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A technique is described by which light-induced gauge potentials allow systems of ultracold neutral atoms
to behave like charged particles in a magnetic field. Here, atoms move in a uniform laser field with a spatially
varying Zeeman shift and experience an effective magnetic field. This technique is applicable for atoms with
two or more internal ground states. Finally, an explicit model of the system using a single-mode two-
dimensional Gross-Pitaevskii equation yields the expected vortex lattice.
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I. INTRODUCTION

Condensed-matter systems are replete with many-body ef-
fects, where the interactions between the innumerable par-
ticles determine the basic physics of the system. Of late,
ultracold atoms have demonstrated a range of basal
condensed-matter systems and effects: Bose-Einstein con-
densation �BEC� �1,2�, Tonks-Girardeau gases �3,4�, the su-
perfluid to Mott-insulator transition �5�, Berezinskii-
Kosterlitz-Thouless physics �6� in bosons, and the crossover
from a Bose condensate to a Bardeen-Cooper-Schrieffer
paired superfluid in fermions �7�. Here, I discuss a technique
for realization of more complicated states where the charge-
neutral atoms behave as charged particles in a magnetic field.

In a magnetic field a two-dimensional �2D� electron gas
�2DEG� can display a range of exotic phenomena, including
the integer quantum Hall effect �IQHE� and fractional quan-
tum Hall effect �FQHE�. The FQHE states are exotic quan-
tum liquids, where the lowest-energy charged excitations are
fractionally charged quasiparticles. While remarkable, ideas
of charge and spin fractionalization are now well established
in modern descriptions of strongly interacting quantum sys-
tems. More recently, exotic—non-Abelian—states useful for
topological quantum computation have been predicted, but
remain experimentally elusive �8�. Still, experimental evi-
dence now strongly supports the existence of fractionally
charged excitations in these systems �9�, but evidence for
their statistics is less conclusive �10,11�.

Systems of ultracold atoms are uniquely positioned to re-
alize topological phases arising in strongly interacting 2D
systems, Fermi and Bose alike. The more exciting FQHE
states are inevitably very delicate and only exist in the clean-
est systems, if at all. As with a 2DEG, the states of the
system can be labeled by the filling factor �=n /�, the ratio
of the 2D particle density n to magnetic flux �=eB /h. When
��1 a 2DEG can display a range of exotic phenomena,
including various FQHE states. The primary challenge is to
engineer a Hamiltonian for which neutral atoms behave as
charged particles in a magnetic field.

This paper describes a procedure for creating light-
induced gauge potentials �12–16�, as a way to create an ef-
fective magnetic field. This work focuses on the adiabatic
eigenstates of atoms in the presence of two optical fields, and
finds that the resulting Hamiltonian can describe charged

particles in a magnetic field. In contrast to earlier proposals,
the requisite spatial inhomogeneity here is provided by an
external magnetic field gradient instead of inhomogeneous
optical fields. This paper first presents explicit results for a
model system with two coupled states, and then generalizes
to the three-level case �relevant to the F=1 manifold of
87Rb�. The effective magnetic field resulting from light-
induced gauge potentials exists in a small spatial region. An
important finding is that coupling between more than two
internal states increases the spatial range over which large
effective fields can be realized.

In second-quantized form, the Hamiltonian for a particle
in a uniform time-independent magnetic field normal to a 2D
plane is

� d2x
�2

2m
�̂†�x���ky −

qAy

�
�2

+ �kx −
qAx

�
�2	�̂�x� , �1�

where �†�x� is the field operator for the creation of a particle
at x, and kx,y =−i�x,y. For real magnetic fields the vector po-
tential has gauge freedom. For example, the Landau-gauge
choice, 
Ax=By ,Ay =0�, gives a uniform magnetic field along
ẑ. This proposal explicitly realizes Eq. �1� in a specific gauge
�the Landau gauge for the geometry discussed below�: a
Hamiltonian where the minimum of the energy-momentum
dispersion relation E�k� becomes asymmetric �17� and is dis-
placed from zero momentum as a function of spatial posi-
tion. The dressed single-particle states are spin and momen-
tum superpositions whose state decomposition depends on
the local value of the effective vector potential A. In this
way, the canonical momentum associated with the Landau
gauge is physically observable by probing the internal-state
decomposition of the adiabatic dressed states. This effective
Landau-gauge vector potential was recently measured by Lin
et al. �18�.

