determines manyuse interface regularizes the inherently singular nature of the
of its properties. Recent efforts at modeling the evolution ofsharp interface mode[8]. However, in order to make con-
grain boundaries have used a variety of approa¢hedy. tact with these sharp interface models, it is often useful to
Herein we focus on the recently introduced phase field modeatonsider the converse: how do diffuse interface models be-
of Kobayashi, Warren, and Cart¢¢WC) [5] which is based have in the sharp interface limit?
on earlier attempts by the same authf8s7]. Phase field Thus the main goal of this paper is to analytically obtain
models have been applled to the prOblem of SOIidiﬁcationthe energy and m0b|||ty of a grain boundary, as well as the
with great succesg8—10], but only recently to the problem qtation rate of a grain within the KWC model. We accom-
of grain boundaries. In general, phase field methods continugjish, this task by considering a limit of the model parameters
to show promise in many areas of pattern formation, as they, \yich the width of the boundary vanishes, while its mea-

obviate the need to track the interface. surable characteristics remain finite and nonzero. The meth-

Th.e.mode! is motivated by symmetry p'rin.ciples, anq has %dology of this so called sharp interface limit is well estab-
surprisingly rich set of physical characteristics. In partlcular,Iished [18-20. There exist cases, such as propagation of

KWC showed numerically that solutions to this model can befronts into linearly unstable media, for which this procedure
interpreted as a collection of grains. The velocity of the in-. arly o P
not well defined 21]. However, as will become clear be-

terface between the grains was found to be approximatel ) . R .
ow, the motion of grain boundaries in our model is an ex-

proportional to the local curvature of the interface, but the

grains were also able to rotate toward lower energy misori@mMPle of a front with exponential relaxation, and thus we do

entations. In support of the notion of grain rotation, threenot anticipate any difficulties of the sort discussed in Ref.
independent unpublished molecular dynamics studies by U[{—21:|-
manyu and Srolovitz, Phillpot and Wolf, and Srinivasan and  This paper is organized as follows. In Sec. Il we introduce
Cahn, suggested that grain rotation will occur under certaifihe order parameters, phenomenological free energy, and
circumstances. In addition, there is a substantial histang ~ gradient flow equations. We next perform a formal
debat¢ concerning the mechanisifis1—13 and observation asymptotic expansion of the model in Sec. lll. The zeroth
of grain rotation[14,15. order problem of this expansion is discussed in Sec. IV,
The KWC phase field model is mathematically challeng-where we obtain the profile and the energy of the static flat
ing because of a singular term in the free energy. Kobayashioundary. In Sec. V, the first order asymptotics are exam-
and Giga[16] studied similar singular models, and showedined. We are able to determine the velocity of a curved grain
that there is a way to handle the singularity consistently. Irboundary. We find that this velocity is proportional to both
this paper we will apply their method to the KWC model, the curvature and the interfacial energy, and we obtain an
and show that its solutions can indeed be interpreted asxpression for the mobility of the interface. As noted above,
grains separated by grain boundaries. grains can rotate in this model. We calculate the rate of ro-
Grain boundaries in a polycrystalline material are narrowtation of a grain in Sec. VI. Finally, in Sec. VII, we apply all
compared to the grain size. Therefore, conventionally, graimf the results described herein to the simple case of a circular
boundaries are described by sharp interface mddsfs in  grain embedded in a matrix. In conclusion, we discuss fur-
which the boundaries are treated as two-dimensional suther ideas, and the implications of this phase field model for
faces. Typically, in these models, a boundary is characterizethe problem of coarsening in polycrystals in Sec. VIII.
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Il. MODEL

We model the evolution of a collection of nearly perfect
crystalline grains in two dimensions via a phase field model.

PHYSICAL REVIEW E63 051605
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First we discuss order parameters which capture the micro- — hﬂ_|vg|2, (2a)
scopic physics of grain boundaries. It is then possible to 2
construct a phenomenological free energy which favors a

. : a0 OF Vo
perfect uniform crystal. The structure of the solutions of thep(, vV §)7,7>—=—€—=V-| he?Vo+gs=—|, (2b)
gradient flow of this free energy can then be interpreted as an at o0 Vol

evolving ensemble of grains.
Following Ref.[5], we develop two order parameters. To

distinguish grains of different orientations, we introduce a

continuously varying local orientatiofs Since the energy of
crystal does not depend afitself, the phenomenological
free energy will be a functional of the gradients @bnly.

