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Abstract – We show that entanglement monotones reveal the pronounced enhancement of
entanglement at a quantum phase transition, when they are sensitive to long-range high-order
correlations. Such monotones are found to develop a sharp interferometric peak at the critical
point, and to exhibit universal scaling. We demonstrate that similar features are shared by noise
correlation spectra, and verify that these experimentally accessible quantities encode entanglement
information and probe separability. We give a prescription, for mesoscopic scale systems of how to
extract the pronounced enhancement of entanglement at a quantum phase transition from limited
accessible experimental data.
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Entanglement, among the most fascinating features of
quantum theory, has emerged as an important resource in
quantum information science [1]. As entanglement repre-
sents a unique form of correlation that does not occur in
classical systems, the investigation of connections between
entanglement and quantum phase transitions [2–5] is an
emerging field of research which seeks to complement the
understanding of critical phenomena in condensed-matter
physics and quantum field theory.
Iconic examples of solvable models exhibiting quantum

phase transitions, such as the Ising-like spin chain, are
paradigms for investigating the suitability of proposed
entanglement measures, e.g. the concurrence and entan-
glement entropy [6], to quantify the entangling resources
of a system close to its quantum critical point. Among the
various entanglement measures the concurrence has gained
particular attention in view of its universal scaling close to
the phase transition [6–8]. However, regular concurrence
has the drawback that even at the critical point where
spin-spin correlations extend over a long range (as the

correlation length is diverging for an infinite system) only
the next- and next-to-nearest neighbor concurrences are
non-zero. Moreover, it is not concurrence that peaks at
the transition but its first derivative.
The expected enhancement of entanglement at a phase

transition has been observed using the entanglement
entropy S� between a block of � consecutive spins and
the rest of the chain [9,10]. However, there is as yet no
systematic understanding of why some entanglement
measures capture this enhancement and others do not.
A way to resolve the frequent non-appearance of a peak
at the critical point was proposed in refs. [11–13] with
the help of generalizations of concurrence and the use
of symmetry broken states. The latter approach applies
in the thermodynamic limit, however cannot be applied
to mesoscopic scale systems where there is no actual
broken symmetry (but nevertheless exhibit most of the
characteristic signatures of a quantum phase transition)
or other type of phase transitions without a local order
parameter, such as topological phase transitions. Here we
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propose a general explanation for the different abilities of
various entanglement measures to describe quantum phase
transitions using the actual ground state with an eye
towards the understanding of systems where the symmetry
broken state is not a suitable description. For simplicity,
we concentrate our analysis on a chain of interacting spins.
Our conclusions are particularly relevant for cold-atom
systems, which are only weakly coupled to their environ-
ment and are significantly further away from the thermo-
dynamic limit than their condensed-matter counterparts.
With the help of a sequence of entanglement measures,
we develop a systematic approach that illustrates how
correlations are established over different ranges, and the
different behavior of long-range vs. short-range correla-
tions as the system approaches the critical point. Our
study reveals the importance of higher-order correlations
to determine the entanglement near a quantum phase
transition.
Whereas entanglement measures have become common

tools for theoretical investigations, they are significantly
less popular in the experimental community since they are
typically extremely arduous if not practically impossible
to measure. For the verification of theoretical findings and
for the investigation of theoretically intractable systems it
is therefore necessary to have efficient experimental means
to probe entanglement properties. Among the various
physical systems exhibiting quantum phase transitions,
cold atoms loaded in optical lattices [14] offer considerable
advantages over more traditional examples, since their
Hamiltonians can be engineered to high precision, and
noise and randomness can be controlled. In these systems,
many-body correlations are extractable from absorption
images of the atomic cloud after its release from the
trap [15,16]. However such images typically do not provide
sufficient information to recover a proper entanglement
measure. Here we give a prescription of how to extract
the pronounced enhancement of entanglement at a phase
transition from the limited accessible experimental data.
We consider the ground state of the one-dimensional

spin-1/2 anisotropic XY model in a transversal magnetic
field characterized by the Hamiltonian