Our approach relies on a collection of bosons with two or
more relevant electronic ground states interacting with two
counterpropagating “Raman” lasers aligned along x̂ that are
detuned from each other by �R, shown in Fig. 1. A small
magnetic field B= �B0+�B�ŷ introduces a linear Zeeman
splitting between the levels; �R=g�BB0, so �=g�B�B is the
detuning from Raman resonance. Here g is the atomic g
factor, and �B is the Bohr magneton. I focus on the limit
when both Raman beams are far detuned from the ground- to
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excited-state transition so there is negligible population in
the excited state, and the Raman beams simply induce a cou-
pling 	 between ground states. As shown below, this set of
coupling fields can lead to effective magnetic fields.

II. TWO-LEVEL SYSTEM

For simplicity, first consider a two-level system with in-
ternal states �+ and �−, where exact solutions, studied in the
context of a three-dimensional �3D� BEC in Ref. �17�, are
readily available. �Physically, these two states might be two
mF levels in the ground-state manifold of an alkali atom, for
example, the F=1 manifold of 87Rb at large enough field that
the quadratic Zeeman effect resolves the three Zeeman sub-
levels.� Since counterpropagating Raman beams aligned
along x̂ couple states differing in kx by 2kr, the recoil mo-
mentum kr=2
 /� and energy Er=�2kr

2 /2m will be taken as
the units of momentum and energy. Here, � is the wave-
length of the nearly degenerate Raman beams, m is the
atomic mass, and the two-photon Raman coupling is 	. In
the frame rotating at �R /h the Raman fields are detuned by
�=g�B�B from resonance, and the atom-light coupling term
in the rotating-wave approximation �RWA� is

Ĥ� =� dy� dkx

2

�	

2
��̂+

†�kx − 2,y��̂−�kx,y� + H.c.�

+
�

2
��̂+

†�kx,y��̂+�kx,y� − �̂−
†�kx,y��−�kx,y��	 .

The notation �̂
†�kx ,y� denotes the creation of a particle with

wave vector kx along x̂ at position y, with =�, and H.c.

indicates the Hermitian conjugate. Also, observe that Ĥ� in-

cludes the Raman detuning terms. In the following analysis
	 and � will be treated as spatially varying functions of y,
but not x.

With absent coupling, the Hamiltonian for particles in two

dimensions is a sum Ĥ= Ĥx+ Ĥy + V̂+ Ĥint. Respectively, these
represent motion along x̂, motion along ŷ, the external po-
tential, and interparticle interactions. When expressed in

terms of the real-space field operators �̂�r�, these terms are

Ĥx =� d2r�


�̂
†�r��− �x

2��̂�r� ,

Ĥy =� d2r�


�̂
†�r��− �y

2��̂�r� ,

V̂ =� d2r�


�̂
†�r�V�r��̂�r� ,

Ĥint =
g2D

2
� d2r �

,�

�̂
†�r��̂�

† �r��̂�r��̂��r� .

The contact interaction for collisions between ultracold at-
oms in three dimensions is set by the 3D s-wave scattering
length as, here assumed to be state independent. Strong con-
finement in one direction yields an effective 2D coupling
constant g2D=�8
�2as /mlHO. lHO is the harmonic-oscillator
length resulting from a strongly confining potential along ẑ, a
one-dimensional �1D� optical lattice, for example �19�. Fi-
nally, V�r� is an external trapping potential, also taken to be
state independent.

This problem is exactly tractable when considering

free motion along x̂, i.e., treating only Ĥx and Ĥ�. The
second-quantized Hamiltonian for these two contributions
can be compactly expressed in terms of the operators


�̂+
†�k̃x ,y� , �̂−

†�k̃x ,y��= 
�̂+
†�k̃x−1,y� , �̂−

†�k̃x+1,y��. Using this

Nambu spinor, H� Ĥx+ Ĥ� reduces to an integral over 2
�2 blocks,

H�k̃x,y� = ��k̃x − 1�2 + �/2 	/2

	/2 �k̃x + 1�2 − �/2
� , �2�

labeled by k̃x and y. The dependence of the two-photon cou-
pling 	 and detuning � on y has been suppressed for nota-
tional clarity. The resulting Hamiltonian density for motion
along x̂ at a fixed y is

H�y� =� dk̃x

2

�
,�

�̂
†�k̃x,y�H,��k̃x,y��̂��k̃x,y� .