The second order parameteris used to differentiate the

where we use the subscripts to denote differentiation except
for the time constants,, and 7,. The mobility functionsP
and Q must be positive definite, continuous @#=0, but

are otherwise unrestricted. Systé) must be supplemented
by initial and boundary conditions, and a rule that specifies
the handling of the indeterminacy of the teKo/|V 6|. This
particular type of the singularity is generally handled in a

neal’|y perfeCt CrySta| in the interior Of the grains from thetheory Of extended gradients_ Referer[d@] proves that
disordered material in the grain boundary. It varies from perthere is indeed a unique way to prescribe the value of the

fect orderp=1 to complete disorder,;=0. Both order pa-
rameters are not conserved.
We analyze the free energipased on KWE

1 a?
Fn.01=— L)dA[yanlerf(an(n)s
62
x|V ol hin 5 1907, @

whereaq, €, ands are positive model parameters. Some read
ers may find the overall prefactor ofelsuggestive. Subse-
quently we will examine the limit— 0. This prefactor en-

sures that the surface energy of a grain boundary tends to

non zero constant.

right hand side of Eq(2b) whenV #=0. While we do not
wish to attempt to explain all of the details of REL6], it is
useful to summarize the ultimate conclusion of the math-
ematical analysis.

Thus let us define a collectiofG;} of distinct connected
regions where&v =0. We shall refer td5; as the interior of
graini. The essence of the method of dealing with the sin-
gularity is that the orientatiord must remain uniform in
space in eacls; . Therefore, the right hand side of E@b)
is chosen in to be uniform i; . This condition, along with
the requirement that;, 6, and V& be continuous at the
boundaries ofG;, uniquely determines the rotation rate of
each grain(i.e., 96/t in eachG;) and the motion of its

boundaries.

The above decomposition of the system into grains and
grain boundaries immediately allows us to consider the rota-
tfbn of these grains and the dynamics of their boundaries.
This decomposition is nontrivial, and is a direct consequence

Term by term, the above free energy deserves some digs the structure of the solution and our interpretation of grain
cussion, although the reader interested in the full motivatiomoundaries as the regions what€ is nonzero. Even though,

of this model is referred to Ref5]. The first term describes
the penalty for gradients in the order paraméggain bound-
aries cost energy The free energy densitiy( 7) is chosen to
be a single well, with the minimum ay=1 andf(1)=0

kinematicly, grain rotation and grain boundary migration can
be distinguished, both are manifestations of the evolution
equations(2), and both are driven from the regions of non-
zero gradient in the lattice orientation.

I’eflecting the fact that disordered material has hlgher free Reference[zz:l verifies numerica”y that typ|ca| solutions

energy. The third and fourth terms are an expansigiv i,
where the couplingg(#) andh(%) must be positive defi-
nite. KWC argued that the expansion|¥6 must begin at

of the gradient flow systerfEq. (2)] indeed consist of a
collection of connected regiorns; in which V=0 and »
~1 (grain interiorg separated by narrow regiongrain

first order to assure the existence of stable grain boundariegoundariesin which the orientatiord changes smoothly be-

This term yields a singularity in the dynamic equations.
Indeed, Ref[5] omitted the| V 4| term in their analytical

tween the neighboring grains. Thus, the grains rofgte

changes in time uniformly in each grairand grain bound-

investigation of a stationary flat interface. This term wasaries migratesee Fig. 1, adopted from RdR2]).

added in Ref[6], for practical reasons, in order to solve the

model numerically. We shall see that this term makes no

lIl. FORMAL ASYMPTOTICS

gualitative difference in the properties of static grain bound-

aries. However, as shown in Sec. V A, the mobility of a grain

boundary vanishes as/? when in then—0 limit. Thus the
extra term introduced by KWC seems to bequired for
grain boundaries to move.

Having elucidated the general properties of the model, we
now examine the sharp-interface limit, in order to extract the
physical quantities from our phase field model. As discussed
earlier, solutions to the extended gradient flow sysf&is.

Assuming relaxational dynamics for a nonconserved sef2)] consist of grains in whictV #=0 separated by a net-

of order parameters, we find the gradient flow equations

work grain boundaries in whicK 6+ 0. Although no rigor-
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FIG. 3. The regiorts between the curveE¢ andI'< in which
Vo+0.

all functions and their derivatives vary slowly along the in-
terface compared to their variation across the interface. The
analysis can therefore be advanced by defining a coordinate
normal to the interface, and scaling it byThe order param-
eters as functions of this new coordinate are termed the inner
solution. They are expanded into a power series mnd the
resulting hierarchy of equations is solved order by order,
subject to a matching condition with the outer solution. This
outer solution, obtained by settirkgo zero, is valid far away
FIG. 1. Two-dimensional simulation of Eq$2) with simple  fom the interface.

