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Sharp interface limit of a phase-field model of crystal grains
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National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899

~Received 7 December 2000; published 24 April 2001!

We analyze a two-dimensional phase field model designed to describe the dynamics of crystalline grains.
The phenomenological free energy is a functional of two order parameters. The first one reflects the orienta-
tional order, while the second reflects the predominantally local orientation of the crystal. We consider the
gradient flow of this free energy. Solutions can be interpreted as ensembles of grains~in which the orientation
is constant in space! separated by grain boundaries. We study the dynamics of the boundaries as well as the
rotation of the grains. In the limit of an infinitely sharp interface, the normal velocity of the boundary is
proportional to both its curvature and its energy. We obtain explicit formulas for the interfacial energy and
mobility, and study their behavior in the limit of a small misorientation. We calculate the rate of rotation of a
grain in the sharp interface limit, and find that it depends sensitively on the choice of the model.
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I. INTRODUCTION

The characterization and evolution of microstructu
forms a cornerstone of materials science. In particular,
grain structure of a polycrystalline material determines ma
of its properties. Recent efforts at modeling the evolution
grain boundaries have used a variety of approaches@1–4#.
Herein we focus on the recently introduced phase field mo
of Kobayashi, Warren, and Carter~KWC! @5# which is based
on earlier attempts by the same authors@6,7#. Phase field
models have been applied to the problem of solidificati
with great success@8–10#, but only recently to the problem
of grain boundaries. In general, phase field methods cont
to show promise in many areas of pattern formation, as t
obviate the need to track the interface.

The model is motivated by symmetry principles, and ha
surprisingly rich set of physical characteristics. In particul
KWC showed numerically that solutions to this model can
interpreted as a collection of grains. The velocity of the
terface between the grains was found to be approxima
proportional to the local curvature of the interface, but t
grains were also able to rotate toward lower energy mis
entations. In support of the notion of grain rotation, thr
independent unpublished molecular dynamics studies by
manyu and Srolovitz, Phillpot and Wolf, and Srinivasan a
Cahn, suggested that grain rotation will occur under cer
circumstances. In addition, there is a substantial history~and
debate! concerning the mechanisms@11–13# and observation
of grain rotation@14,15#.

The KWC phase field model is mathematically challen
ing because of a singular term in the free energy. Kobaya
and Giga@16# studied similar singular models, and show
that there is a way to handle the singularity consistently
this paper we will apply their method to the KWC mode
and show that its solutions can indeed be interpreted
grains separated by grain boundaries.

Grain boundaries in a polycrystalline material are narr
compared to the grain size. Therefore, conventionally, gr
boundaries are described by sharp interface models@17#, in
which the boundaries are treated as two-dimensional
faces. Typically, in these models, a boundary is character
1063-651X/2001/63~5!/051605~10!/$20.00 63 0516
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by an energy and a mobility. These quantities may depend
the misorientation of the adjacent grains and the inclinat
of the boundary. We should note that one of the origin
motivations of phase field modeling was the idea that a
fuse interface regularizes the inherently singular nature of
sharp interface models@8#. However, in order to make con
tact with these sharp interface models, it is often usefu
consider the converse: how do diffuse interface models
have in the sharp interface limit?

Thus the main goal of this paper is to analytically obta
the energy and mobility of a grain boundary, as well as
rotation rate of a grain within the KWC model. We accom
plish this task by considering a limit of the model paramet
in which the width of the boundary vanishes, while its me
surable characteristics remain finite and nonzero. The m
odology of this so called sharp interface limit is well esta
lished @18–20#. There exist cases, such as propagation
fronts into linearly unstable media, for which this procedu
is not well defined@21#. However, as will become clear be
low, the motion of grain boundaries in our model is an e
ample of a front with exponential relaxation, and thus we
not anticipate any difficulties of the sort discussed in R
@21#.

This paper is organized as follows. In Sec. II we introdu
the order parameters, phenomenological free energy,
gradient flow equations. We next perform a form
asymptotic expansion of the model in Sec. III. The zero
order problem of this expansion is discussed in Sec.
where we obtain the profile and the energy of the static
boundary. In Sec. V, the first order asymptotics are exa
ined. We are able to determine the velocity of a curved gr
boundary. We find that this velocity is proportional to bo
the curvature and the interfacial energy, and we obtain
expression for the mobility of the interface. As noted abo
grains can rotate in this model. We calculate the rate of
tation of a grain in Sec. VI. Finally, in Sec. VII, we apply a
of the results described herein to the simple case of a circ
grain embedded in a matrix. In conclusion, we discuss f
ther ideas, and the implications of this phase field model
the problem of coarsening in polycrystals in Sec. VIII.
©2001 The American Physical Society05-1
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II. MODEL

We model the evolution of a collection of nearly perfe
crystalline grains in two dimensions via a phase field mod
First we discuss order parameters which capture the mi
scopic physics of grain boundaries. It is then possible
construct a phenomenological free energy which favor
perfect uniform crystal. The structure of the solutions of t
gradient flow of this free energy can then be interpreted a
evolving ensemble of grains.