Ĥ =−J
2

N∑
j=1

(1+ γ)σxj σ
x
j+1+(1− γ)σyj σyj+1+hσzj , (1)

where J is the nearest-neighbor coupling constant, h is a
transverse magnetic field, γ is the anisotropy parameter,
0� γ � 1, σαj are Pauli matrices (α= x, y, z) and peri-
odic boundary conditions are assumed throughout. For
0<γ � 1, Ĥ belongs to the Ising universality class, and it
exhibits a quantum phase transition from a paramagnetic
to a ferromagnetic phase when λ= h/J takes its critical
value λc = 1 [17]. The XY model is exactly solvable, and
any correlation function on the exact ground state can be
expressed in terms of Toeplitz-like determinants after a
Jordan-Wigner transformation that maps spin operators
into fermionic operators [18–20]. The evaluation of all

four-point correlations is however more cumbersome than
the commonly used prescription for computing two-point
functions. In ref. [21] we provide specific details on how
to calculate these higher-order correlations in hard core
boson systems (γ = 0) with fixed number of particles.
This can be straightforwardly generalized to the spin
system in consideration via the Holstein-Primakoff trans-
formation [22]. We note however that in the anisotropic
spin chain considered in the present work, the effective
fermionic Hamiltonian obtained after applying the Jordan-
Wigner transformation does not commute with the total
number of fermions operator and therefore the number of
nonzero higher-order correlation significantly increases.
For bipartite systems, both entanglement entropy and

concurrence play an important role, since they are the
first monotones that can be evaluated by purely algebraic
means for mixed states [23,24]. Entanglement entropy is
defined in terms of the degree of mixing of the reduced
density matrix �r of either of the two subsystems: S(Ψ) =
−Tr�rlog�r, and concurrence’s most frequently used defi-
nition is given in terms of the second Pauli matrix σy, and
reads c(Ψ) = |〈Ψ∗|σy ⊗σy|Ψ〉|, where 〈Ψ∗| is the complex
conjugate of 〈Ψ|, that is the transpose of |Ψ〉, with the
conjugation/transposition performed in the σz eigenbasis.
For a system of two spins concurrence and entanglement
entropy are equivalent as one is a bijective function of the
other. However, for multipartite systems this is no longer
the case and there is no unique generalization for either of
these measures.
A challenge for investigations of entanglement in many-

particle systems is that many-particle entanglement often
cannot be discovered in terms of few-body correlations
alone [7,8]. Therefore, we will not consider entanglement
properties of reduced few-body states, but only investi-
gate properties of the ground state of the entire many-
body system. In the case of entanglement entropy [9,10]
we will divide the spin chain into two blocks of not neces-
sarily consecutive spins and consider the entanglement
entropy between those blocks. In the case of concurrence
we will use generalizations based on the popular redef-
inition c(Ψ) =

√
2(1−Tr�2r) [25] of concurrence: we will

focus on the discrete set of generalized tangles (squared
concurrence) [26–28],

Tk = 2− 2
Dk

∑
ν∈κk

Tr�2ν , (2)

where the �ν are reduced density matrices of 1 to k
spins, and the summation is performed over all reduced
density matrices of up to k spins. Formally, this means
that κN contains all 1- to k-touples of pairwise distinct
elements labeling the individual sites. The constants Dk =∑k−1
i=0

∏i
j=0(N − j) are chosen so that fully separable

states yield a vanishing value of Tk. The advantage of this
choice of entanglement monotone over various alternatives
is that it can easily be evaluated in terms of the four-point
correlation functions. The average entanglement between
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Fig. 1: (Color online) Multipartite variations of the tangle
(squared concurrence), as functions of λ for γ = 1 (right panel)
and γ = 0.5 (left panel), obtained by numerical computation
of Toeplitz determinants for a system of size N = 175: T1 long-
dashed (pink); T2 dashed (yellow); T3 solid (red); and T4 dotted
(blue). T1 and T2 do not show a distinct peak near the critical
point, λ= 1.

an individual spin and the rest of the chain is characterized
by T1, T2 brings in the entanglement between pairs of spins
and the residual system, and T3 and T4 contain higher-
order correlations. This hierarchy extends to the multi-
particle concurrence, i.e {T1, . . . TN}, [29] that provides
a quantification for the entire entanglement content of
a multipartite system. We restrict the present investiga-
tion to T1-T4, since the evaluation of 5-point quantities
becomes impractical for large systems.
A clear difference between the behavior of bipartite

