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Abstract

A method based on Monte Carlo techniques is presented for evaluating thermonuclear reaction rates.
We begin by reviewing commonly applied procedures and point out that reaction rates that have been
reported up to now in the literature have no rigorous statistical meaning. Subsequently, we associate each
nuclear physics quantity entering in the calculation of reaction rates with a specific probability density
function, including Gaussian, lognormal and chi-squared distributions. Based on these probability density
functions the total reaction rate is randomly sampled many times until the required statistical precision
is achieved. This procedure results in a median (Monte Carlo) rate which agrees under certain conditions
with the commonly reported recommended “classical” rate. In addition, we present at each temperature
a low rate and a high rate, corresponding to the 0.16 and 0.84 quantiles of the cumulative reaction rate
distribution. These quantities are in general different from the statistically meaningless “minimum” (or
“lower limit”) and “maximum” (or “upper limit”) reaction rates which are commonly reported. Furthermore,
we approximate the output reaction rate probability density function by a lognormal distribution and present,
at each temperature, the lognormal parameters μ and σ . The values of these quantities will be crucial for
future Monte Carlo nucleosynthesis studies. Our new reaction rates, appropriate for bare nuclei in the
laboratory, are tabulated in the second paper of this issue (Paper II). The nuclear physics input used to
derive our reaction rates is presented in the third paper of this issue (Paper III). In the fourth paper of this
issue (Paper IV) we compare our new reaction rates to previous results.
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1. Introduction

The most influential charged-particle thermonuclear reaction rate evaluations of the 20th cen-
tury were published by Fowler and collaborators in a series of several papers, with the latest
being published in 1988 [1]. The latter work provided compiled rates in tabular and in analytical
format for 128 proton- and α-particle induced reactions on A = 1 to 30 nuclei. About a decade
later, a new reaction rate evaluation by the NACRE Collaboration [2] updated many of the previ-
ously published results. The NACRE evaluation contains the rates of 86 reactions on A = 1 to 28
nuclei in tabular and analytical format. It represented a major improvement, not only by including
newly available nuclear physics input, but it provided for the first time: (i) estimates of reaction
rate uncertainties at each temperature in tabular format, and (ii) most of the nuclear data and the
associated references used to derive the reaction rates. Another evaluation was published in 2001
by Iliadis and collaborators [3]. These authors provided 55 reaction rates involving A = 20 to 40
target nuclei in tabular format. They presented reaction rate uncertainties in graphical format and
most of the nuclear physics input used to compute the rates. The two major innovations of the
latter work were: (i) an extension of the rate evaluation effort to reactions involving radioactive
target nuclei, and (ii) the normalization of many resonance strengths to a “backbone” of selected
and carefully measured standard strengths.

The fast progress seen in the field of nuclear astrophysics over the past few years warrants
a new reaction rate evaluation. The original aim was to publish in a short paper the reaction
rates that were recently updated by one of us (CI) while working on a textbook [6] and thus to
make them available to the community of stellar modelers. However, it became quickly obvi-
ous that there are significant problems in all previously published reaction rate evaluations when
the results are confronted with some basic ideas of statistics: what is the statistical meaning of
published reaction rates and their uncertainties? Do the published rate uncertainties represent
standard deviations of Gaussian distributions or do they perhaps correspond to some other cov-
erage probability? What is the precise meaning of published “upper” and “lower” limits? And,
finally, how can published reaction rate uncertainties be used in the calculations they are mainly
intended for, that is, in stellar models?

We argue here that reaction rates from previously published evaluations have no precise sta-
tistical meaning. The present work is part of a series of four papers on a new evaluation of
charged-particle thermonuclear reaction rates on A = 14 to 40 target nuclei. In the first paper,
referred to as Paper I, we present a method based on Monte Carlo techniques of estimating
statistically meaningful reaction rates and their associated uncertainties.1 Paper II contains our

1 It is regrettable that the terms uncertainty and error are used interchangeably in the nuclear astrophysics literature.
According to the ISO Guide to the Expression of Uncertainty and Measurement (GUM) [4,5] these expressions “. . .are
not synonyms, but represent completely different concepts; they should not be confused with one another or misused. . .”.
The uncertainty is defined as a “parameter, associated with the result of a measurement, that characterizes the dispersion
of the values that could reasonably be attributed to the measurand”. Uncertainty of measurement comprises, in general,
many components; some of these may be evaluated from the statistical distribution of the results of series of measure-
ments and can be characterized by experimental standard deviations; other components, which also can be characterized
by standard deviations, are evaluated from assumed probability distributions based on experience or other information.
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numerical results in tabular format, while in Paper III we provide the complete nuclear physics
data input used to derive our new reaction rates. In Paper IV we compare our new reaction rates
to previous results.

The aim of the present work is to evaluate and compile charged-particle thermonuclear reac-
tion rates for A = 14 to 40 nuclei on a grid of temperatures ranging from T = 0.01 GK to 10 GK.
These reaction rates are assumed to involve bare nuclei in the laboratory. For use in stellar model
calculations, the results presented here must be corrected, if appropriate, for (i) electron screening
at elevated densities, and (ii) thermal excitations of the target nucleus at elevated temperatures.
Although we occasionally used results from nuclear theory, the present reaction rates are over-
whelmingly based on experimental nuclear physics information. Only in exceptional situations,
for example, when a nuclear property had not been measured yet, did we resort to nuclear theory.

Paper I is organized as follows. In Section 2 we present the formalism and the expressions used
for computing reaction rates. The commonly employed and accepted procedure of estimating
reaction rates and their associated uncertainties is briefly presented in Section 3. We refer to all
results derived from this method, including those presented in Refs. [1–3], as “classical reaction
rates”. It will become obvious that there are major problems from the statistics point of view
with this method. Statistical distributions are briefly reviewed in Section 4 in order to provide a
basis for the following discussion. Our method of estimating reaction rates, which is based on
Monte Carlo techniques, is presented in Section 5. We will refer to the new results as “Monte
Carlo reaction rates”. A summary and suggestions for future work are given in Section 6.

2. Reaction rate formalism

A recent discussion of the formalism can be found in Iliadis [6]. Here we summarize the
most important results. In this section, all energies refer to the center-of-mass coordinate system.
The total laboratory thermonuclear rate (in units of cm3 mol−1 s−1) for a reaction involving two
nuclei 0 and 1 in the entrance channel at a given temperature T is given by

NA〈σv〉01 = 3.7318 · 1010

T
3/2
9

√
M0 + M1

M0M1

∞∫
0

Eσ(E)e−11.605E/T9 dE (1)

where the center-of-mass energy E is in units of MeV, the temperature T9 is in GK (T9 ≡
T/109 K), the atomic masses Mi are in u and the cross section σ is in b (1 b ≡ 10−24 cm2);
NA denotes the Avogadro constant. Thus the reaction rate is determined by the absolute mag-
nitude and the energy dependence of the nuclear reaction cross section σ(E). Based on the
energy-dependence of σ(E), a number of different specialized expressions and procedures can
be derived for certain contributions to the total reaction rate. These contributions will be dis-
cussed in the following.

2.1. Nonresonant reaction rates

Nonresonant cross sections vary smoothly with energy and are usually converted into the
astrophysical S-factor, defined by

S(E) ≡ Ee2πησ (E) (2)

On the other hand, if we use the term error in connection with a reaction rate, it means that we think the rate is wrong
since perhaps a correction for some systematic effect was disregarded.
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This definition removes the 1/E dependence of nuclear cross sections and the s-wave Coulomb
barrier transmission probability e−2πη (that is, the Gamow factor) from the cross section and
yields a quantity, S(E), that depends only weakly on energy. The Sommerfeld parameter η is
numerically given by

2πη = 0.989510Z0Z1

√
M0M1

M0 + M1

1

E
(3)

where Zi are the charges of nuclei 0 and 1. For a weak energy dependence of the S-factor,
substitution of Eq. (2) into Eq. (1) yields an integrand whose energy dependence is dominated
on the low-energy side by the penetrability through the Coulomb barrier and on the high-energy
side by the Maxwell–Boltzmann distribution of the interacting nuclei. The integrand, which is
referred to as Gamow peak, represents the energy range of effective stellar burning at a given
temperature. The location of the maximum, E0, and the (Gaussian approximation) 1/e width,
�E0, of the Gamow peak (in units of MeV) are given by

E0 = 0.1220

(
Z2

0Z2
1

M0M1

M0 + M1
T 2

9

)1/3

, �E0 = 0.2368

(
Z2

0Z2
1

M0M1

M0 + M1
T 5

9

)1/6

(4)

The area enclosed between the 1/e points of a Gaussian amounts to 84%. If the S-factor can be
approximated by a polynomial,

S(E) ≈ S(0) + S′(0)E + 1

2
S′′(0)E2 (5)

where the primes indicate derivatives with respect to E, then the nonresonant reaction rate can
be obtained from the relations

NA〈σv〉nr = 4.339 · 108

Z0Z1

M0 + M1

M0M1
Seffe

−τ τ 2 (6)

τ = 4.2487

(
Z2

0Z2
1

M0M1

M0 + M1

1

T9

)1/3

(7)

Seff = S(0)

[
1 + 5

12τ
+ S′(0)

S(0)

(
E0 + 35

36
kT

)
+ 1

2

S′′(0)

S(0)

(
E2

0 + 89

36
E0kT

)]
(8)

with Seff in Eq. (6) given in units of MeV b; k denotes the Boltzmann constant. The nonresonant
reaction rate expression is frequently multiplied by a cutoff factor

fcutoff ≈ e−(T9/T9,cutoff)
2

(9)

where T9,cutoff corresponds to that temperature at which the Gamow peak starts to shift to energies
at which the S-factor expansion of Eq. (5) becomes inaccurate.

