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We demonstrate matter-wave self-imaging resulting from atomic center-of-mass motion-based inter-

ference. We show that non-negligible atomic center-of-mass motion and an instantaneous Doppler shift

can drastically change the condensate momentum distribution, resulting in a periodic collapse and the

recurrence of condensate diffraction probability as a function of the stationary light-field pulsing time. The

observed matter-wave self-imaging is characterized by an atomic center-of-mass motion induced

population amplitude interference in the presence of the light field that simultaneously minimizes all

high (n � 1) diffraction orders and maximizes the zeroth diffraction component.
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Deflection and diffraction of atoms by light is a research
area that can be traced back more than 40 years to early
pioneering theoretical and experimental studies [1–11].
The recent development of laser cooling and trapping
technology, and the realization of Bose-Einstein conden-
sates (BECs), have greatly advanced the research activities
of coherent atom optics, a rapidly developing new research
area of modern atomic physics. In comparison with ther-
mal atomic sources, atomic BECs as atom-optical sources
have the advantages of high phase space density and high
spatial localization, and are therefore well suited for high
resolution time-domain matter-wave diffraction studies.
Indeed, various groups have demonstrated Bragg diffrac-
tion of condensates [12,13], pulsed standing-wave diffrac-
tion of a condensate [14], the time-domain matter-wave
Talbot effect [15], condensate coherence-time measure-
ments [16], Bragg-diffraction-based quasicontinuous
atom lasers [17], and coherent matter-wave mixing [18].

Diffraction of ultracold atoms by optical standing waves
usually can be classified into two time regimes. In the
Raman-Nath regime the optical standing wave is pulsed
for a very short time so that the atom center-of-mass (c.m.)
motion and instantaneous Doppler frequency shift can be
neglected [2,14–16]. The characteristic bidirectional mo-
mentum distribution of the diffracted ultracold atoms and
BEC components is well described by Bessel functions
evenly distributed on both sides of the zero momentum
component. In the Bragg regime, the optical grating is
pulsed for a much longer time, and the stringent phase
matching condition results in a unidirectional diffraction
pattern.

In this Letter using an optical standing wave formed
with counterpropagating beams of significant intensity
difference we demonstrate atomic c.m. motion-based bidi-
rectional, high-order matter-wave self-imaging and con-
densate momentum oscillation. This phenomenon exists in
the non-Raman-Nath regime that is also far away from the

typical Bragg regime. We further note that the matter-wave
self-imaging effect reported here is not related to the
temporal, matter-wave Talbot effect reported previously
[15]. To the best of our knowledge, such a full matter-
wave self-imaging resulting from atomic c.m. motion in-
duced interference has never been demonstrated before.
The experiment reported here was performed with a

87Rb condensate in the jF ¼ 2; mF ¼ 2i hyperfine ground
state. We first collect 108 atoms in a double magneto-
optical trap and transfer the cold atoms into a
quadrupole-Ioffe-configuration trap for further evaporative
cooling, producing an almost pure condensate that typi-
cally contains 105 atoms. We expand the condensate for
3 ms [19] and then illuminate the condensate with a pair of
counterpropagating laser pulses of selected pulse duration
and uneven intensities. In our setup the pulsed standing-
wave light fields are applied along the long dimension of
the condensate (Fig. 1). The strong pump field (wave

vector k̂1 ¼ k̂L, I1 � 215 mW=cm2) propagates in the
þx̂ direction, whereas a much weaker pump field (wave

vector k̂2 ¼ �k̂L, I2 � 14 mW=cm2) propagates colli-
nearly in the �x̂ direction. Both fields come from the
same laser (wavelength �L ¼ 780 nm) that is linearly
polarized in ẑ direction, detuned � ¼ 2�ð�1:5Þ GHz be-
low the F0 ¼ 3, mF0 ¼ 2 state [20], and locked to a satu-
ration absorption cell maintained under constant
temperature. Immediately after irradiation by the pump
laser pulses we allow 30 ms of ballistic expansion of the
condensate before imaging its momentum distribution with
on-resonance light.
In Fig. 2 we show a series of images of condensate

momentum distribution for different standing-wave pulse
durations. In obtaining these images, we have used optical
powers of 20 and 1.3 mW for the two pump fields (beam
radius r1=e � 1:7 mm), respectively. The images are taken

after a 30 ms time of flight. With a 1 �s pump pulse the
condensate momentum distribution has only the p ¼ 0@kL
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component. After a 6 �s pulse more condensate compo-
nents of nonzero momenta have developed and we observe
the depletion of the 0@kL component. After an 8 �s pulse
the zero momentum component is repopulated. At 25 �s,
however, populations in all high-order momentum compo-
nents are very small in comparison with the stationary
condensate (0@kL). That is, the condensate momentum
distribution has collapsed completely and matter-wave
self-imaging is achieved. As the standing-wave pulse
time is further increased, the multiorder bidirectional con-
densate momentum diffraction distribution reappear. At