and multipartite entanglement can be seen already going
from T1 to T4. This is shown in fig. 1, where the differ-
ent multipartite tangles are plotted as functions of λ for
γ = 1, and γ = 0.5. In neither case do T1 or T2 show a
distinct peak near the phase transition, but their behav-
ior rather resembles the step-like behavior of the regular
concurrence [7]. But starting from T3 for the case of γ = 1,
and T4 for γ = 0.5, there is a clear peak arising around the
critical point. As can be seen for γ = 1 the peak becomes
more pronounced with increased order of correlation in Tk.
This shows that the long-range correlations that are estab-
lished around a quantum phase transition are displayed in
terms of multipartite entanglement, whereas the bipartite
entanglement between blocks of consecutive spins does not
display this behavior.
In order to quantify the growth of multipartite entan-

glement in T4 at the critical point, we study the scaling
with system size of its peak height and position. The right
inset of fig. 2 shows the growth of the peak with increasing
number of spins. Since T4 is a bounded quantity, it cannot
diverge even in the thermodynamic limit. Nevertheless, it
converges to its maximal value following an inverse loga-
rithmic behavior (see solid-line fit ). The left inset of fig. 2
shows that, with increasing system size, the position of
the peak, λm, gets shifted towards the expected value in
the thermodynamic limit, λm = 1. However, according to
the logarithmic fit that follows the data, λm does not
asymptote to a value of 1 but rather to 0.97. We do

Fig. 2: (Color online) The main plot shows the universality
of Γ≡ (T4–T ∗4 )−1 around the phase transition: Γ(λ)−Γ(λm)
is plotted for various system sizes, from N = 75 to 175, as
function of N(λ−λm), and the same behavior is found for
all system sizes that are displayed with different symbols. The
insets show the growth (right) and position (left) of the peak
with increasing system size.

not attribute too much significance to this observation,
but rather expect that additional data for larger systems
would result in a slightly more accurate extrapolation.
Considering the well-known universal behavior of Ising-

like models at a phase transition, it is essential to check
whether our presently utilized quantification of entangle-
ment reveals universality. Since by definition T4 is always
finite, a more appropriate quantity to reflect universal
scaling is Γ≡ (T4−T ∗4 )−1, since it exhibits a logarithmic
divergence at the critical point. Here T ∗4 is the maximum
value reached by T4 in the thermodynamic limit at λm = 1,
which we calculate to be π/2. Again T ∗4 does not agree
exactly with the value of 1.77 we obtain from finite-size
scaling; as before we attribute this to the size limitations.
Figure 2 shows that Γ(λ)−Γ(λm) = f [N1/ν(λ−λm)]
exhibits universal behavior with the scaling exponent
ν = 1 characteristic for the Ising model [17]. When we
plot this quantity as a function of N(λ−λm) for different
system sizes, there is an almost perfect coalescence of
the various data points onto a single curve. Furthermore,
the shape of this universal curve closely resembles the
universal curve underlying concurrence [7].
To show that it is the long-range correlations that grow,
vs. the entanglement between close neighbors, and that
our findings above are not artifacts of particular choices
of Ti, we consider the case of another well-established
entanglement measure, the entanglement entropy. In
contrast to previous studies [9,10] which considered
bipartition of the spin chain into � consecutive spins and
the rest of the chain, we study the entanglement entropy,
S4(L), that is extracted by bipartition of the spin chain
into four spins that are separated by distance L, (say spin
1, 1+L, 1+ 2L, and 1+3L) and the rest of the system.
This quantity is shown in fig. 3. Note that similarly to T4,
also S4(L) remains finite in the thermodynamic limit,
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L=10

L=2

L=1

L=20
L=50

Fig. 3: (Color online) Entanglement entropy, S4(L), as function
of λ for different spacings between the four spins. S4(L)
grows monotonically with increasing separation and reaches
its maximum value when L=N/4. Here N = 201.

S4(L)� 4. While there is only a tiny enhancement of the
entanglement entropy around the phase transition for
L= 1, a peak grows with increasing separation L of the
spins, and takes its maximum for L�N/4, i.e. in the
case of maximum separation. This behavior again gives
evidence of the long-range character of the correlations.
Having defined proper entanglement quantifiers that

capture the properties of a quantum phase transition, we
now address the issue of how the latter can be linked
to experimentally accessible observables. We focus our
discussion on cold atomic systems, in view of their appeal
as ideal quantum simulators of iconic condensed-matter
Hamiltonians. In these systems absorption images taken
after releasing the atoms from the trap are the most
commonly used diagnostic tools. The average density
profile after time of flight maps to the quasi-momentum
distribution n(q) of the atoms at the release time, and
the density-density correlations (known as noise correla-
tions) [30] yield the momentum-momentum correlation
∆(q1, q2). These functions are just Fourier transforms
of two- and four-point correlations of the atomic-field
creation and annihilation operators at the various lattice
sites, ân, â