2.2. Narrow-resonance reaction rates

The cross section of an isolated resonance can be described by the one-level Breit–Wigner
formula (see later). A resonance can be considered as narrow if the partial widths and the
Maxwell–Boltzmann factor e−E/kT are approximately constant over the total width of the reso-
nance. The narrow-resonance reaction rate is then obtained by substitution of the Breit–Wigner
formula into Eq. (1). The result is

NA〈σv〉r = 1.5399 · 1011

T
3/2

(
M0 + M1

M0M1

)3/2 ∑
(ωγ )ie

−11.605Ei/T9 (10)

9 i
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where the incoherent sum is over all narrow resonances i. In this expression, the resonance
energies Ei and resonance strengths (ωγ )i are both in units of MeV. In terms of resonance
properties, the resonance strength is defined as

ωγ = 2J + 1

(2j0 + 1)(2j1 + 1)

ΓaΓb

Γ
(11)

with J , j0, j1 the spins of resonance, projectile and target nucleus, respectively, and Γa , Γb , Γ

the partial widths for the entrance and exit channel, and the total resonance width (that is, the
sum of all partial widths, Γ = Γa + Γb + · · ·) at the resonance energy, respectively. In a reaction
with only two energetically allowed channels, one finds frequently for low-energy resonances
that Γa 	 Γb . In this case, Γ ≈ Γb and thus ωγ ≈ ωΓa . Note that Eq. (10) contains the value
of the Maxwell–Boltzmann distribution at Ei and, consequently, this expression takes only the
reaction rate contribution at the resonance energy into account.

2.3. Broad-resonance reaction rates

There are mainly two situations where Eq. (10) becomes inaccurate for calculating the re-
action rate contribution of a resonance. First, if a resonance is sufficiently broad the Maxwell–
Boltzmann factor e−E/kT and the partial widths Γi may vary with energy over the width of the
resonance, leading to a breakdown of the main assumption used in deriving the narrow-resonance
rate formula. Second, suppose that the temperature is gradually decreased such that the Gamow
peak shifts away from a given resonance. At some point the rate contribution from the region
around the resonance energy will then become negligible compared to the contribution arising
from the Gamow peak (that is, from the wing of the resonance). The latter contribution is obvi-
ously not considered in Eq. (10). As a rule of thumb, if the resonance energy falls outside the
range E0 ± 2�E0 then, even for a narrow resonance, the rate contribution from the resonance
wing must be taken into account.

In both of these situations the reaction cross section can be described by the one-level Breit–
Wigner formula. For the cross section (in units of b) of a resonance located at energy Er we
find

σBW(E) = 0.6566
ω

E

M0 + M1

M0M1

Γa(E)Γb(E + Q − Ef )

(Er − E)2 + Γ (E)2/4
(12)

where all energies and widths are in units of MeV; ω is the spin factor of Eq. (11), Q is the
reaction Q-value, and Ef is the energy of the final state in the residual nucleus. In this expression
and throughout this work the energy-dependent partial widths denote “observed” rather than
“formal” quantities [7]. The particle partial width for a given level λ and channel c is defined by

Γλc = 2Pcγ
2
λc = 2

�
2

mR2
Pcθ

2
λc (13)

with m = m0m1/(m0 + m1) the reduced mass, Pc the penetration factor, γ 2
λc the reduced width

and θ2
λc the dimensionless reduced width; for the channel radius we chose the commonly used

prescription R = 1.25(A
1/3
0 +A

1/3
1 ) fm, where the Ai denote (integer) mass numbers of the inter-

acting nuclei. The dimensionless reduced width for a single-particle channel can be parametrized
as

θ2 = C2Sθ2
pc (14)
λc
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where C, S and θ2
pc denote an isospin Clebsch–Gordan coefficient, the single-particle spectro-

scopic factor and the dimensionless single-particle reduced width, respectively. Calculated values
of θ2

pc for protons can be found in Iliadis [8]. The partial width for a particular γ -ray transition
is given by

Γγ (ωL) = 8π(L + 1)

L[(2L + 1)!!]2

(
Eγ

�c

)2L+1

B(ωL) (15)

with Eγ and L the energy and multipolarity of the radiation, respectively; ω denotes either
electric (E) or magnetic (M) radiation and the double factorial is defined as (2L + 1)!! ≡
1 ·3 ·5 · · · (2L+1). The quantity B(ωL) is the reduced transition probability. Note that in general
the quantities Γa and Γb in Eq. (12) represent, even for a transition to a specific final state, sums
over different components of Γλc or Γγ (ωL). For example, orbital angular momenta of  and
 + 2 may contribute to a particle partial width, or γ -ray multipolarities of M1 and E2 may con-
tribute to a γ -ray partial width. When the partial widths at the resonance energy Er are known
and if one value of  or ωL dominates the total particle or γ -ray partial width, it is usually more
reliable to use instead of Eqs. (13) and (15) the scaling relations

Γλc(E) = Γλc(Er)
Pc(E)

Pc(Er)
(16)

Γγ (ωL,E) = Γγ (ωL,Er)

(
E + Q − Ef

Er + Q − Ef

)2L+1

(17)

The energy E in Eq. (16) refers to the total kinetic energy in the particle channel: for the entrance
particle channel, E denotes the center-of-mass bombarding energy, while for an exit particle
channel one has to replace E by E′ = E + Q − Ef .

When a resonance cross section is given by Eq. (12), no simple analytical reaction rate formula
can be derived mainly because the Coulomb wave functions which determine the penetration
factor Pc must be evaluated numerically. The reaction rates for “broad” resonances must then be
found by numerical integration after substituting Eq. (12) into Eq. (1). If transitions to several
final states contribute to the total cross section, then the total reaction rate is given by the inco-
herent sum over the individual transitions, where the rate contribution for each transition can be
calculated by integrating Eq. (1) numerically. It should be emphasized that Eqs. (12)–(15) and
(17) apply equally to subthreshold states (that is, when Er < 0).

2.4. Interferences

When two broad resonances of the same spin and parity are located sufficiently close to each
other, their amplitudes may interfere. The total cross section contribution of the two resonances
can be estimated by using a simplified two-level dispersion formula, given by [7]

σ(E) = σ1(E) + σ2(E) ± 2
√

σ1(E)σ2(E) cos(δ1 − δ2) (18)

where σi(E) is obtained from Eq. (12). The resonance phase shifts can be calculated using

δi = arctan

[
Γi(E)

2(E − Eri)

]
(19)

with Eri and Γi the resonance energy and total width of resonance i respectively. The reaction
rate contribution of the two interfering resonances must be found by numerical integration after
substituting Eq. (18) into Eq. (1). Note that Eqs. (18) and (19) also apply to subthreshold states.
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3. Classical reaction rates

With the formalism provided in the previous section, we will now summarize some established
techniques of estimating reactions rates. Depending on what kind of nuclear physics information
is available the details usually vary and, consequently, each reaction has been treated as a special
case. Nevertheless we will focus here on the overall picture. The main goal of this section is to
emphasize the statistical shortcomings of the established procedures.

3.1. Established procedures

Usually one starts by compiling the primary nuclear data needed to calculate reaction rates:
the Q-value, resonance and excitation energies, level spins and parities, resonance strengths, par-
ticle and γ -ray partial widths, spectroscopic factors, reduced widths, and non-resonant S-factors
for direct capture or for broad resonance tails. When measured directly, each nuclear physics
property for a given level will have an associated mean value and an uncertainty. Frequently,
more than one measurement of the same quantity has been performed so that either a weighted
average can be derived, or each series of measurements can be normalized separately to some
standard values. When in exceptional cases no experimental information is available and a quan-
tity has to be adopted from theory, it is frequently possible to estimate approximate uncertainties
by systematically comparing experimental and theoretical results for nearby levels. The mean
values are then used to calculate various contributions to the total reaction rates according to
the expressions given in Section 2, that is, narrow and broad observed resonances, unobserved
resonances between the particle threshold and the lowest-lying observed resonance, subthreshold
states, nonresonant processes, and possible interferences between different amplitudes.

Specifically, once a nonresonant S-factor has been expanded according to Eq. (5), the non-
resonant rates are calculated from Eqs. (6)–(9). Measured energies and strengths of narrow
resonances can be used directly in Eq. (10) to find their reaction rate contribution. For thresh-
old states (that is, unobserved narrow low-energy resonances) it is usually possible to estimate
the resonance strength according to Eqs. (11), (13)–(14) if the reduced width (or the spectro-
scopic factor) can be determined by independent means, for example, from transfer reactions.
Frequently, only two reaction channels are energetically allowed such that for threshold levels
the particle partial width, Γp , is much smaller than the γ -ray partial width, Γγ . Thus we find
ωγ ≈ ωΓp and the reaction rate contribution is given by Eq. (10). Similarly, the S-factor of ob-
served broad resonances can be integrated numerically according to Eq. (12), where the partial
widths are deduced from the measured resonance strength, ωγ , and the total resonance width, Γ .
The contribution of unobserved broad resonances or subthreshold states can be estimated from
Eq. (12) once particle reduced widths (from transfer studies or elastic scattering) and γ -ray par-
tial widths (from γ -ray decay studies or measurement of mean lifetimes, τ = �/Γ ) are known.
Sometimes the required nuclear properties are not known for the levels of astrophysical interest,
which is frequently the case in reactions involving short-lived targets. In such cases the necessary
information may be adopted from corresponding levels in the mirror or analog nuclei (see, for
example, Iliadis et al. [9] for more information on this procedure).

We have addressed so far only the calculation of what is called in the literature recommended
reaction rates. The estimation of reaction rate uncertainties from uncertainties in the nuclear
physics input values (resonance energies and strengths, S-factors, spectroscopic factors, and so
on) is not as straightforward. In fact, no generally accepted procedure exists, which certainly
reflects a number of major underlying problems. We would like to point out that no reaction
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rate uncertainties are given at all in Caughlan and Fowler [1], while no specific information is
provided in the NACRE work [2] on how the “upper” and “lower” limits have been derived from
uncertainties in the nuclear physics input.