choices for the couplings. The orientatighis constant in the The mathematics of the sharp interface limit of our model
shaded grain regions. The shades of gray are used to represent ﬁgeatypical because the fieldsand 6 obey two different sets
value of 6. of equationg16]. Equations(2) hold in the grain boundary

T . . .. region which is defined as a str§between two smooth non-
roof of the inevitability of thi lution str re exi . . . .
ous proof of the inevitability of this solution structure exists, ntersecting curved'$ (t) andI'¢ (t) (see Fig. 3 Outside

there are two plausibility arguments. First, once this structurd " )
develops, one can show that it will pergi&6]. And second, this strip,V#=0 and
such a solution can be explicitly found for a flat stationary
interface between two grains shown schematically in Fig. 2.
This case corresponds to the zeroth order of the formal
asymptotic expansion, as we show in what follows. ) .
Figure 2 is highly suggestive. We have a bicyrstalline FoI_Iowmg Ref.[24], let us adopt curvilinear orthogonal
system with a localized region where properties changg ~ coordinate systenfrr(x,y,t),a(x.y,t)}. Letr(x,y,t) be the
the grain bounday Let us therefore consider the—0 limit ~ distance of the pointx,y) in Sfrom I'C.. OnI' , coordinate
of the gradient flow systert2). We expect the width of the ¢ is the arc length. We introduce a scaled variabter/e,
grain boundary region to shrink to zero. In order that weand expandy and ¢ in a formal power series ie:
obtain a more intuitive feel for precisely how the boundary

an
QTHW=Q2V277—f,,. 3)

region shrinks to zero width, it is useful to perform a heuris- n({,o0.t)=no({,0,) +eni(L,o,t)+- -+, (43
tic analysis of the free energy. According to the arguments of
Ref.[23], the width of the region of significant change in 0(8,0,1)=0o(,0,1) + €01(L,0,) +-- . (4b)

is set by the competition of the first and second terms in th
free energy[Eqg. (1)]. Specifically, this width scales as
al\[f,,. The width of the region, defined by §+0, is set

by the competition of the third and fourth terms in the free

%’his expansion is valid i and its immediate neighborhood.
Also [20],

energy. In this case the width scales I 6/s, whereAd V= ﬁi i +Ei, (5a8)
is the jump in @ across the interfacésee Fig. 2 As dis- €9l do
cussed below, the scaling afands are chosen to ensure that 5
both of these widths scale lik®(€) in the e—0 limit. V2=£6—+ fi+0(1) (5b)
We employ the standard method of matched asymptotics €9’ €l '
[20], which uses the small ratio of the interface width to its
radius of curvature as an expansion parameter. In this limit, J v d
E:_E&_Z—i_O(l)’ (SC)

wheref is the unit vector normal td'¢ pointing towardS (¢

increases in the direction @f), andtL i is the unit vector
along the lines of constamt The curvature<=V?r is posi-
tive whenf points away from the center of curvatureldf .

FIG. 2. A schematic representation of the solution for a flatThe normal velocityy = —dr/dt is positive when the inter-
static interface between two grairss the coordinate normal to the face moves in the direction @f. This configuration is shown
interface. in Fig. 3.
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In order to proceed, we must fix the scalingafs, 7,, Note that we assumed tha& >0 in S This assumption
and 7, in the sharp interface limit. We select the scaling for proves to be unrestrictive, since all measurable quantities
which (1) a flat interface does not move, af® all terms in  depend on the square of this derivative.
the free energyEq. (1)] scale with the same power ef We To obtain the boundary conditions foj, and 6y, we
also assume that the mobility functioRsandQ are indepen- employ two ideas. First, due to the aforementioned symme-
dent of e in the sharp interface limiP need only be inde- try, 7, is even andd, is odd in{. Second, the requirement
pendent ofe in the grain boundaly These conditions fix that %, 6, and their derivatives be continuouséat {, can be

shown to lead to the continuity of all terms in tleexpan-

a=€a, S=65, T1,=€7,, T=€T7,. (6)  sion[Eq. (4)] at{={,. We thus obtain
The final ingredient of the formal asymptotic analysis is CXTEY
the matching of the inner and outer solutions. The inner so- 76(0)=0, 7(Lo)= (Nnma)‘), (10)

lution is found separately in the grain bound&§V 6+ 0)

and in its immediate neighborhoo& ¢=0). The inner so-

lution valid in Sis denoted byp(¢{,o,t) and 6(¢,o,t) with- ,

out superscripts. The piece of the inner solution valid in the 00(0)=0, 0o(l0)=—"1 0o(£0)=0, (11
interior of a grain just outside ofS is denoted by

(i) (i) i i -
7'({,o,t) and 60\ (¢, 0,1). It is matched with the outer so Where a=m(Zo). Let us also introducey,=1c(0). This

lution »=1 andé=const for{—o. We must also match the . i . .
two pieces of the inner solution and their derivatives at thede&gnatlon reflects our assumption thgt>0 in {e[0.4o]

gre : : _ so that 7min=<7<7max- We can prove that, in particular
boundaried™. of the stripS, which are ag=¢... cases, this assumption is indeed justified.

