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1. Introduction

Optical scattering measurements are extremely sensitive for locating
and characterizing defects, contamination, and roughness on smooth sur-
faces. Its sensitive, high-throughput, and non-destructive nature has
made optical scattering the preferred method for inspecting many ma-
terials whose surfaces must be pristine before manufacturing devices
on them, such as polished silicon for the semiconductor microelectron-
ics industry, substrates for magnetic storage media, and glass used for
information display systems.1 Optical scattering often limits the perfor-
mance of optics, such as those used for satellite telescopes or ring-laser
gyroscopes. Understanding and being able to measure roughness can
aid manufacturers in developing these materials. Lastly, the morphol-
ogy of thin films is determined by the mechanisms of film growth and
the interactions between the interfaces, and measurements of the relative
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roughness and correlation between the interfaces can yield significant in-
formation about the underlying physics in these systems.2

Since there may be a number of different sources of optical scatter in
a material or thin film besides roughness, such as material inhomogene-
ity, subsurface defects, or particles, it may be important to distinguish
among the different sources in order to properly interpret optical scat-
tering measurements. Recent research has demonstrated that the po-
larization of light scattering can be instrumental in this application.3–7

Theoretical and experimental results have shown that different scatter-
ing sources yield unique polarization signatures that can be used to
distinguish scattering sources or validate the interpretation of intensity
data.

This chapter will discuss the measurement and interpretation of rough-
ness by angle-resolved optical scattering with an emphasis on utilizing
information contained in the polarization. In Sec. 2, we will describe
how to quantify scattered light in terms of its intensity and polarization
properties. In Sec. 3, we will discuss measurement methods. In Sec. 4,
we will describe roughness of a single interface, where we use the polar-
ization information primarily to validate the interpretation. In Sec. 5,
we will describe the scattering by the two layers of a dielectric film and
show how the polarization can yield information about the relative am-
plitude and correlation between the roughness of the two interfaces. In
the final section, Sec. 6, we will make some remarks about extending the
technique to more interfaces.

2. Definitions

Angle-resolved measurements are concerned with quantifying light
originating from a source direction, defined by a polar angle θi and az-
imuthal angle φi, and scattered into a reflected direction, defined by a
polar angle θr and azimuthal angle φr. One quantity describing the direc-
tional dependence of scatter from a surface is the bidirectional reflectance
distribution function (BRDF), defined historically8 as the differential ra-
diance dLr (power per unit solid angle per unit projected surface area)
scattered by a uniformly illuminated, homogeneous material per unit
differential incident irradiance dEi (power per unit surface area):

fr(θi, φi, θr, φr) =
dLr(θi, φi, θr, φr)

dEi(θi, φi)
(9.1)

Eq. (9.1), while often quoted, is of little practical use, because most
materials are not homogeneous and most illumination schemes are not
uniform. That is, even if a material does not have appreciable variation
across its surface, any real specimen has a finite extent. Likewise, while



Polarized Optical Scattering 3

we can generate illumination that is approximately uniform within some
region, that region of illumination must come to an end, if not simply
at the specimen edge. The biggest problem with this definition is that
diffuse materials often emit light outside of a finitely illuminated region.
When we see Eq. (9.1), but ignore the words surrounding it, then we can
easily find ourselves coping with an apparently infinite BRDF in certain
regions of the sample.

An equivalent definition of the BRDF considers the average power
〈Φr〉 scattered into a solid angle Ω for a given incident power Φi:

fr(θi, φi, θr, φr) = lim
Ω→0

〈Φr〉
ΦiΩ cos θr

(9.2)

That is, the BRDF is the average fraction of light scattered per projected

solid angle for a finitely illuminated region. It is a distribution in the
scattering direction and a function of incident direction. It is also a
function of wavelength, polarization, and sample properties.