3.2. Conventional meaning of “upper” and “lower” reaction rate limits

Let us start by considering a simple, although unrealistic, situation. At some temperature the
total reaction rate is given by the contribution of a single narrow resonance. Furthermore, suppose
that the uncertainty in the resonance energy, �Er , is negligible compared to the uncertainty in the
measured resonance strength, �ωγ , where the latter uncertainty typically amounts to ±10–25%.
The resonance strength enters linearly in Eq. (10) and thus the uncertainty in the total rate is given
by the uncertainty in the resonance strength. However, in general the uncertainty in the resonance
energy cannot be disregarded. The energy enters exponentially in Eq. (10) and the uncertainty
in the total rate can then be found from �Er and �ωγ by using standard analytical uncertainty
propagation techniques. In almost all cases of practical interest, however, many different reaction
rate contributions must be taken into account when calculating the rate uncertainty. Recall that
some of these rate contributions can only be found from numerical integration, as outlined in
Section 2. Consequently, in reality the situation becomes sufficiently complex that analytical
uncertainty propagation methods are almost never applied in practice (see Section 3.3 for an
exception). Instead, a frequently applied procedure is to find intuitively the major sources of
rate uncertainties and to vary these input parameters individually in order to guess some kind of
boundaries for the resulting reaction rate, which are then referred to as “upper” and “lower” rate
limits.

Clearly, the procedure just described lacks a rigorous statistical meaning. What precisely do
these rate limits quantify? Do they reflect properties of the probability density function associated
with the total reaction rate? And what is the corresponding confidence level or coverage probabil-
ity? For most reaction rates published to date these questions have no clear answers. For example,
if the published value of a “lower” reaction rate limit amounts to 2 × 10−5 cm3 mol−1 s−1, does
this mean that the rate cannot be smaller than this value? It should be obvious to the reader that
there is no sharp cutoff in the above example and that the rate can indeed become smaller than
the “lower” limit, since the probability density function of the total reaction rate is determined by
a continuous probability density function for each measured or estimated nuclear physics input
parameter.

Until recently, stellar modelers were only interested in the recommended reaction rate and
reaction rate uncertainties were disregarded entirely. This has changed, especially over the past
decade, and recently more emphasis is placed on investigating the influence of reaction rate
uncertainties on stellar energy production and nucleosynthesis (for example, see Refs. [12–14,
16–18]). Nevertheless, the published “upper” and “lower” limit values of the total reaction rate
are interpreted by the astrophysics community as sharp boundaries. For example, a study of glob-
ular cluster ages using Monte Carlo techniques [19] sampled over a uniform (that is, a constant)
probability density function (Section 4.4) between the published “lower” and “upper” rate limit
of the 14N(p,γ )15O reaction (with zero probabilities outside these boundaries). Similarly, recent
investigations of standard big bang nucleosynthesis [20] or of the influence of proton capture re-
action rate uncertainties on the hot bottom burning in intermediate-mass AGB stars [21] assumed
a uniform probability density function between upper and lower reaction rate limits. We do not
argue that this procedure is wrong since there is no obvious alternative considering that only the
lower limit, recommended value and upper limit of the total reaction rate are usually presented
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in the literature. However, we argue here that the published information is incomplete and that it
is of crucial importance to provide the complete probability density function of the total reaction
rate at each value of the temperature.

3.3. Analytical reaction rate uncertainties

The reaction rate uncertainty analysis in the evaluation of Iliadis et al. [3] was partially based
on the analytical method developed by Thompson and Iliadis [22]. This method represented
the first extensive step towards a statistically meaningful reaction rate uncertainty estimation. An
analytical approach has the advantage that it provides insight with respect to which individual rate
contributions precisely dominate the total reaction rate. It also allows for studying the correlation
between different uncertainties. The formalism of Thompson and Iliadis [22] was incorporated
into a computer code, RateErrors, which was made available to the nuclear astrophysics
community. The reader is referred to Ref. [22] for details. Here we will focus on a number of
important issues.

It may be obvious to the reader that an analytical uncertainty propagation is not straightfor-
ward considering the complexity of the expressions provided in Section 2. Thus Thompson and
Iliadis [22] were required to apply certain approximations and assumptions in their derivations
in order to keep the uncertainty propagation tractable. It was demonstrated in Ref. [22] that the
formalism works well for narrow resonances when the uncertainty in the resonance energy is
relatively small (say, a few keV). Another interesting aspect of this work was their assumption
(without proof) that the probability density function of the resulting total reaction rate is given
by an expression of the form

f (x) = f (xm)e−[xm ln(x/xm)]2/(2σ 2), x > 0 (20)

where xm and σ are the most probable value and the standard deviation, respectively, of the
total reaction rate. Note that Eq. (20) is symmetric on a logarithmic scale and asymmetric on
a linear scale. Once an expression for the probability density function is adopted it is a simple
matter to estimate the confidence level, that is, the cumulative probability between the uncertainty
boundaries.

Over the past few years, experience with the code RateErrors has clearly shown its limi-
tations and shortcomings. Although the code had been extended to include nonresonant reaction
rate contributions, it does not, by construction, allow for numerically integrated rate contribu-
tions. Neither does it work when the uncertainty in the resonance energy becomes relatively
large in which case the first-derivative approximations of Ref. [22] break down. For this reason
we felt compelled to develop a new formalism that applies more generally and is not subject to
the restrictions discussed above.

3.4. Problem of “upper limits” in nuclear physics input

The problems referred to above are significantly exacerbated by a question we have not ad-
dressed so far, that is, how to interpret and to incorporate measured “upper limits” of nuclear
physics quantities into the reaction rate formalism. This problem is most important for expected,
but yet unobserved, resonances at low energies (that is, for levels near the particle threshold)
where direct cross section measurements are difficult.

Suppose an “upper limit” value has been determined for a nuclear property, such as a res-
onance strength or a spectroscopic factor. How does this upper limit enter in the uncertainty
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propagation in order to estimate the total reaction rates? The strategy adopted by the NACRE
Collaboration [2] was the following. First, the total reaction rate is calculated according to the
formalism given in Section 2 by excluding all “upper limits” of input quantities, that is, the rate
contributions from such resonances is set equal to zero; this provides the “lower limit” of the
total rate. Second, the “upper limit” of the total reaction rate is found by including all the upper
limits of input quantities. Third, a recommended reaction rate is found by including all contri-
butions considered under the second step, except that all upper limit contributions of expected
resonances are multiplied by an (arbitrary) factor of 0.1. A similar procedure had been adopted
in the evaluation of Iliadis et al. [3].

The analytical uncertainty analysis method of Thompson and Iliadis [22] does not allow for
the uncertainty propagation of “upper limits” in input quantities. The problem really consists
of how to interpret and to use a measured upper limit. For example, what does it mean if the
literature reports an upper limit of C2S < 0.05 for the spectroscopic factor? Does it mean that
larger values are excluded? This is certainly not the case but this is precisely how the reported
values are being interpreted so far in nuclear astrophysics.

Let us be more precise in our observations. In the overwhelming number of cases, the value
of an “upper limit” for a nuclear physics quantity is presented in the literature without further
information. Clearly, the reported number by itself has no rigorous statistical meaning. A piece
of information that is obviously missing is the confidence level associated with this upper limit
value. In a few selected cases, a value for the confidence level is indeed provided in the literature.
Even if this is the case, the most important piece of information is still missing, that is, the prob-
ability density function used to derive both the “upper limit” and the associated confidence level.
We strongly urge the community to consider in the future this issue carefully and to present the
complete information when reporting on a null-result: (i) the value of the upper limit, (ii) the as-
sociated value of the confidence level, and (iii) the probability density function used for deriving
the values referred to under (i) and (ii).

An interesting observation in this regard was reported by Thompson and Iliadis [22]. They
pointed out that the statistical distribution of reduced widths, γ 2, and spectroscopic factors, C2S,
are known to be described by a Porter–Thomas distribution (see below for details) and that this
circumstance could be used in order to draw a random sample of γ 2 or C2S in the absence of
any other information on the properties of the level in question. This idea was not pursued in
Ref. [22] but, in fact, represents a starting point for the statistical treatment of upper limits in the
present work.

4. Statistical distributions

Having described in the previous section some established procedures of reaction rate estima-
tion, we will now turn the attention to our method of calculating reaction rates. We will begin
with a brief discussion of statistical distributions. Although this information is provided in many
books on statistics (for example, see Ref. [23]), it is worthwhile to summarize here the important
expressions because they will be referred to in the following discussion and in Papers II and III.

The expectation value (or mean) for any probability density function f (x) and the corre-
sponding variance (or square of the standard deviation) are given by

E[x] =
+∞∫

xf (x)dx, V [x] =
+∞∫ (

x − E[x])2
f (x)dx (21)
−∞ −∞
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where f (x) is normalized to unity over the entire sample space. The cumulative distribution
related to f (x) is

F(x) =
x∫

−∞
f

(
x′)dx′ (22)

and corresponds to the probability for the random variable to assume a value less than or equal
to x. The quantile of order q , xq , is defined as the value of the random variable x such that
F(xq) = q , with 0 � q � 1. In other words, the quantile is equal to the inverse function of the
cumulative distribution, xq = F−1(q). A frequently used quantile is x1/2, called the median of x,
which corresponds to observing x with equal probabilities below or above x1/2.