40 �s the bidirectional high-order momentum distribu-
tions are clearly seen.
To explain the observed condensate momentum distri-

bution collapse, recurrence, and matter-wave self-imaging
observed near �P � 25 �s, we consider an atomic system
that includes two electronic states and n momentum states
[Fig. 1(c)] [20]. In the rest frame of an atom each two-
photon process that involves absorption of one photon
from one beam and emission of one photon to the other
beam leads to the atom, which has mass M and was
initially at rest, acquiring a velocity Vr ¼ �2@kL=M,
which results in a two-photon recoil energy Er=@ ¼ � ¼
2@k2L=M ¼ 8��r, where �r ¼ @k2L=ð4�MÞ is the one-
photon recoil frequency. The atomic c.m. motion thus
leads to an instantaneous Doppler shift in angular fre-
quency �!Doppler ¼ 2ð2n@kLÞ!L=ðMcÞ ¼ 4n@k2L=M ¼
16�n�r (n ¼ 0;�1;�2; . . . ). The equation of motion of
the probability amplitude of the nth momentum state of the
atomic ground electronic state wave function for such a
standing wave formed by counterpropagating beams of
significant intensity difference can be written as [21] (see
discussion on asymmetry later)

�nðp; tÞ ¼ iZ½�n�1e
�i��t þ�nþ1e

�i�þt�; (1)

where �� ¼ ���!Doppler ¼ �16��rðn� 1
2Þ. The real

quantity Z ¼ �1�2=� is the two-photon Rabi frequency,

�j ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ij=ð2IsÞ

q
(with � ¼ 2�� 6:07 MHz and Is �

2:5 mW=cm2 for the transitions used) is the forward
(j ¼ 1) (backward, j ¼ 2) pump field Rabi frequency, �
is one-photon detuning, �r ¼ 3:75 kHz is rubidium atom
one-photon recoil frequency. The exponential factors in
Eq. (1) include the contributions from atomic c.m. motion.
In the Raman-Nath regime, the pulsed optical grating is

considered to be instantaneous and atomic motion is ne-
glected. Thus, all exponential factors are replaced by unity.
Consequently, the momentum distribution of the conden-
sate components is characterized by the Bessel functions of
order n [1–11]. When the optical grating is pulsed for an
appreciable time, however, deviation from the Raman-
Nath approximation becomes important and the exponen-
tial factors in Eq. (1) must be included. This results in non-
negligible corrections due to atomic c.m. motion. We show
below that this correction is at the root of the observed
condensate momentum oscillation and full matter-wave
self-imaging with a period that is different from the frac-
tional and integral Talbot time reported previously [15].
In general, Eq. (1) cannot be solved analytically. The

physical origin of the observed condensate self-imaging,
however, can be understood by rearranging Eq. (1) as

�nðp; tÞ ¼ iZ½�n�1 þ�nþ1� þ iZ½�n�1ðei��t � 1Þ
þ�nþ1ðei�þt � 1Þ�: (2)

It can be shown that in the Raman-Nath limit where the
second square bracket, which represents the contribution
from the atomic c.m. motion, is neglected, Eq. (2) yields

FIG. 2 (color online). Matter-wave self-imaging and conden-
sate momentum distribution collapse and recurrence in a pulsed
optical standing wave. Field of view: 2:7 mm� 0:63 mm (see
text for other parameters) and condensate time of flight is
typically 30 ms.

FIG. 1 (color online). (a) Schematics of experiment setup and
directions of laser propagation. (b) A typical diffraction image
obtained after about 30 ms time of flight. (c) Schematic energy-
level diagram and laser couplings used in deriving Eq. (1).