While the BRDF appears to have a term (i.e., cos θr) that might cause
it to diverge for large scattering angles, most surface scattering sources
behave in such a manner that the scattering per unit solid angle falls
off in angle fast enough that the BRDF not only remains finite, but
approaches zero for θr → 90◦. In real data, however, this may not be
true. Rayleigh scatter by air within the field of view of the receiver,
a primary background source in smooth surface scatter measurements,
and other sources of stray light do not vanish at large scattering angles.9

Furthermore, small uncertainties in the scattering angle can lead to ap-
parent uncertainties in the BRDF, which do not translate to meaningful
uncertainties for some applications. A convenient property of the BRDF
is that it obeys Helmholtz reciprocity:

fr(θi, φi, θr, φr) = fr(θr, φr, θi, φi) (9.3)

The definition of the BRDF given in Eq. (9.2) does not fully char-
acterize the scatter properties of a material, though, because it fails to
include any details of how scatter depends upon incident polarization
or what polarization the scattered light is. The addition of information
contained in the polarization makes measurements of the polarization
attractive.

To characterize polarization states, the Mueller-Stokes formalism is
convenient.10 Any intensity-like quantity (e.g., power, radiance, irradi-
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ance, etc.) can be quantified in terms of a Stokes vector, given by

Φ =









Φs + Φp

Φs − Φp

Φs+p − Φs−p

Φlcp − Φrcp









(9.4)

where Φu is the power that we would measure if we used an analyzer
that passes only u-polarized light: s indicating that the electric field is
perpendicular to the plane defined by the direction of propagation and
the surface normal, p indicating that the electric field is parallel to that
plane, s±p indicating that the electric field is ±45◦ with respect to those
directions, and lcp and rcp indicating left- and right-circularly polarized
light, respectively. We can describe how a material interacts with light,
assuming that the material’s effect upon the light is linear, using a 4× 4
Mueller matrix, which relates an input Stokes vector to an output Stokes
vector. A Mueller matrix BRDF, Fr, can then be defined as the Mueller
matrix that relates the average scattered Stokes vector power 〈Φr〉 to
the incident Stokes vector power Φi:

11

lim
Ω→0

〈Φr〉
Ω

= FrΦicos θr (9.5)

Note that we have rearranged Eq. (9.5), compared to Eq. (9.2), since one
cannot divide a Stokes vector by another Stokes vector. Furthermore,
we cannot measure Fr with a single measurement.

In many applications, measurement of the full Mueller matrix BRDF
is not necessary to yield the information we need. Rather, a specific
incident polarization, which may depend upon incident and scattered
directions, is chosen to maximize differentiation among scattering mech-
anisms, and we measure the Stokes vector of the scattered light. Some-
times, instead of reporting the Stokes vector elements, a different combi-
nation of them is reported. One set of parameters consists of the BRDF
for the given incident polarization, fr, the principal angle of the polar-
ization ellipse, η, the degree of circular polarization, PC , and the total
degree of polarization P . These parameters are related to the measured
Stokes vector intensity by

fr = 〈Φr0〉/(Ω Φi cos θr)

η = tan−1(〈Φr2〉/〈Φr1〉)

PC = 〈Φr3〉/〈Φr0〉

P =
√

〈Φ2
r1〉 + 〈Φ2

r2〉 + 〈Φ2
r3〉/〈Φr0〉

(9.6)
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Figure 9.1. A schematic diagram of a polarization-resolved, angle-resolved scat-
terometer: (a) laser, (b) chopper, (c) source polarizer, (d) source rotating retarder,
(e) spatial filter lens, (f) spatial filter, (g) primary lens or mirror, (h) baffling, (i) sam-
ple, (j) receiver aperture, (k) receiver lens, (l) receiver rotating retarder, (m) receiver
polarizer, (n) field stop, (o) detector, and (p) lock-in amplifier.

where Φrj (j = 0, 1, 2, 3) is the j-th element of Φr. One reason these
parameters are particularly useful is that all of the information about
the intensity is contained in one parameter (fr), and all of the informa-
tion about the randomness of the polarization is contained in another
parameter (P ). In many cases, the parameter η is all that is necessary
to differentiate scattering mechanisms, since PC is often predicted to be
negligible.

While Stokes vector analysis has been used to distinguish and quantify
different scattering sources, at least for well chosen measurement condi-
tions, Mueller matrix analysis has not yet been found to yield additional
information on isotropic surfaces that warrants the added difficulty that
the measurements entail. However, it is not inconceivable that Mueller
matrix analysis will find itself useful for patterned or other anisotropic
samples.