Using the last boundary condition, we integrate Eh)
IV. ZEROTH ORDER SOLUTIONS: INTERFACE WIDTH to obtain

AND ENERGY

Now, having detailed the formal method of asymptotic . 9(7max) —9(70)
expansion, we proceed to examine the results of this expan- o h( 7o)
sion term by term. We begin, naturally enough, with the
zeroth order. The ultimate result of the zeroth order calcula T ; PR ;
fion with be a determination df) the interface width(ii) the  Pon Substitution of this expression into E@a), we dis
surface energy, an@i) the value of the order parametgin
grain boundary.

Without loss of generality we can shift the origin H%o 12
that it is in the middle of5, .= = (Zo+ €Z,++-). We first e | § L9 mad) 0] 13
look at the grain interior regiofi> ¢ . Substituting the scal- ° h '
ing ansatZEq. (6)] and thee expansionEg. (4)] into Eq.

(12

cover thaty is an integrating factor. Using the second con-
dition in Eqg. (10) we obtain

(2): and using Eq(5), we obtain The first condition in Eq(10) furnishes the relation between
. . : Dnin @Nd 7 max:
0=a%(np)"~1f,(n5), (65))'=0. @ ™
These solutions must be matched with the outer solutions 9 Fmax) = 9 min) + (’7"“'7;) (”m'n). (14)

n=1 and#=60_,, as{— +x. Since the zeroth order func-

tions 7y and 6, are independent of, the coordinate along

the interface, and timg they describe a flat stationary inter- Armed with this condition, we can obtain an equation for

face. They should therefore be symmetric with respect to themin Via

center of the boundar§=0. We can thus set, = A /2, half

the total misorientatiorfwhich is in general a function of Ao (¢, Tmax 9 Dmad — 0

time). Using the fact thaf(1)=0, we arrive at —= dge(;:a”éf dzy — ,

2 Jo o W2 F=3[9(7mad —g1°/h

V2f(ne) o A6 (19

o

) 00 :7- (8)

(7)) =
where we took advantage of the monotonicity,pf. Once

. . . _ . . in is found, we can calculate the width of the boundary,
After similar manipulations we obtain the equations valid 7rmin y

in Sfor le[—¢,,¢4]:

0=a"n5—f,(10)—3h,(10)(66)°—39,(m0) 0, (98

TTmax d n
7min N2 F—32[9( a0 — 914/’

{o=a (16)

0=[h(70) 05+39(70)]". (9b)  and the interfacial energy
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B [ Unlessg,, is singular at some value of other than 1(un-
7:SA09(77ma><)+2aJ’ dny2f physica), small A@ implies small - 5, since f(1)=0.
Tmax We shall see in Sec. IV B that it is true in general. This fact

[ max — 5 is not surprising, since small angle boundaries can be
+2af dyV2 f=3[g(7mad—9]77h. (17 thought of as arrays of distant dislocations.
7,

min

These formulas reduce the flat boundary problem to quadra- B. Small A@ approximation to the zeroth order solution
tures. We are able to compuig,;, and 7., from Egs.(14)
and (15), the interface width from Eq.16), and the surface
energy from Eq(17).

As useful as these expressions are, insight can be better P= Dimax— Tmin<l. (22)
obtained from analytical expressions, since the above four
equations must typically be solved numerically. Thus let usSincef(1)=0, it is clear from Eq(14) that
examine the behavior of the zeroth order solution in certain
limits in which an approximate solution can be found. The A=1—npmp<l. (23
integral on the right hand side of E(L5) can be calculated
approximately when it is small. We identify two such situa- Also, since we chosé¢(1)=0, we can approximate it by a

All parameters being fixed, the right hand side of El)
can be small if and only if

tions. parabolaf (7)~3f,,(1)(1— 7)? nearp=1. Then
A. Small h approximation to the zeroth order solution min__ Vfw(l)hmm 2
POy ~N = (24

To make contact with Ref5], in which the|V 62 term in
the free energy is set to zero, we consider a limit in which it
coefficient vanishes— 0. Expanding Eq(14) in powers of
h we obtain, to lowest order,

Sif the behavior ofg andh nearn=1 is known, we can obtain
a complete solution to the zeroth order problem in this limit.
Instead, let us focus on the scaling of the interface wigth