4.1. Gaussian distribution

The Gaussian (or normal) probability density function of a continuous random variable x is
defined by

f (x) = 1

σ
√

2π
e−(x−μ)2/(2σ 2) (23)

and has two parameters, μ and σ . The first parameter determines the location of the distribution
maximum and is found to be equal to the expectation value, while the second parameter controls
the distribution width and can be shown to be equal to the square-root of the variance. Thus

E[x] = μ, V [x] = σ 2 (24)

The cumulative distribution of the Gaussian cannot be presented in analytical form, and must be
computed numerically by using the error function [24]. For example, from standard tabulations
one finds for the percentage probability that a point is located within 1σ of the mean (that is,
μ − σ < x < μ + σ ) a value of 68.3%, while one finds a value of 95% within 2σ of the mean.

The Gaussian distribution is the most frequently used probability density function. Part of its
appeal arises from its simplicity (that is, symmetry and bell-shape), leading to straightforward
visualizations. From a more rigorous statistical point of view, its importance originates from
the central limit theorem. The theorem states that the sum of n independent continuous random
variables xi with means μi and standard deviations σi becomes a Gaussian random variable in
the limit of n → ∞, independent of the form of the individual probability density functions of
the xi . Many measurement uncertainties are treated as Gaussian random variables if it can be
assumed that the total uncertainty is given by the sum of a large number of small contributions.
For example, it is reasonable to assume that a measured resonance energy is Gaussian distributed
(see Section 5.1.1).

An obvious, but sometimes overlooked, property of the Gaussian distribution is that Eq. (23)
is defined for −∞ < x < ∞. Thus there is a finite probability that a point is located in the neg-
ative region. This issue becomes important when describing physical quantities with a Gaussian
density distribution. Since, for example, a negative resonance strength or partial width is obvi-
ously unphysical, the Gaussian probability density function is sometimes truncated at the origin
(that is, it is set equal to zero for x < 0). However, such a procedure is highly suspicious since it
clearly introduces a bias by changing the values of E[x] and V [x].
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4.2. Lognormal distribution

Suppose that a continuous random variable, given by y = ln(x), is Gaussian distributed. The
variable x will then follow the lognormal distribution, given by

f (x) = 1

σ
√

2π

1

x
e−(lnx−μ)2/(2σ 2) (25)

The lognormal distribution is defined by the two parameters μ and σ . The first determines the
location of the distribution, while the second controls the width. Note, that the parameters μ and
σ do not represent the mean value and standard deviation of the lognormal distribution, but of the
corresponding Gaussian distribution for ln(x). In terms of these two parameters, the expectation
value and the variance of the lognormal distribution are given by

E[x] = e(2μ+σ 2)/2, V [x] = e(2μ+σ 2)
[
eσ 2 − 1

]
(26)

Equivalently, the values of μ and σ can be found from E[x] and V [x] by using

μ = ln
(
E[x]) − 1

2
ln

(
1 + V [x]

E[x]2

)
, σ =

√
ln

(
1 + V [x]

E[x]2

)
(27)

Since the central limit theorem predicts a Gaussian probability density for a random variable if
it is given by the sum of a large number of small contributions, it follows directly that a random
variable will be distributed according to a lognormal density function if it is given by the product
of many factors. For example, consider the estimation of a resonance strength from the measured
thick-target yield. The strength is given by the products and quotients of the following positive
quantities: the measured number of counts, the integrated beam charge, a detector efficiency,
a stopping power, and so on. If the random uncertainties of these quantities are independent, it is
reasonable to assume a lognormal probability density function for the derived resonance strength.

A few more comments will be helpful for the discussions in Section 5 and in Paper II. (i) The
lognormal density function is defined only in the range of 0 � x < ∞ and thus has the desirable
property of describing physical quantities that are manifestly positive (for example, a resonance
strength). (ii) For a sample of data, {z1, z2, . . . , zn}, that is lognormally distributed, the geometric
mean, μg , and the geometric standard deviation, σg , are given by

μg ≡ n
√

z1 · z2 · · · zn = eμ, σg ≡ exp

[√√√√1

n

n∑
i=1

(
ln

zi

μg

)2
]

= eσ (28)

(iii) The median value of the lognormal density function is given by eμ, while for a coverage
probability of 68% the lower and upper bounds are given by μg/σg = eμ−σ and μgσg = eμ+σ ,
respectively. (iv) For a coverage probability of 68%, the factor uncertainty with respect to the
median (or geometric mean) is given by f.u. = eμ+σ /eμ = eμ/eμ−σ = eσ or σ = ln(f.u.); for
example, factor uncertainties of 2, 10 and 100 correspond to values of σ = 0.69, 2.3 and 4.6,
respectively. (v) For two independent, lognormally distributed, random variables x1 and x2, with
location and spread parameters of μ1, σ1 and μ2, σ2, the product αx

β1
1 x

β2
2 (where α > 0) is also

lognormally distributed, with location and spread parameters of μ = lnα + β1μ1 + β2μ2 and
σ 2 = β2

1σ 2
1 + β2

2σ 2
2 , respectively. The use of lognormal distributions for describing factor uncer-

tainties is discussed in Appendix B of Iliadis et al. [9]. For more information on the lognormal
distribution, see Ref. [10].
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Fig. 1. Comparison of Gaussian (dashed lines) and lognormal (solid lines) probability density functions; (a) E[x] = 50
and V [x] = 102, and (b) E[x] = 50 and V [x] = 202. See text.

The lognormal distribution is skewed, that is, it is asymmetric. This may be the reason for the
widespread use of Gaussian distributions even if the data sample is on statistical grounds more
properly described by a lognormal distribution. An impression can be obtained from Fig. 1 which
compares Gaussian and lognormal distributions of the same expectation value and variance. In
part (a) the values chosen are E[x] = 50 and V [x] = 102, that is, the standard deviation amounts
to 20% of the mean value. For the Gaussian distribution these values are equal to μ and σ 2,
respectively, according to Eq. (24). For the lognormal distribution, one finds from Eq. (27) the
values μ = 3.8924 and σ = 0.198. It is obvious that both distributions have very similar shapes.
A smaller value of the variance, so that σ � 0.1 for the lognormal distribution, results in two
curves that are visually indistinguishable on this scale. Part (b) represents the situation when the
variance is relatively large compared to the expectation value. In this case we have E[x] = 50 and
V [x] = 202, that is, the standard deviation amounts now to 40% of the mean value. We obtain
μ = 3.8378 and σ = 0.385 for the lognormal distribution, which is clearly skewed. Furthermore,
for a coverage probability of 68% the factor uncertainty amounts here to f.u. = eσ = 1.47.
Note that the Gaussian probability density function continues in the negative region, while the
lognormal distribution is only defined for positive values of x.

4.3. Chi-squared distribution

Consider k independent Gaussian distributed random variables with mean of μi = 0 and vari-
ance of σ 2

i = 1. The sum of their squares is distributed according to a chi-squared distribution,
where the parameter k is called the number of degrees of freedom. The chi-squared distribution
plays an important role in data fitting in connection with the method of least squares.

In the present work, it will be used in an entirely different context. We are mostly interested
in the simplest case: a chi-squared distribution with one degree of freedom (k = 1), that is, the
sum of squares consists of a single term only. In physics this special distribution is also referred
to as Porter–Thomas distribution (Section 5.1). The chi-squared distribution with one degree of
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Fig. 2. Chi-square distribution of one degree of freedom (solid line) on (a) a linear vertical axis scale, and (b) a logarithmic
vertical axis scale. For comparison, a lognormal distribution (dashed line) of same expectation value and variance as the
chi-squared distribution is shown. The lognormal parameters amount to μ = −0.54931 and σ = 1.0482, according to
Eq. (27).

freedom is given by

f (x) = 1√
2πx

e−x/2 (29)

This distribution is defined over the range of 0 < x < ∞ and has no adjustable parameters. The
expectation value and the variance are given by

E[x] = k = 1, V [x] = 2k = 2 (30)

The chi-squared distribution with one degree of freedom is displayed in Fig. 2. Note that it is
normalizable like any other probability density function although it displays a pole at zero.

4.4. Other distributions

A number of other distributions will be discussed briefly in this work. They are either not
included in the formalism presented in the following section or are only used here in exceptional
circumstances.

The uniform distribution has been mentioned in Section 3.2 in connection with previous in-
terpretations of reaction rate uncertainties. The probability density function for the continuous
variable x is given by

f (x) =
{

1
b−a

for a � x � b

0 for x < a, x > b
(31)

representing a square function with x uniformly distributed between a and b. The expectation
value and variance are given by

E[x] = 1
(a + b), V [x] = 1

(b − a)2 (32)

2 12
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The Poisson distribution is a discrete distribution that is derived from the binomial distribution
in the limit that the number of independent trials, N , is large and the (constant) probability, p,
for success of each trial is very small so that the product Np remains equal to some finite and
constant value k [37]. The probability density function for the discrete variable n = 0,1,2, . . . is
then given by

f (n) = kn

n! e
−k (33)

The expectation value and variance are

E[n] = k, V [n] = k (34)

Important areas of application for the Poisson distribution are nuclear counting experiments, such
as radioactive decay and cross section measurements. For example, for many precisely measured
half-lives the final uncertainty is dominated by counting statistics. In such cases, the probability
density function of the half-life is likely given by a difference of two Poisson distributions (for the
total and background count rate). The Poisson probability density function can be approximated
by a (continuous) Gaussian distribution if the value of the parameter k is not too small (say,
k > 5). The Poisson probability density, although mentioned in Section 5.2.2, is not used in the
present work.

Finally, the binary probability density function can only assume two discrete values with a
probability of 1/2 for each value. It is employed in the present work to describe interfering
amplitudes when the sign of the interference term is unknown.

5. Monte Carlo method

We will now discuss a method, based on the Monte Carlo technique,2 of estimating thermonu-
clear reaction rates. First, we turn our attention to associating each nuclear property that enters
in the estimation of reaction rates (Section 2) with a specific probability density function (Sec-
tion 4). Second, the elusive problem of upper limits for resonance strengths and partial widths
is addressed. Third, the Monte Carlo sampling procedure is explained in detail. Finally, some
properties for the output distribution of reaction rates will be discussed.