3. Measurement Methods

Figure 9.1 shows a schematic diagram of an instrument used for per-
forming angle-resolved optical scatter measurements.12 While there are
a variety of guides that exist for developing BRDF instruments,1,13, 14

we will summarize a number of their most important features. We can
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divide these instruments into three parts: the source [elements (a)–(h)
in Fig. 9.1], the sample holder and goniometer [element (i) in Fig. 9.1],
and the receiver [elements (j)–(p) in Fig. 9.1]. Details of the design of
each of these parts depends upon our application. In this discussion,
we will concentrate on those issues which are important for polarimetric
measurements of nanoscale roughness.

The purpose of the source is to generate the beam of polarized incident
light. The source consists of a laser (a), which is modulated by an optical
chopper (b). The polarization state of the incident light is set by a fixed
plane polarizer (c) and a rotatable linear retarder (d). Elements (a)–
(d), plus the various mirrors that are needed to steer the beam around
the table, generally impart some stray light on the beam. In order
that the beam incident upon the sample have as good a beam profile as
possible, the beam is spatially filtered with a lens and pinhole [(e) and
(f)]. Finally, a focusing element (g) focuses the beam onto the entrance
aperture of the receiver (j). The focusing element can be a lens or a
concave mirror. In order to have the least amount of stray light at small
scattering angles, a high-quality concave mirror is usually preferred for
this element. Finally, some baffling (h) or enclosure is usually included.
The baffling should not actually block any of the beam, since that will
generally scatter strongly and increase the stray light in the system.

The sample holder and goniometer is designed to orient the sample (i)
with respect to the source. A simple system may employ a single rotation
axis, enabling scatter measurements in the plane of incidence. A more
complex system with more axes of rotation enables measurements out of
the plane of incidence and as functions of sample rotation. Lastly, linear
translation of the sample may be needed to assess sample uniformity by
obtaining scatter measurements from multiple spots on a sample.

The purpose of the receiver is to collect and analyze light over a
known solid angle about a given direction. The receiver rotates about
the illumination spot on the sample. The first element of the receiver is
the receiver aperture (j). The area A of this aperture and its distance
R from the sample determines the collected solid angle Ω = A/R2. A
lens (k) in the receiver images the sample onto a field stop (n), so that
the size of the field stop aperture determines the sample field of view. A
smaller field of view reduces the amount of stray light accepted by the
receiver. It should be set so that it is as small as possible, but always so
that the field of view is larger than the illuminated area on the sample.
The combination of a rotating retarder (l) and a fixed polarizer (m)
selects a specific polarization state for analysis. A detector (o) is placed
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after the field stop, and a lock-in amplifier (p), synchronized with the
chopper, is used for phase sensitive detection of the signal.

The dynamic range of angle-resolved light scattering instrumentation
presents a challenge to accurate measurements of nanoscale roughness.
Near the specular direction, the intensity can be very high, and the
BRDF measurement is limited by the diffraction-limited spot size of the
incident light on the receiver aperture. For a Gaussian beam focused
onto the detector, the maximum measurable BRDF at normal incidence
is1

fmax
r =

πD2

2λ2
(9.7)

where D is the diameter of the illumination spot at the sample and λ is
the wavelength of the light. For D = 5 mm and λ = 550 nm, the max-
imum value of the BRDF is about 108 sr−1. In the other extreme, the
measured scatter signal is limited by Rayleigh scatter by air surrounding
the sample. That is, the field of view of the receiver will accept scatter
from the beam propagating through the air. In the absence of a sample,
this quantity is given approximately by9

fRayleigh
r =

4π2(n − 1)2lFOV

λ4N sin θ cos θr
×

{

1 for s-polarization
cos2 θ for p-polarization

(9.8)

where θ is the viewing angle measured from the incident direction, lFOV

is the diameter of the field of view of the receiver, N is the number
density of air, and n is the index of refraction of air. At 20 ◦C, standard
atmospheric pressure, λ = 550 nm, viewing perpendicular to the beam
propagation direction, s-polarized incident light, and for lFOV = 10 mm,
Eq. (9.8) yields a BRDF of approximately 1.5 × 10−8 sr−1. With the
reasonable assumption that we need to have signals above this level
(although it is conceivable that one could subtract this scatter from
data), the range of scatter levels extends a range of over 16 orders of
magnitude.