J2 fminpmn and the interfacial energy in the A 6— 0 limit. This scaling
Nmax— Mmin~ ——mr— =G <1, (18)  can be deduced without a complete solution of the zeroth
S8 order problem.

where f™"=f(7,....), etc. Thus, ah—0, the difference be- Suppose that, neaj=1 (0<A<1),

tween i, and 7,,ax vanishes, while they remain well sepa- gmin~\B, hmin_ )20, (25)
rated from 1. Thereford, g, andh and their derivatives are K ’
regular at the undistinguished point,,<1. Then, from Eq.(24), we obtain
Let us define an auxiliary parametgvia n= nyin+ Gy,
and expand Eq(15) in powers ofG. We obtain p~A\tTe=p, (26)
AO @ 2fmn 1 1-y @ y2fm™ Note that, sincep<\ by definition, the scaling exponent in
2 75 g™ Jo dy N2-y) % gmn e (19 Eq. (26) must be greater than or equal to 1. This means that,
K 7 in this limit, the zeroth order solution exists only when
One could in principle now invert E¢19) to solve for 7. =B. ) ) ) )
The width of the boundary, can be then found with the =~ To determine the scaling of the right hand side of Eqg.
same accuracy: (15), we define a finite integration variables[0,1] via 7
~ Mmin=PY- Then
@ vh™
=75 gm0 (20 dp~p~AtTe7h, 279
The interfacial energy is, in this same approximation, 9(7max) —9 g':,"n I—w
) 1
y=3g™"A 0+ 2% f dpy2 f. (21) )
TTmax ~2 [g( 77ma)<) - g]
2f-3 —
For a special case examined in R3], f=3(1—7)2,
g= 7%, andh=0, and Eq.(19) is easily invertible. Indeed, 1 T -
the expressions fow,,;, and y coincide with those of Ref. = [(2fh=2f"hT + 25(g—g™)
[5].
We finally remark that within this approximation, the be- X \[2 fMIMMIN_g2( g — gMin2] . \2+ A~ (279

havior of v and ¢, in the limit of small misorientatiom
depends on the properties @ndh nearp=1. To see why We used the fact thab= 8 to establish that the second term
this is true, let us look at Eq19) in the limit of smallA#.  in the square brackets of E(R7¢ dominatesi\when w=
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all three terms in these square brackets are equally impor- (") (g0 = V(95,2
tan®). Substituting scaling relation€7) into Eq. (15), we ' 0 1Yo S At
obtain o 5 — (12
=f d{fvT,Q+ak][(7y°) 17 (32
4

A G~ ©\1TLo=p)2], (29) ‘

As we mentioned above, all orders of teeexpansion and
We are now ready to calculate the behavior{gfand y in ~ their derivatives must be continuous &t or, equivalently,
the A9— 0 limit. Substituting the scaling relatior@7) into  at {o. Consequently, we may drop tfg superscript from

Eq. (16), we obtain the expression on the left hand side of E8R). This condi-
tion will suffice to setn, at {=¢,. We will not need the
Lo~ NY20= B (A )l B0 p), (29) boundary condition fo®; at {={,.

Turning our attention to the boundary regigr[0,{o],

. . , ) we write down the first order equations
The interfacial energy consists of three pieces y;+ v,

+ v3, which scale differently withAd. We list them sepa- h
~ P __~2, 1 ’ nn 2
rately: —vT,Qno=a"(n1+ k10) ~fy 1= =~ 11(6o)
- —h,0001—39,,700—39,01, (333
y1=2% | " 2 TG )~ GNP 2, 70Tl
Mmin ~ )~ ’ ’ = ’
(309 —v797]§P00=SKg+Kh00+[h01+hn7]100+sg,,771] ,
(33b

y =22’le dpy2 f~\2~(Ag)M2+e=B  (30b) where we used the fact th&-[V 6/|V6|]=«. The cou-

2 Tmax ’ plingsf, g, andh, and their derivatives, an@ andP in Egs.
(33) are evaluated at the zeroth order solution.

= ___min We can fix the boundary conditions &=0 for the first

73 =34 09(77ma) ~gTTA 0. (309 order functions by noting tha®, is odd while 6, is even in

] ) ] {. Therefore,
We can make several observations. First, sineeg, y, al-

ways dominatesy; in the A6—0 limit. Second, whens< 7:1(0)=0, 6;(0)=0. (34)
—1 we can integrate Eq25) to obtaing™"~\'"A. When