It must be kept in mind that our approach of estimating reaction rates requires (as any other
method would) a certain minimum amount of nuclear physics input. For example, if information
on crucial resonance parameters or interfering amplitudes is entirely missing, then the uncer-
tainties obtained with the present method would not be very meaningful compared to the errors
caused by (unknown) systematic effects. Specific reactions that had to be excluded from the
present evaluation will be discussed in Section 3 of Paper II, so that the reader can get an impres-
sion on their scope.

2 During the near completion stage of the present work, the effort of Ref. [11] has been brought to our attention. These
authors explore a Monte Carlo technique for calculating the rates of the 31P(p,γ )32S reaction. They address the simplest
possible input (that is, the total rate is given as an analytical function of resonance energies and strengths only) and
assume lognormal distributions both for the nuclear input and rate output probability density functions. We would like
to emphasize that unlike the present work their paper does not consider correlations in the random sampling, numerical
rate integration, upper limits of nuclear quantities, interferences between resonances, nonresonant and resonance tail
contributions, or deviations of the rate probability density from lognormality; furthermore, while we adopt a normal
probability density function for resonance energies, which accounts naturally for subthreshold states (Section 5.1.1), the
authors of Ref. [11] assume a lognormal distribution.
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5.1. Input statistical distributions of nuclear physics data

5.1.1. Resonance energies
Almost all of the resonance energies used in the present work are obtained from (i) the 50%

point on the low-energy edge of the measured thick-target yield curve, or (ii) the measured ex-
citation energy of the corresponding compound state by using Er = Ex − Q. In the first case,
the probability density function of the resonance energy in a given measurement is most likely
described by a Gaussian distribution since it can be assumed that the total uncertainty is given
by the sum of several small contributions (Section 4.1), for example, arising from the beam en-
ergy calibration, the measured yields, the fitting of the yield curve to find the 50% point, target
inhomogeneities and dead layers, and so on. In the second case, which occurs frequently for low-
energy resonances or reactions involving short-lived target nuclei, both the excitation energy and
the reaction Q-value can be assumed to be Gaussian distributed, so that the difference is again
described by a Gaussian probability density function. Thus we associate the reported or derived
values of the resonance energy and the corresponding (“1σ ”) uncertainty with the parameters μ

and σ of Eq. (23), respectively.
We already mentioned in Section 4.1 that a Gaussian distribution predicts a finite probability

for obtaining a negative random variable. This does not pose a problem for resonance energies
since as soon as a negative value of Er is sampled in the Monte Carlo method, we treat the
resonance as a subthreshold level and switch to the appropriate formalism, as discussed in Sec-
tion 2.3.

5.1.2. Resonance strengths
Resonance strengths have either been measured directly or are estimated from partial widths.

In the first case, we renormalized as far as possible all the literature ωγ values according to
the standard resonance strengths listed in Table 4.12 of Ref. [6]. Our procedure differs from
that of NACRE [2], where in most cases a weighted average of all reported ωγ values was
adopted, regardless of any systematic deviations between the different data sets. Uncertainties
of measured resonance strengths range from 4% for very careful studies to more typical val-
ues of 15–20%. These uncertainties are usually interpreted as 1σ uncertainties of a Gaussian
distribution. However, it is clear that such an interpretation will result a fraction of the time in
negative resonance strengths and, consequently, in negative reaction rates according to Eq. (10).
It is worthwhile to recall how a resonance strength is estimated in an experiment. Its value is
given by products or quotients of positive and independent quantities, such as a measured num-
ber of counts, a stopping power, a detection efficiency, an integrated beam charge, and so on.
As already mentioned in Section 4.2, the distribution of resonance strengths will then tend to-
wards a lognormal probability density function rather than a Gaussian. Thus we associate the
measured resonance strength and its corresponding uncertainty with the expectation value and
the square root of the variance, respectively, of a lognormal distribution. The corresponding pa-
rameters μ and σ are then obtained from Eq. (27). Recall that for relatively small variances a
lognormal distribution is almost indistinguishable from a Gaussian, but the former probability
density function has the desired property of predicting only positive values for the resonance
strength (Section 4.2).

If a resonance has not been observed yet, which occurs frequently for low-energy resonances
or reactions involving short-lived target nuclei, then its strength can be estimated from the partial
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widths by using Eqs. (11), (13)–(15). The estimate of the particle partial width requires knowl-
edge of the reduced width or the spectroscopic factor,3 which can be measured in direct (transfer)
reaction studies. Similarly, the γ -ray partial width can be estimated from the reduced transition
probability, which may be obtained from γ -ray decay studies. If the level properties for the states
of astrophysical interest have not been measured yet, then it is frequently possible to adopt the
required values of the spectroscopic factor and the reduced transition probability from the cor-
responding levels in the mirror nuclei. More information on this method can be found in Iliadis
et al. [9]. For the probability density functions of the particle and γ -ray partial widths we assume
again lognormal distributions for reasons similar to those given in connection with measured res-
onance strengths. The derived values of Γλc or Γγ represent expectation values. For the square
root of the variance we assume a value of 40% for the particle partial width and 50% for the
γ -ray partial width. The choice of these values is supported by a systematic comparison of par-
tial widths [9,27] and by an uncertainty analysis of measured spectroscopic factors [22]. The
parameters μ and σ of the lognormal distribution are then again found from Eq. (27). In some
cases we have to resort to shell model calculations of spectroscopic factors or reduced transition
probabilities. For the sake of consistency, values of 40% and 50% are used for the square root of
the variance of Γ SM

λc and Γ SM
γ , respectively.

In exceptional cases, a “best” value can be derived for a partial width, but the associated
uncertainty can only be estimated within a certain factor. For example, assume that the best
value of a partial width amounts to 1.0 × 10−5 eV and that this value is uncertain by a factor
of 3. For a lognormal distribution, the factor uncertainty relates to the median value rather than
the expectation value, as explained in Section 4.2. Thus we can assume that the interval between
1
3 (1.0×10−5) = 3.3×10−6 eV and 3(1.0×10−5) = 3.0×10−5 eV contains a coverage probabil-
ity of 68%. Interpreting 1.0×10−5 eV as the median value and 3 as the factor uncertainty, we find
for the lognormal parameters μ = ln(1.0 × 10−5) = −11.513 and σ = ln(3) = 1.0986. Accord-

ing to Eq. (26), this yields E[x] = 1.8×10−5 eV and
√

V [x] = E[x]
√

eσ 2 − 1 = 2.8×10−5 eV.
The square root of the variance is larger than the expectation value, indicating that the lognormal
distribution is highly skewed.

5.1.3. Nonresonant S-factors
The nonresonant reaction rate formalism of Section 2.1 can be used to calculate the contribu-

tion of direct nuclear processes. The most important nonresonant process in the present context
is called direct radiative capture. This relatively weak process has been observed only in a few
reactions (see Ref. [28] and references therein). In the overwhelming number of cases, the direct
capture cross section must be estimated from experimental nuclear structure information. The
cross section is given by

σDC
total =

∑
j

∑
if

C2Sj (f )σDC
calc,j (i, f ) (35)

where the incoherent sum is over all orbital angular momenta i and f of the initial scatter-
ing state and the final bound state, respectively, and over all final bound states j ; C2Sj is the

3 The reduced width and the spectroscopic factor are also related to the asymptotic normalization coefficient (ANC).
The relationship of reduced width and ANC is given by Eqs. (55) and (60) of Ref. [25], while the relationship of spec-
troscopic factor and ANC can be obtained from (ANC) = (C2S)1/2(ANC)sp , where (ANC)sp denotes the single-particle
ANC [26].
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experimental spectroscopic factor for state j and σDC
calc,j is the cross section for a specific transi-

tion calculated by using a single-particle potential model. The reaction rate contribution can then
be found from numerically integrating Eq. (1) after substitution of the total direct capture cross
section or, equivalently, from Eqs. (5)–(8) after converting the cross section to an S-factor. We
employed the latter procedure and assumed a lognormal probability density function for the total
S-factor in Eq. (5). For the square root of the variance we adopt a value of 40%, based on a sys-
tematic comparison of experimental spectroscopic factors from direct capture and from transfer
reaction studies [28]. A value of 40% for the square root of the variance of the S-factor is also
used in exceptional cases where C2Sj has to be extracted from the shell model.

5.2. Upper limits

We will now return to the elusive problem of how to include in the reaction rate uncertainty
analysis an upper limit for a resonance strength or a partial width. Two situations are of practical
interest. First, a resonance is not observed in a search and all that can be obtained from the
experimental spectrum of emitted particles or γ -rays is the total number of background counts
in the region of interest. Second, not only is a resonance not observed in a direct search, but the
corresponding compound level is not even populated in a transfer reaction study. Again, all that
is obtained from the transfer experiment is the total number of background counts in the region
of interest. The latter case is by far the most important one and will be addressed first.

5.2.1. Upper limits of partial widths
Assume first that absolutely no experimental information is available on a particle or γ -ray

partial width. All that is known is that a nuclear level occurs at an energy that may or may not
strongly influence the total reaction rates. One may be tempted to describe the probability density
function for this situation by using a uniform distribution (Section 4.4), implying a constant
probability between zero and some (perhaps dictated by theory) upper limit of b. This choice
would imply a mean value of b/2 and an equal probability for obtaining values below and above
b/2. However, such an assumption contradicts the predictions of nuclear statistical models, as
will be explained in the following.