PRL 101, 250401 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

19 DECEMBER 2008

250401-2



the result for a pulse time �P,

�nðp; �PÞ ¼ eixinJnðxÞ�ð0Þ
n ; (3)

where x ¼ Z�P=2,�
ð0Þ
n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ðpþ 2n@kLÞ
p

and the Dirac �
function enforces the even-photon processes. Thus,
the population of the nth-order diffracted compo-
nent (corresponds to 2n@kL momentum) is Pn ¼Rþ1
�1 dpj�nðp; �PÞj2 ¼ ½JnðxÞ�2 as it should be.

When the atomic c.m. motion is included the second
square bracket in Eq. (2) leads to a solution of the atomic
ground state population amplitude of the form

�nðp; �PÞ ¼ eixin½�ð0Þ
n JnðxÞ þGnð�; x;�ð0Þ

nþmÞ�; (4)

where � ¼ �r=Z. We note that Gnð�; x;�ð0Þ
nþmÞ, where

jmj � ðnþ 1Þ, is a complex function containing the sum
(over integer m) of integrals of high-order Bessel func-
tions. Although the exact analytic expression of

Gnð�; x;�ð0Þ
nþmÞ cannot be obtained, its physical implica-

tion is clear and sufficient for one to understand the ex-
perimental observations.

In the Raman-Nath limit, the condensate momentum
distribution oscillations in the time domain are solely
determined by the minima of the Bessel functions given
in Eq. (3). Based on the properties of Bessel functions one
concludes that full matter-wave self-imaging cannot occur
in the Raman-Nath regime [see Fig. 3(c) and discussion
below).

In the non-Raman-Nath regime, where Eq. (2) applies,
the non-negligible atomic c.m. motion leads to an interfer-
ence, and the collapse and revival of the condensate mo-
mentum distribution are now determined by the minima of
the quantity in the square bracket in Eq. (4). The physical

meaning of the function Gnð�; x;�ð0Þ
nþmÞ is that it modifies

and shifts minima of the diffraction amplitudes as a func-
tion of pulse duration, and therefore permits the possibility
of simultaneously achieving minima of all n � 1 order
diffraction amplitudes. We emphasize that simultaneously
achieving minima of all high-order amplitudes is a prereq-
uisite for a full matter-wave self-imaging where the popu-
lation distribution collapses completely to a condensate of
zero momentum (0@kL).

The observed full matter-wave self-imaging is different
from the temporal matter-wave Talbot effect reported be-
fore [15]. In the temporal matter-wave Talbot effect, two
successive optical gratings are pulsed on for such a short
time (�P � 100 ns) that the effect of the atomic c.m. mo-
tion is totally negligible during the grating irradiation time.
The condensate self-imaging is achieved by the alignment
and antialignment of the atomic optical Bloch vector which
precesses in the ‘‘absence’’ of any external field.

We have numerically integrated Eq. (1) to obtain the
diffraction probabilities for the first few significant diffrac-
tion orders. Figure 3(a) shows that at �P � 23 �s the
zeroth-order diffraction probability is near 100%, whereas
all high orders are very small. This agrees well with the

observed time of �P ¼ 25 �s when all n � 1 orders are
very small.
Figure 3(b) shows the numerically calculated diffraction

probabilities for �1�2=ð2�r�Þ ¼ 34. It is interesting to
notice that the first full matter-wave self-imaging time
moves to �P � 56 �s. In addition, partial collapse of
selected diffraction orders, a phenomenon that is well
known in near-field imaging, are seen before the first full
self-imaging is achieved. This indicates that the two-
photon Rabi frequency can shift the time location of the
first full matter-wave self-imaging, raising the possibility
of coherently controlled and time-tunable full matter-wave
self-imaging [22].
It is instructive to explain the key enabler of the matter-

wave self-imaging effect. First, we point out that the full
matter-wave self-imaging stems out of the non-negligible
atomic c.m. motion in the non-Raman-Nath regime.