B=—1, in a similar fashion we obtaig™"~In\. For 8>  Using the second condition we integrate E88b) to obtain
—1 the behavior ofy nearn=1 is arbitrary. Thus the scal-

ing of the interfacial energywhether it is dominated by, h( 7o) 01=—[h,(70) 60+39,,( 70) 171

or y3) in the limit of the small misorientation can be freely

controlled by adjusting the behavior gfandh nearn=1. . JO d¢' 07 (70,765 77596
V. FIRST ORDER SOLUTIONS: INTERFACE MOBILITY ~3kg(70) — kh(70) 6] (35)
Having completed our analysis of the zeroth order in the . ) .
asymptotic expansion, we now continue on to first order JPon substitution of this expression into E§3a, we ob-
This order in the expansion will yield the velocity of the t&in an equation for, of the form
interface as a function of geometry, mobilitiBsandQ, and —2
surface energy. From classical as well as order parameter LLm]=an1+C(70,600) 71.=D (110, 60), (36)
models, we expect this motion to be by curvat[28], and,
as we show below, this is indeed the case.
To begin, in order for us to establish the matching condi-

where

tions between the two pieces of the first order solution, let us D (79, 00) = — 70 Q+ k) — h,6,+39,
look at the equation for!{" valid in ¢>¢, : ’ olvTy —

i i i i ¢ ! ~ ’ ] o~
—[v7,Q+&%k1(ny) =&%(n{)" = 't (ns)). (3D X fo d¢'[v7,P 7204+ k(hoy+30)]. (37)

Progress can be made by noting th&? = (#{’)’ is a solu-  The exact form ofC is unimportant, since we can show by
tion of Eq.(31), with the left hand side set to 0. We can take direct substitution thafas in a conventional asymptotic ex-
advantage of this fact by multiplying E¢31) by (#{’)’,  pansion problem£[ 74]=0. This fact can be utilized to ob-
and integrating over the grain interior. Using the matchingtain a solvability condition which determines the velocity of
condition with the outer solution, which states that all deriva-the interfacev. Multiplying Eq. (36) by 74, and integrating
tives vanish ag— <, we obtain over[0,{,], we obtain
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Using Eq.(27), we obtain the scaling of the three pieces

~2 P {o
“Lmom = momlo which make up the right hand side of E40):

=@L() (9") = 0 (95" =,

) fogc’dm(na)%x““—ﬁ, (423

= Lodg[mezx][(nS))']Z )
. Jgodewa)%x““ﬂw”Z], (42b)

= - fo d¢[v7,Q+ak](nh)? }
fo dZ Py3(0p)2~ N2 Let3pi2], (420

g
—f odg" 0)[v TP 7305+ k(hOy+39)]. (39
0 Equation(28) can now be used to determine the behavior of

Solving for the interface velocity, and using Eqs(12), M in the A 6—0 limit. We obtain

(13), and(17), yields 1 (A§)4=0=3BI2+0=B)  B>Q
—~ 43
v=—KkyM. (39 M ( (Ag)A-etPito=p)  B<Q, @3
As expectedy is proportional to both the curvature and the To illustrate, ifg and h are regular aty=1 so thatw=p
energy of the interface. The mobility is given by =0, our analysis yieldy~ A 6, while M ™1~ (A 6)?, so that
the interface velocity diverges in the limit of vanishing mis-
oo H H —~ 71
?”Jo dZ Q( 70,04 (7)) orientationv ~ (A 6)
. VI. GRAIN ROTATION
~ P 2/ n1\2
+T€jo dg P(70,160) 75(60)” (40 As we discussed above, this model also allows for the

grains to rotate. Let us consider a fully developed grain

We dropped the superscrifi}, since it is clear that solutions structure. In the sharp interface limit, the solution consists of
which are valid in the grain interior should be used in Eq.a set of regionss; of spatially uniformé (graing separated
(40) for £>¢,. by narrow (or ordere) grain boundaries. To calculate the

Just as in a conventional formal asymptotic analysis, weotation rate(); of graini, we integrate Eq(2b) over the
obtained the normal velocity of the interface without havinggrain interiorG;. We obtain
to solve the first order equations. This is a general feature of
analyses of this kind, and allows one to express the mobility, 2
of the interface in terms of the properties of a stationary M GJ dAnP(0.0)=s fﬁ d(rg(n
interface. To better understand the behavior of the interface
mobility M, let us apply the approximations of Secs. IVA - :
and IV B to Eq.(40). 52 £i9(7nedSAMAG). (44

Vo
vl

A. Mobility in the small h limit Here ¢;; is the length of the common boundary between
grainsi andj. The summation is over the neighboring grains
%of orientationd; . In integrating by parts, we used the con-
nuity of b=V 6/|V ¢| at the edge of the graifiL6]. In the
grain boundaryS, b is a unit vector in the direction of in-
creasing 6. Thus, away from a triple junction,b
=fj; sgn@@ ;) on both edged™S of the boundary between
1w P 772 £min _grainsi an_dj..T.he unit normah;; poin_ts from grain to grain
il e (41) ] The periodicity of¢ must be taken into account to calculate
95 Jhmn sgn@ &).