For each k̃x, H�k̃x ,y� can be simply diagonalized into spin-
momentum superposition states by the unitary transforma-

tion U�k̃x ,y�H�k̃x ,y�U†�k̃x ,y�. The resulting eigenvalues

E��k̃x ,y�= k̃x
2+1���4k̃x−��2+	2 /2 give the effective

dispersion relations in the dressed basis �̂��k̃�
= �U,��k̃��̂��k̃�. Such states have been extensively studied

FIG. 1. Geometry and level diagram for realization of light-
induced gauge potentials. �a� The panel depicts the two counter-
propagating laser beams with momenta k1 and k2, aligned along +x̂
and −x̂, respectively, and the physical magnetic field along ŷ. �b�
Level diagram for two electronic ground states. �c� Level diagram
for three electronic ground states; a small quadratic Zeeman shift �
of state �2 is not depicted. Additional transitions, relevant for
physical atoms, contribute to the state-independent light shift in this
configuration.

I. B. SPIELMAN PHYSICAL REVIEW A 79, 063613 �2009�

063613-2



in the context of velocity-selective coherent population trap-

ping, and for each k̃ the eigenvectors of H�k̃x� are said to
form a family of states �20�. In terms of the associated real-

space operators �̂��r�, these diagonalized terms of the initial
Hamiltonian are

Ĥx + Ĥ� =� d2r �
=�

�̂�
†�r�E�− i

�

�x
,y��̂��r� . �3�

In analogy with the terms “band” and “crystal momentum”
for particles in a lattice potential, the set of states giving rise
to each dispersion curve will be called a “quasiband,” and

the quantum number k̃x the “quasimomentum.” Here −i�x is

the real-space representation of the quasimomentum k̃x. The
symbol E��−i�x ,y� is a differential operator describing the
dispersion of the dressed eigenstates, just as the operator
Ex�−i�x ,y�= �−i��x−eBy�2 /2m describes quadratic disper-
sion along x̂ of a charged particle in the Landau gauge.

To lowest order in 1 /	 and second order in k̃x, E��k̃x ,y�
can be evocatively expanded:

E� � � 	

	 � 4
�−1�k̃x −

�

4 � 	
�2

+
2 � 	

2
+

�2�4 � 	�
4�4 + 	�2 .

�4�

Atoms in the dressed potential are significantly changed in
three ways: �1� the energies of the dressed state atoms are
shifted by ��=1�	 /2 �the additional energy offset of order
�2 is relevant to trapping�; �2� atoms acquire an effective
mass m� /m=	 / �	�4�; and crucially �3� the center of the
dispersion relation is shifted to eAx /�kr=� / �	�4�. Ax can
depend on y by virtue either of a spatial dependence on 	 �as
in Refs. �12,13�, which focused on the large-	 limit�, or via
��y�=g�B�B�y� as described below. In either case, the ef-
fective Hamiltonian is that of a charged particle in a mag-
netic field expressed in the Landau gauge.

Figure 2 shows the dressed-state dispersion relations from
this model. Panels �a� and �c� show the undressed case �	
=0� for detunings �=0 and 5Er, respectively. Panels �b� and
�d� depict the same detunings, for 	=16Er, where the exact
results �solid line� are displayed along with the approximate
dispersion �dashed line�. Figure 2�b� then shows the strongly
dressed states for large 	, each of which is symmetric about

k̃=0, when detuned as in panel �c�, the dispersion is dis-

placed from k̃=0. When spatially dependent this displace-
ment leads to a nontrivial gauge potential. In the limit of

very small 	 the dressed curve E−�k̃x ,y� forms a double-well
“potential” as a function of kx. In a related Raman-coupled
system, Bose condensation in such double-well potentials
was studied theoretically in Refs. �17,21–23�.

It is also possible to treat this problem in the Born-

Oppenheimer �BO� approximation in which only Ĥ� is di-

agonalized �12–14,24�. In this new eigenbasis, Ĥx has off-
diagonal terms which are taken to be small and ignored in
the BO approximation. Such an assumption is valid only
when 	−1 is small, in which case the BO approximation
yields a dispersion exactly in the form of Eq. �4�, where the

crucial terms are mBO
� /m=1 and eABO /�kR= �� /��2+	2.

These relations converge to those in Eq. �4� for very small
	−1. In contrast, the BO approach fails to yield the correct
physics in the limit of small coupling, for example, never

predicting the double-well structure in E−�k̃x�.