The wide dynamic range can be obtained by a combination of multi-
ple collection apertures and multiple detectors. The smallest aperture
should be on the order of the beam diameter 2w0 at the detector,

2w0 =
2λR

πD
(9.9)

For R = 500 mm and D = 5 mm, the beam diameter is about 70 µm in
diameter. As one varies the direction away from the specular direction,
larger apertures need to be used, the largest typically spanning an angle
from 0.5◦ to 2◦. One cannot use just two apertures, however, for a
number of reasons. First, the ratio of areas in these extremes is at least
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Figure 9.2. An instrument signature measured for an angle-resolved instrument at
the author’s institute.

5000, increasing the dynamic range requirements of the detector. More
importantly, a well-designed instrument will have sufficiently low stray
light that at an angle where use of the small aperture encounters signals
at the noise floor of the detector, opening up to the largest detector may
actually accept the full specular beam to the detector. Therefore, any
instrument should have a range of apertures, each varying by a factor of
4 to 7 from the next.

In addition to using multiple receiver apertures, multiple detectors
can significantly expand the dynamic range of a scattering instrument.
The detectors should have overlapping ranges of use, and the least sen-
sitive detector should be capable of measuring the incident power. It is
common to employ a silicon photodiode and a photomultiplier tube, for
example, as the two detectors.

Figure 9.2 shows a representative measurement of an instrument sig-
nature, measured by scanning the receiver through the incident beam in
the absence of a sample. Three regimes can be observed: the coherent
incident beam at small angles (θ < 0.06◦), stray light at intermediate
angles (0.06◦ < θ < 1◦), and Rayleigh scatter at large angles (θ > 1◦).
The challenge of the instrument designer (and to some extent, the user,
who must maintain the instrument) is to create an optical system that
transitions to the Rayleigh scatter regime in as small an angle as possi-
ble. Low scatter optics, well-placed baffling, and reduction of the field
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of view of the detector to its minimum necessary size serve to reduce the
stray light. The effect of an aperture change can be seen in Fig. 9.2 near
θ = 1◦, where the noise level appears to rise before the next aperture
can be used.

We must also consider the effect of laser speckle. For a spatially-
incoherent source of diameter D at the sample, the coherence length at
the receiver aperture will be approximately given by the same expression
as Eq. (9.9), within a small factor which depends upon the intensity
profile over the source. If one considers a source of diameter D, an
aperture of diameter Ddet, and a source-aperture distance R, there will
be approximately

Nspeckle =
πD2

det/4

πw2
0

=

(

πDDdet

2λR

)2

(9.10)

speckles entering the receiver.15 Assuming Poisson statistics, the relative
standard deviation of the signals will be given by

σS

〈S〉 =
1

√

Nspeckle
=

2λR

πDDdet
=

λ

D
√

πΩ
(9.11)

For a D = 5 mm source, a Ddet = 5 mm aperture, R = 500 mm, and
λ = 550 nm, the estimated relative standard deviation would be 0.7 %.
While this is an acceptable value for many measurements, reduction of
the illumination spot diameter or the detector aperture can easily place
this value into a regime where laser speckle is by far the largest source
of measurement uncertainty.

There are a number of ways to overcome speckle noise, of which some
applications may be able to take advantage. The easiest in many appli-
cations is simply to make several measurements, either at different loca-
tions on the sample or at different sample rotations. Constant motion of
the sample during the measurement can also effectively allow sampling
over different surface realizations. Destroying the spatial coherence of
the light source can be performed by a number of methods, including
passing the beam through an ultrasonically-vibrated multi-mode fiber.
Such a beam, however, will necessarily have poorer focusing character-
istics, and the angular resolution of the system will be degraded.

To perform measurements of the Mueller matrix BRDF, we must an-
alyze the scattered polarization for a number of incident polarizations.
A common method for obtaining the Mueller matrix is the ω-5ω scheme,
developed by Azzam,16 whereby a quarter-wave retarder on the source
[(d) in Fig. 9.1] is rotated at frequency ω, while another quarter-wave
retarder on the receiver [(l) in Fig. 9.1] is rotated at frequency 5ω. The
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Mueller matrix elements are then linearly related to the Fourier compo-
nents of the signal. An improvement on this scheme uses 0.37λ retarders
instead of 0.25λ retarders, in order to improve the path on the Poincarré
sphere taken by each of the rotating retarders.17,18 Other methods em-
ploy the use of liquid crystal variable retarders19 and photoelastic mod-
ulators.20 Many measurements do not require full measurement of the
Mueller matrix. For example, in most of the measurements presented
in this chapter, only a single linearly polarized source is used, and the
Stokes vector of the scattered light is measured. In that case, a rotating
half-wave retarder can be used in the source to rotate the polarization
into the desired angle.