Following Ref.@5#, we develop two order parameters. T
distinguish grains of different orientations, we introduce
continuously varying local orientationu. Since the energy o
crystal does not depend onu itself, the phenomenologica
free energy will be a functional of the gradients ofu only.
The second order parameterh is used to differentiate the
nearly perfect crystal in the interior of the grains from t
disordered material in the grain boundary. It varies from p
fect orderh51 to complete disorderh50. Both order pa-
rameters are not conserved.

We analyze the free energy~based on KWC!

F@h,u#5
1

e EV
dAFa2

2
u“hu21 f ~h!1g~h!s

3u“uu1h~h!
e2

2
u“uu2G , ~1!

wherea, e, ands are positive model parameters. Some re
ers may find the overall prefactor of 1/e suggestive. Subse
quently we will examine the limite→0. This prefactor en-
sures that the surface energy of a grain boundary tends
non zero constant.

Term by term, the above free energy deserves some
cussion, although the reader interested in the full motivat
of this model is referred to Ref.@5#. The first term describes
the penalty for gradients in the order parameter~grain bound-
aries cost energy!. The free energy densityf (h) is chosen to
be a single well, with the minimum ath51 and f (1)50
reflecting the fact that disordered material has higher f
energy. The third and fourth terms are an expansion inu“uu,
where the couplingsg(h) and h(h) must be positive defi-
nite. KWC argued that the expansion inu“uu must begin at
first order to assure the existence of stable grain bounda
This term yields a singularity in the dynamic equations.

Indeed, Ref.@5# omitted theu“uu2 term in their analytical
investigation of a stationary flat interface. This term w
added in Ref.@6#, for practical reasons, in order to solve th
model numerically. We shall see that this term makes
qualitative difference in the properties of static grain boun
aries. However, as shown in Sec. V A, the mobility of a gra
boundary vanishes ash1/2 when in theh→0 limit. Thus the
extra term introduced by KWC seems to berequired for
grain boundaries to move.

Assuming relaxational dynamics for a nonconserved
of order parameters, we find the gradient flow equations
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Q~h,“u!th

]h

]t
52e

dF
dh

5a2¹2h2 f h2ghsu“uu

2hh

e2

2
u“uu2, ~2a!

P~h,“u!tuh2
]u

]t
52e

dF
du

5“•Fhe2
“u1gs

“u

u“uuG , ~2b!

where we use the subscripts to denote differentiation exc
for the time constantsth andtu . The mobility functionsP
and Q must be positive definite, continuous at“u50, but
are otherwise unrestricted. System~2! must be supplemente
by initial and boundary conditions, and a rule that specifi
the handling of the indeterminacy of the term“u/u“uu. This
particular type of the singularity is generally handled in
theory of extended gradients. Reference@16# proves that
there is indeed a unique way to prescribe the value of
right hand side of Eq.~2b! when“u50. While we do not
wish to attempt to explain all of the details of Ref.@16#, it is
useful to summarize the ultimate conclusion of the ma
ematical analysis.

Thus let us define a collection$Gi% of distinct connected
regions where“u50. We shall refer toGi as the interior of
grain i. The essence of the method of dealing with the s
gularity is that the orientationu must remain uniform in
space in eachGi . Therefore, the right hand side of Eq.~2b!
is chosen in to be uniform inGi . This condition, along with
the requirement thath, u, and “u be continuous at the
boundaries ofGi , uniquely determines the rotation rate
each grain~i.e., ]u/]t in each Gi! and the motion of its
boundaries.

The above decomposition of the system into grains a
grain boundaries immediately allows us to consider the ro
tion of these grains and the dynamics of their boundar
This decomposition is nontrivial, and is a direct conseque
of the structure of the solution and our interpretation of gr
boundaries as the regions where“u is nonzero. Even though
kinematicly, grain rotation and grain boundary migration c
be distinguished, both are manifestations of the evolut
equations~2!, and both are driven from the regions of no
zero gradient in the lattice orientation.

Reference@22# verifies numerically that typical solution
of the gradient flow system@Eq. ~2!# indeed consist of a
collection of connected regionsGi in which “u50 andh
'1 ~grain interiors! separated by narrow regions~grain
boundaries! in which the orientationu changes smoothly be
tween the neighboring grains. Thus, the grains rotate~u
changes in time uniformly in each grain!, and grain bound-
aries migrate~see Fig. 1, adopted from Ref.@22#!.

III. FORMAL ASYMPTOTICS

Having elucidated the general properties of the model,
now examine the sharp-interface limit, in order to extract
physical quantities from our phase field model. As discus
earlier, solutions to the extended gradient flow system@Eqs.
~2!# consist of grains in which“u50 separated by a net
work grain boundaries in which“uÞ0. Although no rigor-
5-2
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SHARP INTERFACE LIMIT OF A PHASE-FIELD . . . PHYSICAL REVIEW E63 051605
ous proof of the inevitability of this solution structure exis
there are two plausibility arguments. First, once this struct
develops, one can show that it will persist@16#. And second,
such a solution can be explicitly found for a flat stationa
interface between two grains shown schematically in Fig
This case corresponds to the zeroth order of the for
asymptotic expansion, as we show in what follows.