A. Effective fields, trapping, and optimization

The analysis of the Raman coupling lead us to a dressed
dispersion along x̂, and, as shown below, motion along ŷ is
largely unaffected. When the detuning is made to vary lin-
early along ŷ, ��y�=��y, an effective single-particle Hamil-
tonian contains a 2D effective vector potential qA /�kr
�
��y / �4�	� ,0�—the vector potential for a magnetic field
normal to the x̂-ŷ plane expressed in the Landau gauge. The
effective magnetic field is q�z /�kr��� / �4�	�. Figure 3
shows the computed vector potential as a function of detun-
ing �. As expected, the linear approximation discussed above
�dashed line� is only valid for small �. As a consequence the
effective field decreases from its peak value as � increases
�top inset�.

In addition this technique modifies the trapping potential
along ŷ; i.e., it produces an �unwanted� scalar potential in
addition to the vector potential. When the initial potential
V�x ,y� is harmonic with trapping frequencies �x and �y,
the combined potential along ŷ becomes V��y�=m
��y

2+ ���
� �2�y2 /2, where m���

� �2 /2=��2�4�	� /4�4+	�2.
This contribution to the overall trapping potential is not

unlike the centripetal term which appears in a rotating frame
of reference, where an effective magnetic field �rot arises as
well. In the case of a frame rotating with angular frequency
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FIG. 2. �Color online� Each panel pictures the dressed-state dis-
persion relations for a two-level dressed-state atom. The horizontal

axis is quasimomentum k̃x, and the vertical axis is the dressed-state

energy E��k̃x�. The black lines are the exact eigenvalues of Eq. �2�,
and the red dashed lines are the analytic approximation. �a� Bare
potentials �undressed� with Raman beams on resonance; �b� dressed
potentials �	=16Er , �=0Er�; �c� bare potentials �undressed� with
Raman beams off-resonance ��=5Er�; and �d� dressed potentials
with Raman beams off-resonance �	=16Er , �=5Er�.
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	rot, the centripetal term gives rise to a repulsive harmonic
term with frequency �rot=q�rot /2m. In the present case the
scalar trapping frequency can be rewritten in a similar form,
��

� = �q� /2m��4�	�3/2 / �4+	�. The scalar potential may be
attractive or repulsive, and it increases in relative importance
with increasing 	.

The effective field generated is inhomogeneous. However,
for many physical effects in a magnetic field, such as the
Hall effect �quantum and classical�, the filling fraction �, not
the magnetic field, is the most relevant parameter. In the
Thomas-Fermi limit the spatial density n of a BEC decreases
quadratically from the center of a harmonic trap. At lowest
order this can compensate for the decreasing effective field,
leading to an extended region of constant �=hn /e� in the
system’s center �bottom inset of Fig. 3�. This approach is
very well suited for incompressible quantum Hall effect
�QHE� states which will form a shell structure at constant �.
Thus the effective homogeneity is enhanced for a harmoni-
cally trapped gas in the presence of a field. Still, this requires
fine tuning of the system size for every �. In the three-level
case, this fine-tuning restriction is lifted.

B. Additional coupling

The preceding calculation omitted motion along ŷ, inter-

actions, and an external potential: Ĥy, Ĥint, and V̂. These
three complicating terms can be treated easily, starting with

the state-independent trapping potential V̂. The potential can
be expressed in terms of dressed quasimomentum operators
via the relations

V̂ =� dy� dk1dk2

�2
�2 V̄�k1 − k2,y��


�̂
†�k1,y��̂�k2,y�

� � dy� dk̃1dk̃2

�2
�2 V̄�k̃1 − k̃2,y��


�̂�
†�k̃1,y��̂��k̃2,y�

=� d2r�


�̂�
†�r�V�r��̂��r� , �5�

where V̄��kx ,y� is the Fourier transform of the potential
along x̂. The dressed states experience the same state-
independent potential as the initial states. However, the small

off-diagonal terms of U�k̃1 ,y�U†�k̃2 ,y� together with V̄�k1

−k2 ,y� give transition matrix elements 2V̄�k1−k2 ,y��k1
−k2� /	 between dressed states �through second order in
	−1�. In real space this gives a coupling �	−1�xV�x ,y�, sen-
sible because the coupling term results from deviations from
a uniform potential. Since a typical trap is many tens of
wavelengths in extent and ultracold atoms generally have
momenta at or below kr, this coupling term is small, but not
in general negligible.