4. Roughness of a Single Interface

4.1 Theory

We will begin our discussion of measurements with roughness of the
interface between a condensed state (usually a solid, but could be a
liquid) and a gas or vacuum. This case is the usual starting point
for measurements of nanoscale roughness. If we assume that the sur-
face height function ∆z(ρ) [ρ = (x, y)] is single valued, has zero mean,
is much smaller than the wavelength of the light, and that the slopes
∂∆z(ρ)/∂x and ∂∆z(ρ)/∂z are much smaller than one, the problem can
be solved by first-order perturbation theory. The solution was first pro-
posed by Rice in 1951,21 while a more complete solution was developed
by Barrick in 1970.22 The Mueller matrix BRDF from a rough surface
in the smooth surface approximation is given by

Fr =
16π2

λ4
cos θi cos θr 〈|Z(κ)|2〉 Q (9.12)

where the Mueller matrix Q = M(q,q†) is non-depolarizing, and the
function M is given in the Appendix. The scattering matrix q has
elements

qss = (ǫ − 1)k2 cos φr/[(kzi + k′
zi)(kzr + k′

zr)]

qps = −(ǫ − 1)kk′
zr sinφr/[(kzi + k′

zi)(ǫkzr + k′
zr)]

qsp = −(ǫ − 1)kk′
zi sinφr/[(ǫkzi + k′

zi)(kzr + k′
zr)]

qpp = (ǫ − 1)(ǫkxyikxyr − k′
zik

′
zr cos φr)/[(ǫkzi + k′

zi)(ǫkzr + k′
zr)]

(9.13)
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where

k′
zβ = k(ǫ − sin2 θβ)1/2

kzβ = k cos θβ

kxyβ = k sin θβ

k = 2π/λ

(9.14)

(β = i, r). 〈|Z(κ)|2〉 is the two-dimensional power spectral density (PSD)
of the surface height function, where

Z(κ) = lim
A→∞

1√
A

∫

A
d2

ρ ∆z(ρ) exp(iκ · ρ) (9.15)

The surface wavevector κ has elements κx and κy given by the diffraction
equations,

κx = kxyr cos φr − kxyi

κy = kxyr sin φr

(9.16)

In the above, we are ignoring, without loss of generality, the azimuthal
angle of the source direction, φi. That is, we are defining our x-axis to
be the intersection of the plane of incidence and the plane of the sample.
The specular condition is θi = θr and φr = 0. The surface wavevector
(radians per unit length) is related to the spatial frequency (cycles per
unit length) by a factor of 2π, so PSDs are often presented with respect
to |κ|/(2π).

The limit in Eq. (9.15) does not exist for a randomly rough surface of
infinite extent. It is precisely that issue that gives rise to the observed
speckle pattern. In practice, however, a non-zero solid angle is collected.
The limit of |Z(κ)|2 integrated over a finite region of spatial frequencies
does, in fact, exist. Notice that the Mueller matrix Q does not depend
upon Z(κ). So, while there will exist a speckle pattern in the intensity,
that speckle pattern does not exist in the polarization.

The expressions in Eqs. (9.13) appear to be very similar to Fresnel
reflection coefficients. In fact, |qss|2 is given by

|qss|2 = [Rs(θi)Rs(θr)]
1/2 (9.17)

where Rs(θ) is the specular reflectance of the substrate for s-polarization
and incident angle θ. Thus, in the absence of specific values of the di-
electric constant ǫ, it is relatively straightforward to make measurements
that can be used to obtain |qss|2.
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4.2 Limitations

An estimate of the maximum roughness amplitude that can be treated
with the first-order approach can be found by considering diffraction
from a sinusoidal grating.23 Within the Kirchhoff approximation, the
ratio of the second-order diffraction efficiency to the first-order diffrac-
tion efficiency is given by