According to Eqs. (13) and (15) the particle and γ -ray partial widths are determined by the
dimensionless reduced width θ2 (or the spectroscopic factor C2S) and the reduced transition
probability B , respectively. Either of these quantities represents a square of an amplitude that
is proportional to a matrix element of the nuclear Hamiltonian. The matrix element is equal to
an integral over the nuclear configuration space. If the wave functions are sufficiently complex
the matrix element will have contributions from many different parts of the configuration space,
with the sign and magnitude of a particular contribution being random from level to level and
independent in sign and magnitude from all other parts. According to the central limit theorem
(Section 4.1) the probability density function of the nuclear matrix element will be approximately
Gaussian with an expectation value of zero. Therefore, it follows immediately that the probabil-
ity density function for θ2 or B , that is, the square of the amplitude, is given by a chi-squared
distribution with one degree of freedom (Section 4.3). Furthermore, the variance of the Gaussian
amplitude distribution is just the local mean value of the reduced width, 〈θ2〉, or transition proba-
bility, 〈B〉, for a given single channel (since V [x] = E[x2]−E[x]2 and E[x] = 0 for a Gaussian
centered at zero).
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These arguments were first presented in Ref. [29] and the probability density function is also
known as Porter–Thomas distribution. It is given by Eq. (29) where the random variable is equal
to the ratio of reduced width or transition probability and their respective local mean value.
For example, we may express Eq. (29) for a particle channel in terms of the variable θ2 and
find

f
(
θ2) = c√

θ2
e−θ2/(2〈θ2〉) (36)

with c denoting a normalization constant. The distribution implies that the reduced widths for a
single reaction channel, that is, for a given nucleus and set of quantum numbers, vary by sev-
eral orders of magnitude with a higher probability the smaller the value of the reduced width.
The Porter–Thomas distribution emerges naturally from the Gaussian orthogonal ensemble of
random matrix theory (see Ref. [30] for more information).

There are numerous publications that provide experimental support for the arguments given
above (see, for example, Refs. [31–35]). Experimental tests of the Porter–Thomas distribution
face essentially the same problem, that is, to find data sets of nuclear statistical properties that
are sufficiently large to make meaningful predictions. Recall the assumptions we made above:
a distribution of reduced widths (or transition probabilities) for a given nucleus, given orbital
angular momentum and channel spin, and so on, follows a Porter–Thomas probability density
function. Clearly, it is experimentally difficult to collect enough data under such restrictive as-
sumptions. Nevertheless, the validity of the Porter–Thomas distribution can be regarded as firmly
established.

Consider, for example, Fig. 3 showing the experimental distribution of 1127 proton and 360
α-particle dimensionless reduced widths of unbound levels in 24Mg, 28Si, 30P, 32S, 36Ar and
40Ca. The data were obtained over the past decades at TUNL by G. Mitchell and collaborators
(see Ref. [36], and references therein). We grouped the widths according to nucleus and orbital
angular momentum (-)transfer, then averaged the widths locally for each group, and finally
divided each θ2 value by the corresponding local mean. The resulting experimental distributions
of the random variable y = θ2/〈θ2〉 are displayed as histograms for protons (top) and α-particles
(bottom). The solid lines represent Porter–Thomas distributions. The agreement with the data is
obvious. One has to be careful when interpreting Fig. 3 or similar plots published in the literature.
It should be noted that the reduced widths follow a Porter–Thomas distribution only if the nuclear
matrix elements have contributions from many different parts of the configuration space. This is
clearly not the case for low-lying bound states of nearly closed-shell character or α-cluster states
where the matrix elements may be dominated by a few large contributions. However, such states
exhibit frequently large values of θ2

p or θ2
α and are thus likely to be observed in transfer reaction

studies. Neither is there a compelling reason why the reduced widths of isospin-nonconserving
particle decays should follow a Porter–Thomas distribution. Such (isobaric analog) resonances
normally have very small proton widths and thus make minor contributions to the total rate
compared to neighboring resonances. In other words, these exceptional cases are usually not of
major concern for the issue of upper limits in nuclear astrophysics.

It must be emphasized that what is of interest in the present work is not the ratio y = θ2/〈θ2〉,
but the value of θ2 = y 〈θ2〉 which enters directly in Eq. (13). What is usually presented in the
literature is the ratio y and, unfortunately, almost no values of the actual means 〈θ2〉 are re-
ported. Of course, knowledge of 〈θ2〉 is required in order to select a random sample of θ2 from
a Porter–Thomas distribution (see below). In Fig. 4 we show the same data as in Fig. 3, but in
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Fig. 3. Distribution of dimensionless reduced widths for protons (top) and α-particles (bottom) of unbound states in
24Mg, 28Si, 30P, 32S, 36Ar and 40Ca. The data are first grouped according to A and  and each θ2 value is then divided
by its local mean, that is, y = θ2/〈θ2〉. The solid curves show Porter–Thomas distributions.

terms of the variable θ2, for protons (top) and α-particles (bottom). The solid curves now repre-
sent least-squares fits of Porter–Thomas distributions to the data, with f (θ2) given by Eq. (36).
The agreement is not as good as in Fig. 3 because all θ2-values have been grouped together,
regardless of differences in nuclear mass A or -value. Thus the histograms represent sums of
Porter–Thomas distributions for different combinations of A and . Nevertheless, a single Porter–
Thomas distribution describes the total distributions rather well for small values of θ2, that is, for
those levels that will most likely escape detection in a transfer reaction measurement. The best-fit
mean values of the dimensionless reduced widths for protons and α-particles, extracted from the
curves displayed in Fig. 4, amount to 〈θ2

p〉 = 0.0045 and 〈θ2
α〉 = 0.010, respectively. These values

will be adopted in the present reaction rate evaluation. We also performed least-squares fits to
individual groups of data, each characterized by a given combination of A and . As a result we
find indeed some scatter, by a factor of ≈ 2–3, around the values of 〈θ2〉 quoted above. However,
at present it is not clear how much of the scatter is caused by inherent differences between the
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Fig. 4. Distribution of dimensionless reduced widths for protons (top) and α-particles (bottom) of unbound states in
24Mg, 28Si, 32S, 36Ar and 40Ca. All θ2-values are grouped together, regardless of differences in A or . The solid
curves represent least-squares fits of Porter–Thomas distributions to the data. The fits result in global mean values of
〈θ2

p〉 = 0.0045 and 〈θ2
α〉 = 0.010. These values are adopted for the present reaction rate evaluation.

local mean values as opposed to statistical scatter caused by significantly reduced sample sizes.
Clearly, we regard the above numerical choices for 〈θ2〉 as a first, preliminary step. More work
in this regard is in order.4

Much of the above discussion focuses on reduced widths although similar arguments apply to
the reduced transition probabilities of γ -ray transitions: for a given nucleus, given γ -ray multi-
polarity and transition character (that is, electric or magnetic) the values of B(ωL) are expected

4 The large mean value of the proton spectroscopic factor reported in Ref. [22], 〈Sp〉 = 0.65, disagrees with our results
and is certainly erroneous. We are now convinced that their procedure of fitting well-known spectroscopic factors of low-
lying bound states in the sd-shell is inappropriate since it is necessarily biased toward values that are too large (that is,
levels that are populated strongly in transfer reactions). There is no obvious reason why such states should be represented
by a Gaussian reduced width amplitude distribution according to the arguments given here.
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to follow a Porter–Thomas distribution. An extra complication is introduced by the fact that the
total γ -ray width is usually given by the sum of n partial γ -ray widths,

Γγ =
n∑
i

Γγ,i (37)

Each of the partial widths Γγ,i follows a Porter–Thomas distribution, but the local means of Bi

may be different depending on the values of ω and L. If many partial γ -ray widths contribute to
the total γ -ray width (n large) one expects, according to the central limit theorem (Section 4.1),
that Γγ tends to follow a Gaussian distribution. In principle, it would be straightforward to se-
lect a value of Γγ at random once the local means 〈Bi〉 for the individual transitions have been
extracted from large experimental data ensembles of reduced transition probabilities. We did not
pursue this idea further since precise values of Γγ are not crucial for evaluating the reaction rates
presented in Paper II. However, estimates of 〈Bi〉 would clearly be helpful in special circum-
stances and for future rate evaluations. More studies in this direction may be needed.

We must now relax our initial assumption that no information is available for a given level
other than its excitation energy and quantum numbers. Frequently, there exists additional exper-
imental information in the form of an upper limit for a partial width derived, for example, from
an upper limit of a spectroscopic factor (or reduced width) measured in a transfer reaction (Sec-
tion 5.1.2). If the probability density function for the upper limit measurement would be known,
then one could combine the experimental result with a Porter–Thomas distribution in order to
find the overall probability density function. This could be done, for example, by convoluting
the two probability densities in question. Of course, as already pointed out in Section 3.4, the
probability density function on which the upper limit value is presumably based is usually not
reported in the nuclear astrophysics literature. Thus we are faced with the problem of how to
incorporate in a meaningful way the information available from the literature (that is, a given
value of an upper limit) into the reaction rate formalism (Section 2). In lack of a more rigorous
approach, we simply adopt

f
(
θ2) =

{
c√
θ2

e−θ2/(2〈θ2〉) if θ2 � θ2
ul

0 if θ2 > θ2
ul

(38)

That is, we truncate the Porter–Thomas distribution of Eq. (36) at the experimental upper limit
of the dimensionless reduced width, θ2

ul . The effects of this choice will be discussed in Paper II.