The term describing motion along ŷ also leads to coupling
terms between dressed states. The argument leading to Eq.

�5� for Ĥy gives

Ĥy � −� d2r�


�̂�
†�r��y

2�̂��r� , �6�

again having made the approximation U�k̃ ,y��y
2U†�k̃ ,y��0.

This gives coupling �2	�−1��y��y���y at lowest order in 	−1.
This term results from a breakdown of a BO approximation

implicit in the diagonalization of Ĥx+ Ĥ� at fixed y leading to

Eq. �3� �Ĥ� depends on y through ��y��. This approximation
is distinct from the BO approximation alluded to earlier

where the coupling Hamiltonian Ĥ� alone was diagonalized
at fixed x and y.

Finally, the arguments given above also show that the

interaction Ĥint leads to a dressed-state-independent interac-
tion with the same g with a state-changing coupling term
proportional to g2D /	 at order 	−1.

Together these allow the construction of the expected
“real-space” Hamiltonian in the basis of localized spin-

superposition states �̂��r�. The nonadiabatic quasiband cou-
pling terms discussed above can be treated perturbatively for
particles in the lowest quasiband. However, transitions for
particles starting in higher quasibands are energetically al-
lowed, and a Fermi’s golden rule argument thus gives rise to
“decay” from all but the lowest-energy dressed state �25�.

Using the standard argument of a single macroscopically
occupied state, the Hamiltonian reduces to the 2D Gross-
Pitaevskii equation �GPE�


�E�− i�x,y� − �y
2� + V�r� + �N − 1�g2D���r��2���r� = ���r� ,

using the x̂ dispersion E�−i�x ,y� which parametrically de-
pends on y from Eq. �3�. Thus one expects the usual forma-
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FIG. 3. Effective vector potential eAx /�kr versus detuning � for
	=16Er. The solid line is the exact result, and the dashed line is the
lowest-order expansion in �. The insets depict predicted quantities
relevant to experiment, computed for 87Rb with a detuning gradient
���y�=900 Hz /�m and �=800 nm Raman lasers. The top inset
shows the effective magnetic field B, indicating the degree of field
inhomogeneity. The bottom inset shows the filling fraction � for a
RTF=37 �m BEC chosen so � is nearly constant near the system’s
center.
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tion of a vortex lattice at small effective fields when the
single-mode approximation is valid.

C. Limitations

Naturally, this technique is not without its limitations.
Foremost among them is the range of possible qAx /�kr
shown in Fig. 3, where 	=16Er: while the linear expansion
�dashed line� is unbounded, the exact vector potential is
bounded by �1. The reason for this is clear. For example,

the hybridized combination of �+, k̃−1 and �−, k̃+1 cannot
give rise to dressed states with minima more positive than

k̃=+1 �where �1 is minimized absent dressing; Fig. 2�c��,
nor can the minima be more negative than k̃=−1.

This limitation does not affect the maximum attainable
field, only the spatial range over which this field exists. Spe-
cifically, a linear gradient in ��y� gives rise to the effective
field �z�y� which is subject to �−�

� q�z�y�dy=2�kr. This sim-
ply states that the vector potential—bounded by ��kr /q—is
the integral of the magnetic field. Note, however, that along x̂
the region of large �z has no spatial bounds.

A second limitation of this technique is the assumption of
strong Raman coupling between the Zeeman split states. In
the alkalis, when the detuning from atomic resonance is large
compared to the excited-state fine structure, the two-photon
Raman coupling for �mF= �1 transitions drops as 	��−2,
not �−1 as for the ac Stark shift. As a result, the balance
between off-resonant scattering and 	 is bounded and cannot
be improved by large detuning. While this is a modest prob-
lem for rubidium �15 nm fine-structure splitting�, it is ex-
tremely important for atoms with smaller fine-structure split-
tings: potassium ��4 nm� and lithium ��0.02 nm�. This
issue can be avoided for the two-level case, by using �mf
=0 transitions, e.g., between ground-state hyperfine mani-
folds in the alkalis.

III. THREE-LEVEL SYSTEM

The range of possible effective vector potentials can be
extended by coupling more states, for example, the mF states
of an F�1 /2 manifold in the linear Zeeman regime. The
calculation follows the two-level example above, except for
the lack of compact closed-form solutions. Additional levels
extend the range of the vector potential from �kr in the
two-level case to �2Fkr for arbitrary F.