†
n:

n(q)≡ 〈n̂q〉= 1
N

∑
n,m

ei
2π
N q(n−m)〈â†nâm〉, (3)

∆(q1, q2)≡ 〈(n̂q1 −〈n̂q1〉)(n̂q2 −〈n̂q2〉)〉). (4)

The noise correlations ∆(q1, q2) contain same non-local
correlations as the ones included in T4 and S4(L). However
unlike T4 and S4, ∆(q1, q2) is not a proper entanglement
monotone. On the other hand, unlike T4 and S4, ∆(q1, q2)
can be measured experimentally. Therefore, the natural
question that we address below is: how much information
about the enhancement of many-body entanglement at the
critical point can be inferred from noise correlations.
In view of the well-known mapping between hard-core

bosons and spin-(1/2) operators [22], noise correlations
for the spin chains can be defined by using the following

Fig. 4: (Color online) n(0) and ∆(0, 0) as a function of λ
for N = 95 spins and two different anisotropies: The dot-
dashed blue (red dotted) curves and solid black (dashed
green) correspond to n(0) and ∆(0, 0) for γ = 1(γ = 0.5). The
horizontal line at 12 is the maximal value that ∆(0, 0) can
take for a separable state and the peaks of ∆(0, 0) exceed this
threshold. The inset shows the numerical scaling of the ∆(0, 0)
peak vs. N which is in agreement with the analytic prediction
of a power law with exponent 3/2.

relations between the spins and atomic operators: σ+j = â
†
j ,

σ−j = âj and σ
z
j = 2â

†
j âj − 1. In the following we use this

mapping to study the behavior of ∆(0, 0) and n(0) as λ
is varied across the critical point. Our aim is to use this
exactly solvable system as a benchmark for the behavior
of such correlations, which can be accessed experimentally
in computationally intractable systems. Whereas their
quantitative properties will depend on details of the
underlying Hamiltonian, we believe that their qualitative
features will be generic, due to the inherent universal
scaling of a quantum phase transition.
Figure 4 shows that ∆(0, 0) captures the enhancement

of entanglement at the quantum critical point, whereas
n(0) does not. While n(0) exhibits a step-like functional
dependence of λ (similar to T2), the noise autocorrelation
function ∆(0, 0) is sharply peaked near the critical point
(similar to T4). ∆(0, 0) contains the higher-order non-
local correlations which are the key to properly extract
the enhancement of entanglement at the quantum phase
transition.
Given the mapping between atomic and spin operators,

separability of the atomic many-body states can also be
probed via spin squeezing [31–36]. A separable state |Φs〉
of a spin-(1/2) system is one that can be expressed in
terms of one-body states |φi〉 through |Φs〉= |φ1〉⊗ |φ2〉⊗
. . .⊗ |φN 〉). As shown in the appendix the noise correlation
∆(0, 0) satisfies

∆(0, 0)<∆max(Φs) =
1

8
(1+N) . (5)

Thus, if ∆(0, 0) exceeds this threshold, the underlying
state is entangled. In fig. 4 we display ∆max(ρs) forN = 95.
The peak of ∆(0, 0) clearly exceeds the separability thresh-
old, by a factor that grows with the size of the system,
N . The reason for this is as follows. While ∆(0, 0) grows
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algebraically as N3/2, the separability threshold of eq. (5)
is only linear in N , so that the excess of the peak over
this threshold increases as

√
N . The exponent 3/2 in the

noise correlation peak height follows from the universal
scaling of 〈σx〉 ∼ (λ− 1)1/8, which yields a divergence of
the noise correlation peak as (λ− 1)−3/2 in the thermody-
namic limit and to a N3/2 scaling for finite samples.
Even though the above investigations were focused on

the anisotropic XY model Hamiltonian, we emphasize that
eq. (5) provides a general criterion for arbitrary spin-(1/2)
Hamiltonians and consequently corresponds to a useful
benchmark to study entanglement properties in more
general systems such as disordered spin chains or spins at
finite temperature. Additionally, preliminary calculations
done in in comparatively small 1D soft core bosons under-
going a superfluid–to–Mott-insulator transition [21,37]
also indicate a similar peaked behavior of ∆ close to the
critical point. This suggests that the growth of ∆ can be a
generic signature of a quantum phase transition, and that
noise correlations are suitable observables for experimen-
tal verification of the enhancement of entanglement.
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Appendix