Figure 2 is highly suggestive. We have a bicyrstalli
system with a localized region where properties change~i.e.,
the grain boundary!. Let us therefore consider thee→0 limit
of the gradient flow system~2!. We expect the width of the
grain boundary region to shrink to zero. In order that
obtain a more intuitive feel for precisely how the bounda
region shrinks to zero width, it is useful to perform a heur
tic analysis of the free energy. According to the argument
Ref. @23#, the width of the region of significant change inh
is set by the competition of the first and second terms in
free energy @Eq. ~1!#. Specifically, this width scales a
a/Af hh. The width of the region, defined by“uÞ0, is set
by the competition of the third and fourth terms in the fr
energy. In this case the width scales likee2Du/s, whereDu
is the jump inu across the interface~see Fig. 2!. As dis-
cussed below, the scaling ofa ands are chosen to ensure th
both of these widths scale likeO(e) in the e→0 limit.

We employ the standard method of matched asympto
@20#, which uses the small ratio of the interface width to
radius of curvature as an expansion parameter. In this li

FIG. 1. Two-dimensional simulation of Eqs.~2! with simple
choices for the couplings. The orientationu is constant in the
shaded grain regions. The shades of gray are used to represe
value ofu.

FIG. 2. A schematic representation of the solution for a
static interface between two grains.z is the coordinate normal to th
interface.
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all functions and their derivatives vary slowly along the i
terface compared to their variation across the interface.
analysis can therefore be advanced by defining a coordi
normal to the interface, and scaling it bye. The order param-
eters as functions of this new coordinate are termed the in
solution. They are expanded into a power series ine, and the
resulting hierarchy of equations is solved order by ord
subject to a matching condition with the outer solution. Th
outer solution, obtained by settinge to zero, is valid far away
from the interface.

The mathematics of the sharp interface limit of our mod
is atypical because the fieldsh andu obey two different sets
of equations@16#. Equations~2! hold in the grain boundary
region which is defined as a stripSbetween two smooth non
intersecting curvesG1

e (t) and G2
e (t) ~see Fig. 3!. Outside

this strip,“u50 and

Qtn

]h

]t
5a2¹2h2 f h . ~3!

Following Ref. @24#, let us adopt curvilinear orthogona
coordinate system$r (x,y,t),s(x,y,t)%. Let r (x,y,t) be the
distance of the point~x,y! in S from G2

e . On G2
e , coordinate

s is the arc length. We introduce a scaled variablez5r /e,
and expandh andu in a formal power series ine:

h~z,s,t !5h0~z,s,t !1eh1~z,s,t !1¯ , ~4a!

u~z,s,t !5u0~z,s,t !1eu1~z,s,t !1¯ . ~4b!

This expansion is valid inSand its immediate neighborhood
Also @20#,

“5n̂
1

e

]

]z
1 t̂

]

]s
, ~5a!

¹25
1

e2

]2

]z2 1
k

e

]

]z
1O~1!, ~5b!

]

]t
52

v
e

]

]z
1O~1!, ~5c!

wheren̂ is the unit vector normal toG2
e pointing towardS ~z

increases in the direction ofn̂!, and t̂'n̂ is the unit vector
along the lines of constantr. The curvaturek5¹2r is posi-
tive whenn̂ points away from the center of curvature ofG2

e .
The normal velocityv52]r /]t is positive when the inter-
face moves in the direction ofn̂. This configuration is shown
in Fig. 3.

the

t

FIG. 3. The regionS between the curvesG2
e andG1

e in which
“uÞ0.
5-3
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In order to proceed, we must fix the scaling ofa, s, th ,
andtu in the sharp interface limit. We select the scaling f
which ~1! a flat interface does not move, and~2! all terms in
the free energy@Eq. ~1!# scale with the same power ofe. We
also assume that the mobility functionsP andQ are indepen-
dent of e in the sharp interface limit~P need only be inde-
pendent ofe in the grain boundary!. These conditions fix

a5eã, s5e s̃, th5e2t̃h , tu5e2t̃u . ~6!

The final ingredient of the formal asymptotic analysis
the matching of the inner and outer solutions. The inner
lution is found separately in the grain boundaryS(“uÞ0)
and in its immediate neighborhood (“u50). The inner so-
lution valid in S is denoted byh(z,s,t) andu(z,s,t) with-
out superscripts. The piece of the inner solution valid in
interior of a grain just outside ofS is denoted by
h ( i )(z,s,t) andu ( i )(z,s,t). It is matched with the outer so
lution h51 andu5const forz→`. We must also match the
two pieces of the inner solution and their derivatives at
boundariesG6

e of the stripS, which are atz5z6 .