FIG. 3. (a) Probabilities of nth-order diffraction as a function
of pulse duration. The numerics were done with �3 � n � þ3
and C�4 ¼ C4 ¼ 0 (calculation with n ¼ �5 have yielded the
same results). Parameters are chosen so that �1�2=ð2�r�Þ ¼
25, which is very close to the experimental value of 22. The
matter-wave self-imaging occurs at t ¼ �P � 23 �s (see arrow).
Solid curve, n ¼ 0; dash-dotted curve, n ¼ 1; dashed curve, n ¼
2; dotted curve (not visible), n ¼ 3. (b) Probabilities of nth-order
diffraction as a function of pulse duration for �1�2=ð2�r�Þ ¼
34. The first full matter-wave self-imaging point occurs at t ¼
�P � 56 �s and partial collapses of momentum distribution can
be seen [curve styles are the same as in (a)]. We note that the full
matter-wave self-imaging effect due to atomic c.m. motion is
characterized only by an interference that simultaneously mini-
mizes all n � 1 diffraction orders and maximizes the zeroth
diffraction component. (c) Raman-Nath limit diffraction proba-
bility Pn ¼ jJnðxÞj2 with n ¼ 0; . . . ; 3 as functions of dimen-
sionless argument x. Note that jJ0ðxÞj2 reaches a maximum
again when jJ1ðxÞj2 becomes zero (see the arrows), indicating
the simultaneous disappearance of the first-order diffraction and
repopulation of the zeroth-order diffraction even when the
atomic c.m. motion is neglected. At the same x, however, n >
1 diffraction components are significant.
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Second, observation of the simultaneous disappearance of
the first-order diffraction and the repopulation of the
zeroth-order diffraction does not lead to the conclusion of
matter-wave self-imaging. In fact, one can show [Fig. 3(c)]
that even in the Raman-Nath regime the disappearance of
the first-order diffraction indeed coincides with the re-
population of the zeroth-order diffraction. This is due to
the properties of the Bessel functions, not the atomic c.m.
motion induced interference. However, the higher (n > 1)
diffraction orders in this regime are not small, indicating
the lack of matter-wave self-imaging. We emphasize that
the key indicator of the full matter-wave self-imaging is the
simultaneous minimization of all higher orders (not just
n ¼ 1 order) and maximization of the zeroth-order. This
indicator is clearly shown in our work [23]. For this reason
we believe that we have demonstrated for the first time a
full matter-wave self-imaging effect.

Finally, we comment on the apparent asymmetry exhib-
ited in the images shown in Fig. 2. In this work, we study
momentum oscillation of a condensate as a function of
atomic center-of-mass motion in a pulsed optical grating
formed by counterpropagating beams with a significant in-
tensity difference propagating along the long axis of the
condensate. These two new features along with the beam
propagation geometry have profound consequences. At
certain interaction time we have observed that high-order
components are stronger than the lower order diffraction
components. This is to be expected as in near-field optical
imagining multiple near-field imaging planes can be ob-
served in which high-order components are stronger than
low-order components [15]. Other causes of asymmetry
stem out of the ac Stark shifts associated with uneven beam
intensities and matter-wave superradiant effects [24]. Both
of these effects can make the asymmetry described above
more pronounced. For instance, the far-detuned strong
beam leads to a matter-wave superradiant effect that favors
forward scattering (i.e., þn orders in the direction of the
strong beam) [24]. This weak matter-wave amplification
feature has never been studied in near-field atom optics.

It is important, however, to realize that these effects,
which are important for accurate atom number distribution
predictions, do not have significant bearing on the matter-
wave self-imaging point in time. This is because the self-
imaging is mainly the work of an instantaneous Doppler-
shift induced interference. Thus, for the purpose of dem-
onstrating the matter-wave self-imaging effect, the theo-
retical model given in Eq. (1) is sufficient. It provides a
simple but reasonably accurate picture of the underlying
physics and explains satisfactorily the observed matter-
wave self-imaging time. It is, however, incapable of pro-
viding an accurate count of numbers of atoms in individual
diffraction peaks since we have neglected ac Stark shifts,
matter-wave superradiant effects, and the weak beam ab-
sorption. A detailed prediction of numbers of atoms in each
diffraction peak requires a full numerical simulation be-
yond the scope of this work that must include these effects.

In conclusion, we have studied matter-wave momentum
oscillations in a standing light wave field. We have dem-
onstrated a new matter-wave self-imaging effect by experi-
mentally investigating bidirectional, high-order conden-
sate momentum distribution collapse and revival. The ob-
served matter-wave self-imaging results from an atomic
c.m. motion induced interference in a finite temporal opti-
cal standing wave. It is characterized by the simultane-
ous suppression of all higher (n�1) diffraction orders and
momentum collapse into the zeroth-order condensate
component.
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