5.2.2. Upper limits of resonance strengths
Suppose one performs a direct search for an expected low-energy resonance, but no noticeable

net signal is observed in the spectral region of interest. All that is observed is unwanted back-
ground. For each channel in the region of interest the number of counts is distributed according
to Poisson statistics (Section 4.4): if the mean number of counts is k then the probability that
a measurement (of signal or background) will give n counts is given by Eq. (33). In practice,
the background is frequently estimated, for example, in a calibration run. It is then subtracted
from the total number of observed counts in order to estimate an upper limit on the number of
signal counts, that is, N sig = N tot − Nbg . The rigorous conversion of an upper limit of counts
into an upper limit for a resonance strength, ωγul , should be based on an appropriate probability
density function but, as mentioned in Section 3.4, the probability density function used to derive
a published upper limit value is usually not reported in the literature. For the future we recom-
mend modern procedures of estimating statistically meaningful upper limits (see, for example,
Refs. [38,39]).
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In order to incorporate a previously reported upper limit of a resonance strength into the
reaction rate formalism (Section 2) we adopted the following procedure: (i) we assume that the
upper limit ωγul is determined by an upper limit of the (entrance channel) particle partial width,
Γ ul

a ; (ii) the value of Γ ul
a is computed from the measured value of ωγul by using Eq. (11); (iii) the

derived value of Γ ul
a is converted to an upper limit of the dimensionless reduced width, θ2

ul ,
according to Eq. (13); (iv) the probability density function of θ2 is given by a Porter–Thomas
distribution, according to Eq. (38). Assumption (i) is usually fulfilled in reactions with only
two open channels since direct searches for low-energy resonances result in sufficiently small
resonance strength upper limits so that the condition Γa 	 Γγ holds (see Section 2.2). With
the procedure described above the treatment of upper limits for partial widths and resonance
strengths is based on the same foundation.

5.3. Monte Carlo sampling

In previous sections we assigned a specific probability density function to each quantity en-
tering in the calculation of the reaction rates (Section 2): a Gaussian for resonance energies;
a lognormal distribution for measured resonance strengths, nonresonant S-factors and partial
widths; a Porter–Thomas distribution for measured upper limits on partial widths; and so on.
Once a probability density function is chosen for each input quantity, the total reaction rate
and the associated uncertainty can be estimated using standard Monte Carlo techniques (see
Ref. [23]). In particular, a random value is generated for each (input) quantity according to the
corresponding probability density function and the total reaction rate calculated from these val-
ues is recorded. The procedure is repeated many times until enough samples of the reaction rate
have been generated to estimate the properties of the (output) reaction rate probability density
function with the required statistical precision.

Correlations between quantities have to be considered carefully with this technique. For ex-
ample, if the strength of a narrow resonance is estimated from a reduced width or a spectroscopic
factor, then the uncertainty in the resonance energy enters in the Boltzmann factor of Eq. (10)
and in the penetration factor of Eq. (13). Thus the same random value of the resonance energy,
drawn from a Gaussian probability density function, must be used in both expressions.

It was argued in Ref. [22] that if just 5 resonances contribute to a given reaction rate, where
each resonance has 3 assumed error sources (Er , Γp , Γγ ), and if each of the 15 independent error
sources were sampled only 10 times in a Monte Carlo simulation, then the total reaction rate
would have to be calculated 1015 times. Such a procedure, which is not feasible with present-day
computers, would provide information about the uncertainty contribution of each input quantity
to the total rate. It must be emphasized that we do not attempt to analyze this kind of detailed
information here. Instead, our main goal is to find the probability density function for the total
reaction rate, which can certainly be achieved with a significantly reduced number of samples
(see below).

A computer code, RatesMC, has been written in order to calculate total reaction rates from
resonant and nonresonant input parameters using the Monte Carlo technique. For resonances
the code computes reaction rates either from the analytical expressions given in Section 2 or,
if required, by numerical integration of Eq. (1). The latter procedure, although computationally
slow since one integration has to be performed for each randomly drawn set of input quantities,
gives the most accurate results if the partial widths of a resonance are known. Upper limits of
input quantities and interferences between resonances are also taken into account in the random
sampling. The user controls the total number of random samples and hence the precision of
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the Monte Carlo method. The reaction rate output of the code is described in the next section.
Detailed discussions of realistic examples will be given in Paper II, while a description of the
input file to RatesMC can be found in Paper III. In Paper IV we compare our new reaction rates
to previous results.

5.4. Output statistical distributions of reaction rates

Numerical results from the Monte Carlo method, obtained using the code RatesMC, are dis-
played in Fig. 5. They have been obtained for a single, fictitious resonance in the 22Ne(α,γ )26Mg
reaction at a stellar temperature of T = 0.5 GK. The assumed parameters of the narrow resonance
are Er = 300±15 keV and ωγ = 4.1±0.2 eV. The reaction rate has been sampled 10000 times.
Part (a) displays the probability density function as a red histogram. The distribution is skewed
because of the relatively large uncertainty in the resonance energy (see below). The estimate of
the Monte Carlo reaction rate proceeds in the following manner. First, the cumulative rate distri-
bution, shown as a red line in part (b), is calculated from the set of sampled reaction rate values
and is normalized to unity. Note the amount of scatter in part (a), while a rather smooth curve
is obtained in part (b) with the chosen sample size. Second, the location parameter (or central
value), together with a measure for the spread of reaction rate values, are calculated from the
cumulative distribution. For the central (recommended) value of the rate we chose the median
which is equal to the 0.50 quantile of the cumulative distribution (Section 4). In our example, this
value amounts to NA〈σv〉med = 2.72 × 102 cm3 mol−1 s−1. The low and high values of the rate
are chosen to coincide with the 0.16 and 0.84 quantiles. With this choice the confidence level (or
the coverage probability) is 68%. The derived values are NA〈σv〉low = 1.92×102 cm3 mol−1 s−1

and NA〈σv〉high = 3.87 × 102 cm3 mol−1 s−1. We will avoid in the following and in Papers II
and III expressions such as “lower limit” or “maximum rate” since they imply sharp bound-
aries (see discussion in Section 3.2). Instead we will use the terms low rate and high rate when
referring to the 0.16 and 0.84 quantiles derived from the Monte Carlo method.

It must be emphasized that we are deriving our results directly from the cumulative distri-
bution5 of Monte Carlo reaction rates (Fig. 5(b)) instead of the probability density function
(Fig. 5(a)). The reason is that the latter distribution depends on the binning of reaction rate
values which introduces considerable arbitrariness as to how the bins should be chosen. Since
binning always involves a loss of information, we prefer to derive our numerical results from the
cumulative distribution. Plots of reaction rate probability density functions are presented here
and in Paper II mainly to aid in the visualization of our results.

A few comments are in order. An obvious test of our method is the comparison of the value
of the median Monte Carlo rate with the classical rate. From Eq. (10) one finds NA〈σv〉class =
2.71 × 102 cm3 mol−1 s−1, in agreement with the Monte Carlo result. Such a comparison is of
course not possible when upper limits of input quantities need to be considered since the classical
reaction rate calculation method does not properly account for upper limits. Therefore, we will
consistently quote in Paper II the median rate which represents our recommended reaction rate.
In all cases that were analyzed in more detail and that did not involve any upper limits for input
quantities we found that the classical rate and the median rate agree within about 5%. In any case,
it is important for a given situation to perform at least two computational runs with a different

5 In practice, the N sampled values of reaction rates, xi , are sorted into ascending order. The cumulative distribution,
F(x), is constant between consecutive values of xi and rises an equal amount, 1/N , at each sampled rate. The quantiles
(Section 4) are found from the fraction of values located below a given xq , after proper interpolation.
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Fig. 5. (Color online.) Results of Monte Carlo calculation for a single, fictitious resonance in the 22Ne(α,γ )26Mg reaction
at a temperature of T = 0.5 GK. The resonance parameters are Er = 300 ± 15 keV and ωγ = 4.1 ± 0.2 eV. The reaction
rate is sampled 10000 times. (a) Reaction rate probability density function, shown in red; the black solid line represents a
lognormal approximation (see text). (b) Cumulative reaction rate distribution. The vertical dotted lines represent the low,
median and high Monte Carlo reaction rates which are obtained from the 0.16, 0.50 and 0.84 quantiles, respectively.

number of samples in order to test the numerical stability of the results. In most cases, we found
that runs with at least 5000 samples were necessary to obtain reaction rates that are reproducible
within a few percent.

Recall that the median rate divides the probability density function shown in Fig. 5(a) into
two parts of equal area. In this case the median does not coincide with the mode (that is, the
maximum of the distribution) since the probability density function is skewed. Another measure
for the location parameter is the mean which is obtained from Eq. (21). Although in this example
the mean agrees numerically with the median, we found in more complicated cases (see Paper II)
that the values are not always in agreement. It is a well-known fact that the value of the mean
is much more sensitive to outliers in the distribution, while the median in this regard is a more
robust measure for the location [40]. Therefore, we prefer to quote the latter over the former
quantity.

For reasons that will become clear in the next section it is crucial to find a simple analytical
approximation for the Monte Carlo reaction rate probability density function at each tempera-
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ture. During the evaluation process we have obtained all kinds of shapes for the reaction rate
probability density, ranging from highly skewed to symmetric (bell) shapes. A Gaussian is cer-
tainly not a reliable approximation to a skewed distribution but, as we have seen in Section 4.2,
a lognormal distribution can account for both symmetric and asymmetric shapes. There are a
number of reasons why a lognormal distribution is useful for this purpose. First, suppose that the
total reaction rate is dominated by a nonresonant process; since we assume a lognormal proba-
bility density function for the effective S-factor, it follows immediately from Eq. (6) that the total
reaction rate is also lognormally distributed. Second, if the total reaction rate is dominated by a
single resonance and if the uncertainty in the resonance energy dominates over the uncertainty
in the resonance strength, which is the case for the situation displayed in Fig. 5, then the total
rate given by Eq. (10) will again be lognormally distributed; this can be seen from the fact that
for a Gaussian distributed random variable y (here the resonance energy) the variable x = ey

(here the reaction rate) will follow a lognormal distribution (see Section 4.2). Third, if the total
reaction rate is dominated by a single resonance and if the uncertainty in the resonance strength
dominates over the uncertainty in the resonance energy, then the rate distribution will become
lognormal since the resonance strength enters linearly in the resonant rate expression; in fact,
for a moderate uncertainty in the resonance strength,

√
V [x]/E[x] < 20% (see Section 4.2 and

Fig. 1(a)), the rate distribution becomes Gaussian in shape. Finally, if the total rate is given by
the sum of several contributing resonances, then the total rate will tend toward a Gaussian, ac-
cording to the central limit theorem. Recall that a Gaussian distribution can be approximated by
a lognormal distribution in a straightforward manner.