IV. ZEROTH ORDER SOLUTIONS: INTERFACE WIDTH
AND ENERGY

Now, having detailed the formal method of asympto
expansion, we proceed to examine the results of this exp
sion term by term. We begin, naturally enough, with t
zeroth order. The ultimate result of the zeroth order calcu
tion with be a determination of~i! the interface width,~ii ! the
surface energy, and~iii ! the value of the order parameterh in
grain boundary.

Without loss of generality we can shift the origin ofz so
that it is in the middle ofS, z656(z01ez11¯). We first
look at the grain interior regionz.z1 . Substituting the scal-
ing ansatz@Eq. ~6!# and thee expansion@Eq. ~4!# into Eq.
~2!, and using Eq.~5!, we obtain

05ã2~h0
~ i !!92 f h~h0

~ i !!, ~u0
~ i !!850. ~7!

These solutions must be matched with the outer soluti
h51 andu5u1 , asz→1`. Since the zeroth order func
tions h0 and u0 are independent ofs, the coordinate along
the interface, and timet, they describe a flat stationary inte
face. They should therefore be symmetric with respect to
center of the boundaryz50. We can thus setu15Du/2, half
the total misorientation~which is in general a function o
time!. Using the fact thatf (1)50, we arrive at

~h0
~ i !!85

A2 f ~h0
~ i !!

ã
, u0

~ i !5
Du

2
. ~8!

After similar manipulations we obtain the equations va
in S for zP@2z1 ,z1#:

05ã2h092 f h~h0!2 1
2 hh~h0!~u08!22 s̃gh~h0!u08 , ~9a!

05@h~h0!u081 s̃g~h0!#8. ~9b!
05160
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Note that we assumed thatu8.0 in S. This assumption
proves to be unrestrictive, since all measurable quanti
depend on the square of this derivative.

To obtain the boundary conditions forh0 and u0 , we
employ two ideas. First, due to the aforementioned symm
try, h0 is even andu0 is odd inz. Second, the requiremen
thath, u, and their derivatives be continuous atz5z1 can be
shown to lead to the continuity of all terms in thee expan-
sion @Eq. ~4!# at z5z0 . We thus obtain

h08~0!50, h08~z0!5
A2 f ~hmax!

ã
, ~10!

u0~0!50, u0~z0!5
Du

2
, u08~z0!50, ~11!

wherehmax[h0(z0). Let us also introducehmin[h0(0). This
designation reflects our assumption thath08.0 in zP@0,z0#
so that hmin<h<hmax. We can prove that, in particula
cases, this assumption is indeed justified.

Using the last boundary condition, we integrate Eq.~9b!
to obtain

u085 s̃
g~hmax!2g~h0!

h~h0!
. ~12!

Upon substitution of this expression into Eq.~9a!, we dis-
cover thath08 is an integrating factor. Using the second co
dition in Eq. ~10! we obtain

h085
1

ã F2 f 2 s̃2
@g~hmax!2g#2

h G1/2

. ~13!

The first condition in Eq.~10! furnishes the relation betwee
hmin andhmax:

g~hmax!5g~hmin!1
A2 f ~hmin!h~hmin!

s̃
. ~14!

Armed with this condition, we can obtain an equation f
hmin via

Du

2
5E

0

z0
dzu085ã s̃E

hmin

hmax
dh

g~hmax!2g

hA2 f 2 s̃2@g~hmax!2g#2/h
,

~15!

where we took advantage of the monotonicity ofh0 . Once
hmin is found, we can calculate the width of the boundary

z05ãE
hmin

hmax dh

A2 f 2 s̃2@g~hmax!2g#2/h
, ~16!

and the interfacial energy
5-4
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SHARP INTERFACE LIMIT OF A PHASE-FIELD . . . PHYSICAL REVIEW E63 051605
g5 s̃Dug~hmax!12ãE
hmax

1

dhA2 f

12ãE
hmin

hmax
dhA2 f 2 s̃2@g~hmax!2g#2/h. ~17!

These formulas reduce the flat boundary problem to qua
tures. We are able to computehmin andhmax from Eqs.~14!
and ~15!, the interface width from Eq.~16!, and the surface
energy from Eq.~17!.

As useful as these expressions are, insight can be b
obtained from analytical expressions, since the above
equations must typically be solved numerically. Thus let
examine the behavior of the zeroth order solution in cert
limits in which an approximate solution can be found. T
integral on the right hand side of Eq.~15! can be calculated
approximately when it is small. We identify two such situ
tions.

A. Small h approximation to the zeroth order solution

To make contact with Ref.@5#, in which theu“uu2 term in
the free energy is set to zero, we consider a limit in which
coefficient vanishesh→0. Expanding Eq.~14! in powers of
h we obtain, to lowest order,

hmax2hmin'
A2 f minhmin

s̃gh
min [G!1, ~18!

where f min[f(hmin), etc. Thus, ash→0, the difference be-
tweenhmin andhmax vanishes, while they remain well sep
rated from 1. Therefore,f, g, andh and their derivatives are
regular at the undistinguished pointhmin,1.