Let us examine the scaling of the rotation ré&ein the
sharp interface limit. The right hand side of H44) scales
ase. For(); to be finite and nonzero in the sharp interface
limit, the left hand side

To illustrate the importance of th& 6|2 term in the free
energy for the motion of boundaries, let us again consider th
limit in which its coefficienth vanishes. The second term in
Eq. (40) dominates in this limit. Assuming for the sake of the
argument thaP does not depend oW 6, we obtain

The mobility of the grain boundary therefore vanishesi %%
in this limit, in support of our claim that thgv 6|2 term is
required for migration of boundaries.

B. Mobility in the small A@ limit

It is instructive to trace the behavior of the interface mo-
bility in the limit of vanishing misorientation. For simplicity,
we assume here that the mobility functioRsand Q are  must also scale like. Recall thaty is exponentially close to
regular, and assume a nonzero valuepatl andV #=0. 1 in all of G; except a narrow(of order €) strip near the

T(,LdA 7°P(7,0), (45)
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boundary. Therefore, ® is independent oé and has neither hand side of Eq(44) scales a4, and we can determine the

a zero nor a singularity ay=1, then Eq.(45) is approxi- dependence of the rotation rate of a grain on its perimeter:

mately equal toA;P(1,0), whereA, is the area of theth

grain. Therefore, in the sharp interface limi);~s/7, Qo1 (49)

~1/e. We therefore reach a conclusion that wiiers regu- Litw:

lar at =1, grain rotation dominates grain boundary migra-

tion in the sharp interface limit. The reason for this result is  This prediction is independent of the choice of other the

that 96/t is continuous across the edge of the grain boundmodel functions. With an appropriate choiceefit can be

ary. Inside the grain boundary, this time derivative mustconsistent with the heuristic derivatiopt5,26 of the rota-

scale with the inverse of the grain boundary widtl. Whe tion rate due to the diffusion of atoms along the grain bound-

time rate of change of the orientatighin the grain interior ~ary. These studies obtain & #/or 11.* scaling of(2 depend-

must therefore have the same scaling. ing on the mechanism. In a separate study, Maffi@]
Another way of interpreting the divergence of the rotationassumed that rotation is caused by viscous motion of dislo-

rate in the sharp interface limit is to consider what happen§ations, and obtained a rotation rate which was independent

in the interior of the grain. Since the orientation order paramof L.

eter is constrained to remain uniform in space, it may be

thought of as obeying a diffusion equation with infinite dif- VII. APPROXIMATE MODEL OF A SINGLE CIRCULAR

fusivity. It is therefore not surprising that for a generic GRAIN

choice of the mobility functiorP, the rotation rate is of the

same order as the rate of changeda the grain boundaries To illustrate the predictions of the sharp interface limit
(fast calculation of the preceding sections, we consider a circular

grain of radiusR and orientationd embedded in an immov-

gble matrix of orientation 0. To make analytical progress, we

choose Q=1, P=-In(1-7%), f=3(1—7%)?% g=-279

1/e in the grain interior.(Relaxing the constraint that be 2 IN(1=7), andh=1, to ensure a finite rotation rate in the

independent of in the grain interior does not alter the re- Sharp interface limit and Read-Shockigg7] behavior for

sults of the asymptotic expansion, since the dynamiaginf ~'OW angle boundaries. We also restrict ourselves to the small
6 approximation. In this limit we can carry out the expansion

the interior of the grain is slaved to its behavior in the grain. ; :
boundary) in detail, to obtain

For example, by choosing X rlwe\Y2 1 %3
7%50(1—"17), gow—<7) , =~y
o 4\ 73 M 2a
(46) (50)

However, there exist special choices #mwhich ensure
that the rotation rate does not diverge in the sharp interfac
limit. This can be accomplished by letting tRediverge like

1, V6+#0

PRVO= cumtpin1= ], Vo0,
Applying the motion by curvature resutd9), we obtain

where u# —1, we ensure thaP~ 1/e, as we show by cal- .

culating 7Y’ below. This choice ofP is plausible. When 2RR~a,;In ¢, (51)

material is nearly a perfect crystéh close to }, i.e., there

are few defects, one should expect the rate at which the ordéfherea;=4a?/7, . The expression for the rotation rate with
parameters change to vanish. the radius of the graiflR and misorientationd can be ob-