These arguments do not prove that the total reaction rate must necessarily be lognormally
distributed. In fact, we will demonstrate in Paper II that the Monte Carlo reaction rate probability
density functions are in general not lognormal. However, for the majority of reaction rates that we
analyzed in detail, the assumption of a lognormal approximation for the reaction rate probability
density function appears useful. Better approximations may exist, for example, the function given
by Eq. (20) which differs from a lognormal distribution. We have not pursued this idea and further
studies may be desirable.

Once a lognormal distribution is adopted for approximating the reaction rate probability den-
sity function, it is a simple matter to calculate the lognormal parameters from the expectation
value and the variance for ln(x) (since μ = E[ln(x)] and σ 2 = V [ln(x)]; see Section 4.2). For
the above example, one finds values of μ = 5.603 and σ = 0.3526. The lognormal distribution
calculated with these parameters is shown in Fig. 5(a) as a black solid line. It can be seen that the
agreement with the Monte Carlo distribution, shown in red, is excellent. Note that the black line
does not represent a fit to the data but its parameters are directly derived from the distribution of
randomly sampled reaction rates. In Paper II we provide for each temperature point, in addition
to the low, median and high Monte Carlo rate, the lognormal parameters μ and σ of the total
reaction rate probability density function.

Finally, we comment on a few observations that will prove useful when considering the evalu-
ated reaction rates presented in Paper II. Recall from Section 4.2 that the skewness of a lognormal
distribution is related to the magnitude of σ . As a rule of thumb, values of σ < 0.1 correspond
to a nearly symmetric (that is, Gaussian) distribution, while for larger values the distribution will
be noticeably skewed. In the above example we found σ = 0.3526, indicating a strongly skewed
distribution as is apparent from Fig. 5(a). Thus a quick inspection of the table columns listing
σ in Paper II will immediately reveal the skewness of the total reaction rate probability density
function. Second, we find that in the majority of cases (that is, when the total reaction rate is log-
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normally distributed) the lognormal parameters are related to the low, median and high Monte
Carlo rates by6 (Section 4.2 and Eq. (28))

μ = ln(xmed) = ln
√

xlowxhigh, σ = ln

(
xhigh

xmed

)
= ln

√
xhigh

xlow
(39)

or, equivalently,

xlow = eμ−σ , xmed = eμ, xhigh = eμ+σ (40)

where x denotes the total reaction rate. These relationships, which apply to a coverage probability
of 68%, usually hold within a few percent and, in fact, can be used to determine in a simple
manner if the total reaction rate probability density function is indeed lognormal or not. They are
also useful for estimating an approximate probability density function for some reaction rates
that have not been analyzed in the present work with the Monte Carlo technique (see Paper II
for details). We emphasize that our reaction rate uncertainties reflect our best current knowledge
of the nuclear physics input. By no means can our method account for the possibility that, for
example, a reported resonance strength was derived using the wrong stoichiometry, or that an
incorrect Jπ value has been reported for a particular nuclear level. This issue should be kept in
mind when drawing conclusions from our Monte Carlo reaction rate uncertainties.

5.5. Use of Monte Carlo reaction rates in stellar models

Finally, the general usefulness of our results for future stellar model simulations will be ad-
dressed. It has already been mentioned in Section 3.2 that more emphasis has been placed in
recent years on studying the influence of reaction rate uncertainties on stellar nucleosynthe-
sis. Consider, for example, the sensitivity study of classical nova nucleosynthesis presented
in Ref. [15]. The general strategy adopted by the authors was the following: (i) calculate the
temperature-density evolution for specific burning zones within a hydrodynamical model; (ii) set
up a grid of “reaction rate variation factors” within the boundaries provided by published “lower”
and “upper limits” on the rate; and (iii) perform post-processing reaction network calculations by
varying the rate of one reaction at a time. The procedure represents a brute force approach and
was intended to provide a first qualitative impression on the reaction rate sensitivity. However, it
does not account for the interplay and for correlations between nuclear processes in the reaction
network and, even more importantly, it does certainly not provide realistic estimates of isotopic
abundances and associated uncertainties for the reasons discussed at length in the present work.

An interesting, different approach was presented by Hix and collaborators [41]. These au-
thors assumed (although they did not justify) that reaction rates are distributed according to a
lognormal probability density function. Sets of reactions were then grouped according to their
global uncertainties: for all reactions involving radioactive targets in their network an uncer-
tainty of a factor 1.5 was assumed; for all stable target nuclei the assumed uncertainty amounted
to a factor 1.2, and so on. Note that these “factor uncertainties” are related to the geometric
standard deviation of the lognormal distribution, according to Eq. (28). Finally, post-processing
reaction network calculations were performed many times in a Monte Carlo study by simulta-
neously varying all rates, where for each reaction the rate was randomly sampled according to

6 Recall that x is defined to be in units of cm3 mol−1 s−1. Here, the transformation of x to a dimensionless quan-
tity, for use as an argument of a logarithmic or exponential function, is accomplished implicitly by dividing x by
1 cm3 mol−1 s−1. Similar transformations apply to μ and σ .
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the corresponding lognormal probability density function. As a result of this procedure, abun-
dance distributions for each nuclide in the network were obtained which could then be analyzed
to derive average abundances and associated uncertainties. An obvious drawback of this tech-
nique is the fact that global and rather small reaction rate uncertainties were adopted that had no
relationship to any measured or estimated nuclear physics input.

The present work provides the important information on the reaction rates that was missing
so far. In Paper II we report for each reaction in the mass range of interest here the numerical
values of the lognormal parameters μ and σ on a temperature grid. These tables can be incorpo-
rated into post-processing reaction network calculations. According to Eq. (40), the value of μ

provides the median Monte Carlo reaction rate, while the value of σ determines the width of the
reaction rate probability density function. This is all the information needed in order to perform,
in a second Monte Carlo step, a simultaneous variation of all rates in the reaction network. Such
investigations will provide more realistic estimates of abundances and their associated uncertain-
ties. We are looking forward to the results of such studies for the nucleosynthesis in red giants,
AGB stars, classical novae, supernovae and other sites.

6. Summary and suggestions for future work

The present work describes a method, based on Monte Carlo techniques, of evaluating ther-
monuclear reaction rates. The point is made that reaction rates reported up to now in the literature
have no rigorous statistical meaning. As a first step toward a new method, we associate each nu-
clear physics quantity entering in the calculation of reaction rates with a specific probability
density function, including Gaussian, lognormal and chi-squared distributions. Based on these
(input) probability density functions the total reaction rate is randomly sampled many times until
the required statistical precision is achieved. This procedure results in a median Monte Carlo
rate that agrees under certain conditions with the commonly reported recommended “classical”
rate. For each temperature a low rate and a high Monte Carlo rate is computed, corresponding
to the 0.16 and 0.84 quantiles of the cumulative reaction rate distribution. These quantities dif-
fer in general from the statistically meaningless “minimum” (or “lower limit”) and “maximum”
(or “upper limit”) reaction rates which are commonly reported in the literature. In addition, we
approximate the (output) reaction rate probability density function by a lognormal distribution
and present, at each temperature, the lognormal parameters μ and σ . The values of these quan-
tities will be important in future Monte Carlo nucleosynthesis studies. Our new reaction rates,
appropriate for bare nuclei in the laboratory, are tabulated in the second paper of this issue (Pa-
per II). The nuclear physics input used to compute the reaction rates, together with a description
of the Monte Carlo code RatesMC, is presented in the third paper (Paper III). In the fourth paper
(Paper IV) we compare our new reaction rates to previous results.

We summarize below certain aspects of our work that call for future efforts from the nuclear
astrophysics community:

(1) We can hardly overemphasize that incomplete information is usually published when the
results of a measurement are reported. It is not sufficient to provide a value and its standard
deviation, but the probability density function on which these values are based should also be
reported. This is especially important for null-results: to report simply an “upper limit” to-
gether with a confidence level is insufficient, unless the most important piece of information,
that is, the corresponding probability density function, is reported as well.
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(2) Null-results are incorporated in a consistent way into the present Monte Carlo method within
the framework of Porter–Thomas distributions. In order to draw a random sample of a re-
duced width (or a spectroscopic factor) from a Porter–Thomas distribution, the local mean
value must be known. It is reasonable to assume that this mean depends on the nuclear mass
number A and the orbital angular momentum . In the present work we use values for the
mean that have been obtained from our preliminary analysis, that is, by binning together all
values of a large data sample and fitting them to a Porter–Thomas distribution, regardless
of their A or  values. What is required are systematic studies of nuclear statistical prop-
erties that provide improved local mean values for proton and α-particle reduced widths.
Similar studies should be performed for reduced γ -ray transition probabilities. Theoretical
investigations, perhaps employing the shell-model, could be helpful in this regard.

(3) We approximate the output reaction rate probability density function by a lognormal distri-
bution and provide reasonable arguments for justifying this assumption. However, in some
cases, especially when the uncertainty on the resonance energy is large or when undetected
low-energy resonances become important, the output reaction rate distributions deviate
strongly from lognormality. In such cases we obtain results which can only be approxi-
mated by a statistical distribution that depends on more than two parameters. Further studies
are required to decide if more complicated expressions of reaction rate probability density
functions are needed for future nucleosynthesis studies.
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