Let us define an auxiliary parametery via h5hmin1Gy,
and expand Eq.~15! in powers ofG. We obtain

Du

2
'

ã

s

A2 f min

gh
min E

0

1

dy
12y

Ay~22y!
5

ã

s̃

A2 f min

gh
min . ~19!

One could in principle now invert Eq.~19! to solve forhmin .
The width of the boundaryz0 can be then found with the
same accuracy:

z0'
p

2

ã

s̃

Ahmin

gh
min →0. ~20!

The interfacial energy is, in this same approximation,

g' s̃gminDu12ãE
hmax

1

dhA2 f . ~21!

For a special case examined in Ref.@5#, f 5 1
2 (12h)2,

g5h2, andh50, and Eq.~19! is easily invertible. Indeed
the expressions forhmin and g coincide with those of Ref.
@5#.

We finally remark that within this approximation, the b
havior of g and z0 in the limit of small misorientationDu
depends on the properties ofg andh nearh51. To see why
this is true, let us look at Eq.~19! in the limit of smallDu.
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Unlessgh is singular at some value ofh other than 1~un-
physical!, small Du implies small 12hmin since f (1)50.
We shall see in Sec. IV B that it is true in general. This fa
is not surprising, since small angle boundaries can
thought of as arrays of distant dislocations.

B. Small Du approximation to the zeroth order solution

All parameters being fixed, the right hand side of Eq.~15!
can be small if and only if

r[hmax2hmin!1. ~22!

Since f (1)50, it is clear from Eq.~14! that

l[12hmin!1. ~23!

Also, since we chosef (1)50, we can approximate it by a
parabolaf (h)' 1

2 f hh(1)(12h)2 nearh51. Then

rgh
min'l

Af hh~1!hmin

s̃
. ~24!

If the behavior ofg andh nearh51 is known, we can obtain
a complete solution to the zeroth order problem in this lim
Instead, let us focus on the scaling of the interface widthz0
and the interfacial energyg in theDu→0 limit. This scaling
can be deduced without a complete solution of the zer
order problem.

Suppose that, nearh51 (0,l!1),

gh
min;lb, hmin;l2v. ~25!

Then, from Eq.~24!, we obtain

r;l11v2b. ~26!

Note that, sincer,l by definition, the scaling exponent i
Eq. ~26! must be greater than or equal to 1. This means t
in this limit, the zeroth order solution exists only whenv
>b.

To determine the scaling of the right hand side of E
~15!, we define a finite integration variableyP@0,1# via h
2hmin5ry. Then

dh;r;l11v2b, ~27a!

g~hmax!2g

h
;r

gh
min

hmin;l12v, ~27b!

2 f 2 s̃2
@g~hmax!2g#2

h

5
1

h
@~2 f h22 f minhmin!12s̃~g2gmin!

3A2 f minhmin2 s̃2~g2gmin!2#;l21b2v. ~27c!

We used the fact thatv>b to establish that the second ter
in the square brackets of Eq.~27c! dominates~when v5b
5-5
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ALEXANDER E. LOBKOVSKY AND JAMES A. WARREN PHYSICAL REVIEW E63 051605
all three terms in these square brackets are equally im
tant!. Substituting scaling relations~27! into Eq. ~15!, we
obtain

Du;l11@~v2b!/2#. ~28!

We are now ready to calculate the behavior ofz0 and g in
the Du→0 limit. Substituting the scaling relations~27! into
Eq. ~16!, we obtain

z0;l3/2~v2b!;~Du!@3~v2b!#/~21v2b!. ~29!

The interfacial energy consists of three piecesg5g11g2
1g3 , which scale differently withDu. We list them sepa-
rately:

g152ãE
hmin

hmax
dhA2 f 2 s̃2@g~hmax!2g#2/h;l21~3/2!~v2b!,

~30a!

g252ãE
hmax

1

dhA2 f ;l2;~Du!4/~21v2b!, ~30b!

g35 s̃Dug~hmax!;gminDu. ~30c!

We can make several observations. First, sincev>b,g2 al-
ways dominatesg1 in the Du→0 limit. Second, whenb,
21 we can integrate Eq.~25! to obtaingmin;l11b. When
b521, in a similar fashion we obtaingmin;ln l. For b.
21 the behavior ofg nearh51 is arbitrary. Thus the scal
ing of the interfacial energy~whether it is dominated byg2
or g3! in the limit of the small misorientation can be free
controlled by adjusting the behavior ofg andh nearh51.

V. FIRST ORDER SOLUTIONS: INTERFACE MOBILITY

Having completed our analysis of the zeroth order in
asymptotic expansion, we now continue on to first ord
This order in the expansion will yield the velocity of th
interface as a function of geometry, mobilitiesP andQ, and
surface energy. From classical as well as order param
models, we expect this motion to be by curvature@25#, and,
as we show below, this is indeed the case.

To begin, in order for us to establish the matching con
tions between the two pieces of the first order solution, le
look at the equation forh1

( i ) valid in z.z1 :

2@v t̃hQ1ã2k#~h0
~ i !!85ã2~h1

~ i !!92h1
~ i ! f hh~h0

~ i !!. ~31!