Integral (45) may be now calculated approximately in the tainéd via the arguments of Sec. VI. We obtain
sharp interface limit. We first calculatﬁg) far away from In o
the boundary, where it is close to 1. Using the approximation P~ ay—>, (52
for f~3f,,(1)(1— )2, we obtain R

) where a,=65a/7,. Solutions to these equations f&(0)
1—n8)~ex% _#5)_ (477 =1 and §(0)=0.1 are given in Figs. 4 and 5. The ratio
« a, /a, controls the behavior of the solution. When this ratio

) o ] o is small, rotation dominates the dynamics, so that the radius
Focusing on thee scaling in the sharp interface limit, we of the grain is not significantly reduced by the time the grain

deduce that integra#5) scales as rotates into alignment with the matrix. On the other hand,
when this ratio is large, the evolution of the radius squared of
Tagﬂ—lf dA 72[In(1— 7)]#~ L€2+Hfueg,¢d§~L2+ﬂ€’ the grain is almost linear in time, as in the case of the motion
G, by curvature.
(48 Comparison with molecular a dynamics simulation of Up-

manyu and Srolovitz reveals that our simple model is suffi-

which, as we desired, is proportional é0The rotation rate  ciently accurate and flexible to predict the behavior of a cir-
Q; is thus finite in the sharp interface limit. cular grain whose misorientation is near a special value.
Another important consequence of this argument is thapmanyu and Srolovitz found that near a special misorien-
since the perimeter of a grain is proportionalltothe right  tation, such that the number of coincident lattice sites is large
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1 — T T 0.1 T T ]
?\ ar =1
\‘ -\‘~\‘\\ a)y =9 ——————
\\~\\\\\ \\\\ a; =25 -------
R(t
() .l ] 00 g.05 F y
a;=1 : \\
a =5H -----~ N
N a) = 25 -e----- ' \\\
1 ) ] 1 0 ] . ] : )
0 0.01 0.02 0.03 0 0.01 0.02 0.03

FIG. 4. Evolution of the squared radil®(t) of the circular

grain fora,=1 and three values ;. FIG. 5. Evolution of the orientatiofi(t) of the circular grain for

the same three values af .

(e.g.,25),.the energy of the grain boundary as a function offace limit, and find that the mobility functioR must diverge
the misorientation has a cusp, while its mobility has a sharfas 1k in the interior of the grain to ensure that the rotation
peak. Grains whose initial misorientation is close to a speciatate is finite in this limit. We explain this mathematical re-

value rotate toward that special misorientation. quirement by noting that the singular term in the free energy
results in infinitely fast diffusion in the interior of a grain.
VIIl. DISCUSSION Therefore, the mobility functiof® must compensate for that

fact. We suggest a choid@which results in a finite rotation

In this paper we analyze a modified version of the phaseate.
field model of KWC[6]. This model is constructed to de- For a plausible choice of model functions, motivated by
scribe rotation of crystalline grains coupled to the motion ofthe physics of low angle grain boundaries, we derive and
grain boundaries. The order parametereflects the local solve equations describing a circular grain embedded in a
crystal orientation, whereag represents local crystalline or- matrix. We find that, as expected, when the scaled coefficient
der. The Ginzburg-Landau free energy depends onl¥én S of the |V 4| term in the free energy is large, rotation is fast,
and is therefore invariant under rotations. Inclusion of theso that the radius of the grain does not change much by the
nonanalytic|V 4| term into the free energy results in singular time the grain rotates into coincidence with the matrix. When
gradient flow equations. However, this singularity can bés is small, rotation becomes important only when the radius
dealt with in a systematic way. is significantly reduced.

Quite generally, solutions to the model represent a collec- We conclude by remarking that the model may be readily
tion of regions of uniformg—grains—connected by narrow generalized in a variety of ways. We may extend the model
(or ordere) internal layers—grain boundaries. We are able toto three dimensions, by constructing an appropriate tensor
calculate the velocity of the boundaries in the limit of van- order parameter which reflects the symmetries of the lattice.
ishing interface thickness, and find that it is proportional toAnisotropy may be included by allowing the coefficient of
the product of surface energy, curvature of the interface, anthe |V 5| term to depend oV 6. Alternatively, the mobility
a mobility which depends on model parameters. The behawunctions may be made anisotropic to yield kinetics which
ior of the interfacial width, energy, and mobility in the limit depend on the orientation of the boundary region. Overall,
of the small misorientation is controlled by the behavior ofthis model will provide a foundation for a physical, yet still
the model couplings neaj=1. relatively mathematically simple, model of grain boundary

We calculate the rate of grain rotation in the sharp inter-evolution and grain rotation.
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