Given a separable state |Φs〉= |φ1〉⊗ |φ2〉⊗ . . .⊗ |φN 〉
of N spins ∆(0, 0) can be decomposed into contributions

of 1, 2 and 3 different atoms or spins: ∆(0, 0) =
∑
i1
f
(1)
i1
+∑

i1i2
f
(2)
i1i2
+
∑
i1i2
f
(3)
i1i2
+
∑
i1i2i3

f
(4)
i1i2i3

, where the indices
ij label the spins, and all summations are performed
over pairwise different indices. All contributions from four
different spins vanish. More explicitly, f (1) to f (4) read

f
(1)
i1
= 〈a†i1ai1a†i1ai1〉− 〈a†i1ai1〉〈a†i1ai1〉=

1− z2i1
4
� 1
4
,

(A.1)
where the above mapping between atomic and spin oper-
ators has been performed. zi1 is a short-hand notation
for 〈φi1 |σz|φi1〉, and xij and yij that will be used in the
following are defined analogously.

f
(2)
i1i2
=
∑
[ijkl]=Π[i1i1i1i2]

〈a†iaja†kal〉− 〈a†iaj〉〈a†kal〉 (A.2)

=
1− zi1
4
(xi1xi2 + yi1yi2) (A.3)

� 1− zi1
4

√
x2i1 + y

2
i1

√
x2i2 + y

2
i2

(A.4)

=
1− zi1
4

√
1− z2i1

√
1− z2i2 (A.5)

� 1− zi1
8
((1− z2i1)+ (1− z2i2)). (A.6)

Here, Π[i1i1i1i2] denotes all permutations of, i.e.
[i1, i1, i1, i2], [i1, i1, i2, i1], [i1, i2, i1, i1], [i2, i1, i1, i1]. The
Cauchy-Schwartz inequality leads from eq. (A.3) to
eq. (A.4); eq. (A.5) follows since x2ij + y

2
ij
+ z2ij equals

unity for a pure state |φij 〉, and eq. (A.6) follows from
2ab� a2+ b2.

f
(3)
i1i2
=
∑
[ijkl]=Π[i1i1i2i2]

〈a†iaja†kal〉− 〈a†iaj〉〈a†kal〉 (A.7)

=
1

16
(4− (x2i1 + y2i1)(x2i2 + y2i2)− 4zi1zi2) (A.8)

=
1

16
(4− (1− z2i1)(1− z2i2)− 4zi1zi2). (A.9)

f
(4)
i1i2i3

=
∑
[ijkl]=Π[i1i1i2i3]

〈a†iaja†kal〉− 〈a†iaj〉〈a†kal〉 (A.10)

=
1

8
(2−x2i1 − y2i1)(xi2xi3 + yi2yi3) (A.11)

� 1
8
(1+ z2i1)

√
x2i2 + y

2
i2

√
x2i3 + y

2
i3

(A.12)

=
1

8
(1+ z2i1)

√
1− z2i2

√
1− z2i3 (A.13)

� 1
16
(1+ z2i1)((1− z2i2)+ (1− z2i3)). (A.14)

Here, similar estimates as from eq. (A.3) to eq. (A.6) have
been done. Since ∆(0, 0) is obtained via a sum of the f (j)

over all indices, one can replace these expressions by their
symmetrized versions:

[
f
(2)
i1i2

]
s
� 2− zi1 − zi2

16
((1− z2i1)+ (1− z2i2)), (A.15)

[
f
(4)
i1i2i3

]
s
� 1
24
(3− z2i1z2i2 − z2i2z2i3 − z2i2z2i3). (A.16)

The maximum of [f
(2)
i1i2
]s+ f

(3)
i1i2
is obtained for zi1 = 1,

zi2 =−1, and it amounts to 1/2. The maximum of [f (4)i1i2i3 ]s
is obtained for zi1 = zi2 = zi3 = 0, and it amounts to 1/8.
Summing up these estimates yields eq. (5).
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