Progress can be made by noting thath1
( i )5(h0

( i ))8 is a solu-
tion of Eq.~31!, with the left hand side set to 0. We can ta
advantage of this fact by multiplying Eq.~31! by (h0

( i ))8 ,
and integrating over the grain interior. Using the match
condition with the outer solution, which states that all deriv
tives vanish asz→`, we obtain
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ã2@~h1
~ i !!8~h0

~ i !!82h1
~ i !~h0

~ i !!9#z5z1

5E
z1

`

dz@v t̃hQ1ã2k#@~h0
~ i !!8#2. ~32!

As we mentioned above, all orders of thee expansion and
their derivatives must be continuous atz1 or, equivalently,
at z0 . Consequently, we may drop the~i! superscript from
the expression on the left hand side of Eq.~32!. This condi-
tion will suffice to seth1 at z5z0 . We will not need the
boundary condition foru1 at z5z0 .

Turning our attention to the boundary regionzP@0,z0#,
we write down the first order equations

2v t̃hQh085ã2~h191kh08!2 f hhh12
hhh

2
h1~u08!2

2hhu08u182 s̃ghhh1u082 s̃ghu18 , ~33a!

2v t̃uh0
2Pu085 s̃kg1khu081@hu181hhh1u081 s̃ghh1#8,

~33b!

where we used the fact that“•@“u/u“uu#5k. The cou-
plings f, g, andh, and their derivatives, andQ andP in Eqs.
~33! are evaluated at the zeroth order solution.

We can fix the boundary conditions atz50 for the first
order functions by noting thath1 is odd whileu1 is even in
z. Therefore,

h1~0!50, u18~0!50. ~34!

Using the second condition we integrate Eq.~33b! to obtain

h~h0!u1852@hh~h0!u01 s̃gh~h0!#h1

2E
0

z

dz8@v t̃uP~h0 ,n̂u08!h0
2u08

2 s̃kg~h0!2kh~h0!u08#. ~35!

Upon substitution of this expression into Eq.~33a!, we ob-
tain an equation forh1 of the form

L@h1#[ã2h191C~h0 ,u0!h15D~h0 ,u0!, ~36!

where

D~h0 ,u0!52h08~v t̃hQ1k!2
hhu081 s̃gh

h

3E
0

z

dz8@v t̃uPh0
2u081k~hu081 s̃g!#. ~37!

The exact form ofC is unimportant, since we can show b
direct substitution that~as in a conventional asymptotic ex
pansion problem! L@h08#50. This fact can be utilized to ob
tain a solvability condition which determines the velocity
the interfacev. Multiplying Eq. ~36! by h08 , and integrating
over @0,z0#, we obtain
5-6
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ã2@h08h182h09h1#0
z0

5ã2@~h1
~ i !!8~h0

~ i !!82h1
~ i !~h0

~ i !!9#z5z0

5E
z0

`

dz@v t̃hQ1ã2k#@~h0
~ i !!8#2

52E
0

z0
dz@v t̃hQ1ã2k#~h08!2

2E
0

z0
dz u08@v t̃uPh0

2u081k~hu081 s̃g!#. ~38!

Solving for the interface velocityv, and using Eqs.~12!,
~13!, and~17!, yields

v52kgM. ~39!

As expected,v is proportional to both the curvature and th
energy of the interface. The mobility is given by

1

M 5 t̃hE
0

`

dz Q~h0 ,n̂u08!~h08!2

1 t̃uE
0

`

dz P~h0 ,n̂u08!h0
2~u08!2. ~40!

We dropped the superscript~i!, since it is clear that solution
which are valid in the grain interior should be used in E
~40! for z.z0 .

Just as in a conventional formal asymptotic analysis,
obtained the normal velocity of the interface without havi
to solve the first order equations. This is a general featur
analyses of this kind, and allows one to express the mob
of the interface in terms of the properties of a station
interface. To better understand the behavior of the interf
mobility M, let us apply the approximations of Secs. IV
and IV B to Eq.~40!.

A. Mobility in the small h limit

To illustrate the importance of theu“uu2 term in the free
energy for the motion of boundaries, let us again consider
limit in which its coefficienth vanishes. The second term
Eq. ~40! dominates in this limit. Assuming for the sake of th
argument thatP does not depend on“u, we obtain

1

M'
pt̃uã

2s̃

Pminhmin
2 f min

gh
minAhmin

→`. ~41!

The mobility of the grain boundary therefore vanishes ash1/2

in this limit, in support of our claim that theu“uu2 term is
required for migration of boundaries.

B. Mobility in the small Du limit

It is instructive to trace the behavior of the interface m
bility in the limit of vanishing misorientation. For simplicity
we assume here that the mobility functionsP and Q are
regular, and assume a nonzero value ath51 and“u50.
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Using Eq. ~27!, we obtain the scaling of the three piec
which make up the right hand side of Eq.~40!:

E
0

z0
dz Q~h08!2;l21v2b, ~42a!