For specificity, consider an optically trapped system of
87Rb atoms in the F=1 manifold in a small magnetic field
which splits the three mF levels by g�B�B� �Fig. 1�c��. The
coupling fields can be produced by a pair of far-detuned
counterpropagating lasers �aligned normal to the bias field B�
detuned from each other by �1−�2=g�B�B� /�−�. Laser po-
larizations, �++−� /�2 and 
, allow Raman transitions be-
tween the hyperfine levels when the detuning � from the
excited states is comparable or smaller than the 15 nm
excited-state fine-structure splitting.

As with the two-level case, the 1D Hamiltonian describ-
ing motion parallel to the dressing lasers can be made block

diagonal. The 3�3 blocks H�k̃x� describing the three internal
states of the F=1 manifold are

H�k̃x� = ��k̃x − 2�2 + � 	/2 0

	/2 k̃x
2 + � 	/2

0 	/2 �k̃x + 2�2 − �
� . �7�

In this expression, � is the detuning of the two-photon dress-
ing transition from resonance; � accounts for any quadratic
Zeeman shift; 	 is the two-photon transition matrix element;

and k̃x, in units of the recoil momentum kr, is the atomic

momentum displaced by a state-dependent term k̃x=k−2 for

mF=−1, k̃x=k for mF=0, and k̃x=k+2 for mF=+1. When
	�8�2 the three eigenvalues, denoted by E� and E0, are
approximately

E� � � 	

	 � 8�2
�−1�k̃x −

2�2�

8�2 � 	
�2

+
2�2 � 	

�2
,

E0 � k̃2 + 4. �8�

As with the two-level case, the states associated with eigen-
values E� experience an effective vector potential �Fig. 4�
which can be made position dependent with a spatially vary-
ing detuning � �26�. Again, a magnetic field gradient along ŷ
gives ��y and generates a uniform effective magnetic field
normal to plane spanned by the dressing lasers and real mag-
netic field B.

The resulting magnetic field is inhomogeneous and de-
parts quadratically from its peak value. For experiments re-
quiring constant filling fraction, � can be made approxi-
mately uniform by proper selection of the system’s Thomas-
Fermi radius RTF. Still, some experiments do require a
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FIG. 4. �Color online� Each panel denotes the dressed-state dis-

persion relations E�k̃x� for atoms dressed by counterpropagating

Raman beams. The horizontal axis is quasimomentum k̃x, and the
vertical axis is energy in the RWA. �a� Bare potentials �undressed�
with Raman beams on resonance; �b� dressed potentials �	
=32Er , �=0Er�; �c� bare potentials �undressed� with Raman beams
off-resonance ��=5Er�; and �d� dressed potentials with Raman
beams off-resonance �	=32Er , �=10Er�.
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homogenous effective field. In the lowest-energy quasiband,
the proper choice of ��=4−�2	 /4 �exact� suppresses the
dropoff in the effective magnetic field, leaving terms of order
�4 and higher. �� results from quadratic Zeeman shifts and is
controlled by the bias magnetic field B.� For large enough 	,
���0, corresponding to the physical sign of � in the 87Rb
F=1 manifold. For experiments benefiting from constant �, a
similar analysis shows that the filling fraction can be made
constant to O��4� when ��=3.2−0.204 	 and when the
usual Thomas-Fermi density profile goes to zero at �
=1.00	−8.5. �Figure 5 shows an example of this optimiza-
tion as well.�

Gross-Pitaevskii equation

The arguments leading to the GPE in the two-level case
remain valid here, and the coupling terms remain of the same
order. A numerical solution to the GPE in the low-field re-
gime is shown in Fig. 6. This calculation was performed for
the lowest energy of the three dressed states using the exact
dispersion resulting from the numerical diagonalization of
Eq. �7�. The computation uses 87Rb parameters and the ex-
perimentally realistic 	=16Er. The inset of Fig. 6 depicts a
case with trapping frequencies �x /2
=10 Hz and �y /2

=40 Hz. �The asymmetry of these terms is partially counter-
acted by the effective antitrapping term along ŷ resulting
from the zero offset of the dressed-state dispersion.� The
computed vortex lattice explicitly demonstrates that the ap-
proach described above creates an effective field for neutral
atoms in a nonrotating frame, even when given realistic pa-
rameters. The main panel plots the inverse vortex spacing as
a function of gradient directly obtained from the 2D GPE
solution �symbols�. Overlapping these points is a solid line
depicting the expected vortex spacing at the system’s center
�peak effective field� obtained by direct diagonalization of
Eq. �7�. The dashed line is the approximate expression from
Eq. �8�. The formation of the vortex lattice with the correct
spacing clearly indicates that this technique does give rise to
the expected effective magnetic field.