E
z0

`

dz Q~h08!2;l21@~b2v!/2#, ~42b!

E
0

z0
dz Ph0

2~u08!2;l22@~v13b!/2#. ~42c!

Equation~28! can now be used to determine the behavior
M in the Du→0 limit. We obtain

1

M;H ~Du!~42v23b!/~21v2b!, b.0

~Du!~42v1b!/~21v2b!, b<0.
~43!

To illustrate, if g and h are regular ath51 so thatv5b
50, our analysis yieldsg;Du, while M21;(Du)2, so that
the interface velocity diverges in the limit of vanishing mi
orientationv;(Du)21.

VI. GRAIN ROTATION

As we discussed above, this model also allows for
grains to rotate. Let us consider a fully developed gr
structure. In the sharp interface limit, the solution consists
a set of regionsGi of spatially uniformu ~grains! separated
by narrow ~or order e! grain boundaries. To calculate th
rotation rateV i of grain i, we integrate Eq.~2b! over the
grain interiorGi . We obtain

V ituE
Gi

dA h2P~h,0!5s R
]Gi

ds g~h!n̂•F “u

u“uuG
's(

j
z i j g~hmax

i j !sgn~Du i j !. ~44!

Here z i j is the length of the common boundary betwe
grainsi and j. The summation is over the neighboring grai
j of orientationu j . In integrating by parts, we used the co
tinuity of b[“u/u“uu at the edge of the grain@16#. In the
grain boundaryS, b is a unit vector in the direction of in-
creasing u. Thus, away from a triple junction,b
5n̂i j sgn(Duij) on both edgesG6

e of the boundary between
grainsi andj. The unit normaln̂i j points from graini to grain
j. The periodicity ofu must be taken into account to calcula
sgn(Duij).

Let us examine the scaling of the rotation rateV i in the
sharp interface limit. The right hand side of Eq.~44! scales
as e. For V i to be finite and nonzero in the sharp interfa
limit, the left hand side

tuE
Gi

dA h2P~h,0!, ~45!

must also scale likee. Recall thath is exponentially close to
1 in all of Gi except a narrow~of order e! strip near the
5-7
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boundary. Therefore, ifP is independent ofe and has neither
a zero nor a singularity ath51, then Eq.~45! is approxi-
mately equal toAi P(1,0), whereAi is the area of thei th
grain. Therefore, in the sharp interface limit,V i;s/tu
;1/e. We therefore reach a conclusion that whenP is regu-
lar at h51, grain rotation dominates grain boundary migr
tion in the sharp interface limit. The reason for this result
that ]u/]t is continuous across the edge of the grain bou
ary. Inside the grain boundary, this time derivative m
scale with the inverse of the grain boundary width 1/e. The
time rate of change of the orientationu in the grain interior
must therefore have the same scaling.

Another way of interpreting the divergence of the rotati
rate in the sharp interface limit is to consider what happ
in the interior of the grain. Since the orientation order para
eter is constrained to remain uniform in space, it may
thought of as obeying a diffusion equation with infinite d
fusivity. It is therefore not surprising that for a gener
choice of the mobility functionP, the rotation rate is of the
same order as the rate of change ofu in the grain boundaries
~fast!.

However, there exist special choices forP which ensure
that the rotation rate does not diverge in the sharp interf
limit. This can be accomplished by letting theP diverge like
1/e in the grain interior.~Relaxing the constraint thatP be
independent ofe in the grain interior does not alter the re
sults of the asymptotic expansion, since the dynamics ofu in
the interior of the grain is slaved to its behavior in the gra
boundary.!

For example, by choosing

P~h,“u!5H 1, “uÞ0

em21@ ln~12h!#m, “u50,
~46!

wheremÞ21, we ensure thatP;1/e, as we show by cal-
culating h0

( i ) below. This choice ofP is plausible. When
material is nearly a perfect crystal~h close to 1!, i.e., there
are few defects, one should expect the rate at which the o
parameters change to vanish.

Integral~45! may be now calculated approximately in th
sharp interface limit. We first calculateh0

( i ) far away from
the boundary, where it is close to 1. Using the approximat
for f ' 1

2 f hh(1)(12h)2, we obtain

12h0
~ i !;expS 2

Af hh~1!

ã
z D . ~47!

Focusing on thee scaling in the sharp interface limit, w
deduce that integral~45! scales as

tuem21E
Gi

dA h2@ ln~12h!#m;Le21mEL/e

zmdz;L21me,

~48!

which, as we desired, is proportional toe. The rotation rate
V i is thus finite in the sharp interface limit.

Another important consequence of this argument is t
since the perimeter of a grain is proportional toL, the right
05160
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hand side of Eq.~44! scales asL, and we can determine th
dependence of the rotation rate of a grain on its perimet

V;
1

L11m . ~49!