A counterintuitive reminder of this simulation is that spa-
tially stationary solutions to the dressed-state many-body
problem exist even when the lowest quasiband wave func-
tions intrinsically involve large momentum components and
spin mixtures. To understand this situation we can consider a

more pedestrian example: atoms in an optical lattice. In this
case the system’s single-particle eigenstates—Bloch states—
involve only one spin component but are composed of many
momentum components each separated by 2kr. In the lowest
band of a sinusoidal lattice, the q=0 Bloch state has no
center-of-mass motion. Instead its many momentum compo-
nents combine to produce the spatially periodic density
modulation characteristic of Bloch states. In the present case
of spin-momentum dressed states, the differing momentum
components result neither in center-of-mass motion nor in
density modulations as with an optical lattice. Instead, the
momentum is associated with a spatially modulated spin tex-
ture aligned along x̂. In both cases, states away from local
minima, with nonzero group velocity, do have nonzero me-
chanical momentum. The current case differs from the lattice
analogy in one substantial way: here the analysis was per-
formed in a frame rotating at the frequency difference be-
tween the Raman beams of �R /h. In the rotating frame the
spin texture is static. However, in terms of the bare states the
time-dependent phase factors exp�imF�Rt /�� imply that the
local orientation of spin texture is rapidly varying.

IV. CONCLUSIONS

Neutral atoms in the presence of suitable coupling laser
fields experience effective magnetic fields, and the explicitly
calculated coupling terms between dressed states are negli-
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FIG. 5. The left panel shows the optimized effective fields �,
and the right panel shows the optimized filling fraction �. In each
plot, 	=16Er and the solid curve shows the case optimized for
uniform field ��=−1.657Er� and the dashed curve shows that for
uniform � ��=−0.064�.
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FIG. 6. Inverse vortex spacing versus detuning gradient ���y� in
a three-level system. The displayed symbols are obtained by solving
the GPE for 3D BEC with �3–5��105 in the presence of an effec-
tive magnetic field with a detuning �=0 at the system’s center and
a coupling 	=16Er. The simulation assumes a 10 �m Thomas-
Fermi radius along ẑ, and solves a 2D GPE along the remaining two
directions. The typical vortex spacing is obtained from the Fourier
transform of the density distribution ���r��2. The uncertainties, re-
flecting the vortex-spacing distribution, are obtained from the half-
width of the first peak in the same Fourier transform. The dashed
line is the approximation �Eq. �8��, and the solid line results from
numerical diagonalization of Eq. �7�. Inset: calculated in situ den-
sity distribution for a detuning gradient ���y�=0.023Erkr showing
the expected vortex lattice structure in a nonsymmetric and nonro-
tating system.
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gible only for atoms in the lowest-energy dressed state. The
same effective field effect exists for systems with three or
more levels. This extends the applicability of the technique,
and in addition the additional level increases the spatial ex-
tent over which high effective fields can be realized.

I discussed two optimizations: �1� where either the two-
or three-level system can be fine tuned to make the filling
fraction constant through third order in displacement along ŷ;
and �2� where the quadratic Zeeman term in the three-level
case allowed the field to be made uniform through third or-
der in y �the same type of reasoning could make � constant
through order 5 in y� �27�.

Finally, I showed that an explicit solution to the GPE
equation in the presence of an effective gauge potential has
the expected vortex lattice. Using this technique it is possible
to generate effective magnetic fields sufficient to enter the
FQHE regime, ��1, where the GPE is invalid. For example,
in the three-level case optimized for uniform field �using

rubidium parameters 	=16Er and �=−1.656Er as in Fig. 5�,
a gradient of ���y��h�16 kHz /�m�4.5 Er /�m requires
a modest laboratory magnetic field gradient of 2.3 T/m. This
yields an effective field �=4.14 mT, where the “effective
charge” was taken to be e �in our technique the product q� is
defined�, and a magnetic length lB=�� /q�=0.5 �m. With a
reasonable 2D atom density n�1 �m−2, the filling fraction
is �=hn /q�=1. Thus this approach allows experiments to
reach the strongly correlated regime with realistic
experimental parameters.
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