This prediction is independent of the choice of other t
model functions. With an appropriate choice ofm, it can be
consistent with the heuristic derivations@15,26# of the rota-
tion rate due to the diffusion of atoms along the grain bou
ary. These studies obtain a 1/L3 or 1/L4 scaling ofV depend-
ing on the mechanism. In a separate study, Martin@12#
assumed that rotation is caused by viscous motion of di
cations, and obtained a rotation rate which was independ
of L.

VII. APPROXIMATE MODEL OF A SINGLE CIRCULAR
GRAIN

To illustrate the predictions of the sharp interface lim
calculation of the preceding sections, we consider a circu
grain of radiusR and orientationu embedded in an immov
able matrix of orientation 0. To make analytical progress,
choose Q51, P52 ln(12h), f 5 1

2 (12h)2, g522h
22 ln(12h), andh51, to ensure a finite rotation rate in th
sharp interface limit and Read-Shockley@27# behavior for
low angle boundaries. We also restrict ourselves to the sm
u approximation. In this limit we can carry out the expansi
in detail, to obtain

g' s̃uS 12 ln
s̃u

ã D , z0'
p

4 S ãu

s̃ D 1/2

,
1

M'
t̃hs̃u

2ã2 .

~50!

Applying the motion by curvature result~39!, we obtain

2RṘ'a1 ln u, ~51!

wherea154ã2/ t̃h . The expression for the rotation rate wit
the radius of the grainR and misorientationu can be ob-
tained via the arguments of Sec. VI. We obtain

u̇'a2

ln u

R2 , ~52!

where a256s̃ã/ t̃u . Solutions to these equations forR(0)
51 and u(0)50.1 are given in Figs. 4 and 5. The rat
a1 /a2 controls the behavior of the solution. When this ra
is small, rotation dominates the dynamics, so that the rad
of the grain is not significantly reduced by the time the gra
rotates into alignment with the matrix. On the other han
when this ratio is large, the evolution of the radius squared
the grain is almost linear in time, as in the case of the mot
by curvature.

Comparison with molecular a dynamics simulation of U
manyu and Srolovitz reveals that our simple model is su
ciently accurate and flexible to predict the behavior of a c
cular grain whose misorientation is near a special val
Upmanyu and Srolovitz found that near a special misori
tation, such that the number of coincident lattice sites is la
5-8
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SHARP INTERFACE LIMIT OF A PHASE-FIELD . . . PHYSICAL REVIEW E63 051605
~e.g.,S5!, the energy of the grain boundary as a function
the misorientation has a cusp, while its mobility has a sh
peak. Grains whose initial misorientation is close to a spe
value rotate toward that special misorientation.

VIII. DISCUSSION

In this paper we analyze a modified version of the ph
field model of KWC @6#. This model is constructed to de
scribe rotation of crystalline grains coupled to the motion
grain boundaries. The order parameteru reflects the local
crystal orientation, whereash represents local crystalline or
der. The Ginzburg-Landau free energy depends only on“u,
and is therefore invariant under rotations. Inclusion of
nonanalyticu“uu term into the free energy results in singul
gradient flow equations. However, this singularity can
dealt with in a systematic way.

Quite generally, solutions to the model represent a col
tion of regions of uniformu—grains—connected by narrow
~or ordere! internal layers—grain boundaries. We are able
calculate the velocity of the boundaries in the limit of va
ishing interface thickness, and find that it is proportional
the product of surface energy, curvature of the interface,
a mobility which depends on model parameters. The beh
ior of the interfacial width, energy, and mobility in the lim
of the small misorientation is controlled by the behavior
the model couplings nearh51.

We calculate the rate of grain rotation in the sharp int

FIG. 4. Evolution of the squared radiusR2(t) of the circular
grain for a251 and three values ofa1 .
v.
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face limit, and find that the mobility functionP must diverge
as 1/e in the interior of the grain to ensure that the rotati
rate is finite in this limit. We explain this mathematical r
quirement by noting that the singular term in the free ene
results in infinitely fast diffusion in the interior of a grain
Therefore, the mobility functionP must compensate for tha
fact. We suggest a choiceP which results in a finite rotation
rate.

For a plausible choice of model functions, motivated
the physics of low angle grain boundaries, we derive a
solve equations describing a circular grain embedded i
matrix. We find that, as expected, when the scaled coeffic
s̃ of the u“uu term in the free energy is large, rotation is fa
so that the radius of the grain does not change much by
time the grain rotates into coincidence with the matrix. Wh
s̃ is small, rotation becomes important only when the rad
is significantly reduced.

We conclude by remarking that the model may be read
generalized in a variety of ways. We may extend the mo
to three dimensions, by constructing an appropriate ten
order parameter which reflects the symmetries of the latt
Anisotropy may be included by allowing the coefficient
the u“hu2 term to depend on“u. Alternatively, the mobility
functions may be made anisotropic to yield kinetics whi
depend on the orientation of the boundary region. Over
this model will provide a foundation for a physical, yet st
relatively mathematically simple, model of grain bounda
evolution and grain rotation.

FIG. 5. Evolution of the orientationu(t) of the circular grain for
the same three values ofa1 .
-
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