[J2(δ)/J1(δ)]
2 ≈ δ2 (9.18)

where δ = ka(cos θi + cos θr) and a is the amplitude of the sinusoid. If
we ask the question, “When is the second-order diffraction intensity less
than 5 % of the first-order diffraction intensity?” we find a characteristic
amplitude a. Since the rms roughness is given by σ = a/

√
2, we arrive

at a practical estimate of the validity of the first-order theory:

σ <
λ

10(cos θi + cos θr)
(9.19)

The expression shows that the perturbative approach can be valid for
relatively large roughnesses, as long as the incident and scattering an-
gles are large. This behavior can be easily observed by noticing that
nearly all materials become specularly reflecting when viewed at grazing
incidence. The measurement scheme where θi and θr are held equal and
fixed at large angles, while φr is varied provides a means for measuring
the roughness of surfaces approaching the wavelength of the light.24

4.3 The Inverse Problem

The proportionality between the BRDF and the surface PSD, given in
Eq. (9.12), makes optical scattering an attractive method for measuring
surface roughness in the smooth surface limit. One need only solve
Eq. (9.12) for 〈|Z(κ)|2〉, taking into account the incident polarization.
For example, for s-polarized light, and performing measurements in the
plane of incidence, we can use Eq. (9.17) to obtain the relatively simple
expression

〈|Z(κ)|2〉 =
λ4〈Φr〉

16π2ΩΦi cos θi cos θ2
r [Rs(θi)Rs(θr)]1/2

(9.20)

The range of surface wavevectors |κ| over which the measurement can be
performed is limited at small |κ| by the range of angles over which the
signal is sufficiently above the instrument signature and at large |κ| by
the wavelength of the light. For example, if the minimum angle from the
specular direction is 0.1◦, and we are operating with λ = 550 nm and an
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incident angle of θi = 60◦, the smallest spatial frequency is |κ|min/(2π) ≈
1.5 mm−1, and the largest spatial frequency is |κ|max/(2π) ≈ 3 µm−1, a
range spanning almost three orders of magnitude.

While roughness can contribute to elastic light scattering, many other
sources can also contribute and interfere with the results. For example,
Rayleigh scatter in the air, particles on the surface, subsurface defects,
material inhomogeneities, and stray light can contribute to varying de-
grees. Therefore, if we want to apply Eq. (9.12) to data to determine
the roughness statistics, it is important that we test the basic hypothe-
sis that roughness is indeed causing the scatter. There are a number of
measurements we can make to check that the scatter is consistent with
roughness.

The first of these consistency checks is angle scaling. That is, we
can perform a scattering measurement using one incident angle, use
Eq. (9.12) to estimate the PSD, then try the same measurement using a
different incident angle. The problem with this method is that it can be
quite deceptive. Scatter by material inhomogeneities, for example, has
been shown to yield very similar results as roughness.6,25, 26 Just as the
scattering by roughness is proportional to the PSD of the surface height
function, the scattering by inhomogeneities is proportional to the PSD
of the dielectric constant across the surface. Since the dependence upon
direction in both cases depends upon those PSDs evaluated using the
same diffraction equation, what we end up showing more than anything
else is that the diffraction equation works.

A second consistency check that is often used is wavelength scaling.1

Here, we perform the measurement at multiple wavelengths and, again,
compare the estimated PSDs determined from Eq. (9.12). Subsurface
defects and material inhomogeneities have scattering behaviors that are
very similar, especially if the dielectric constant of the material does not
change appreciably. For this reason, this method is often employed using
very wide ranges of wavelengths, over which the dielectric constant of the
material varies significantly. Over such a wide range of wavelengths, the
measurement becomes substantially more difficult to perform, because
we need to switch optical components and detectors. It also fails to tell
us whether any of the scatter results from roughness, just that it does
not result from roughness over the entire wavelength range. Despite
these problems, it has been considered the mainstay for checking for
roughness scatter, and was instrumental in helping recognize that many
mirror materials, such as beryllium and aluminum, were inherently high
scatterers, regardless of how smooth they were, because they tend to
exhibit a high degree of scatter from material inhomogeneity.27
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The third consistency check, polarization analysis, is much more pow-
erful and relatively difficult to fool.7 With this method, we are checking
for consistency with the elements of the scattering matrix, Eq. (9.13).
Scattering by other sources, such as particles, subsurface defects, and
material inhomogeneity, yield scattering matrix elements that differ from
those given in Eqs. (9.13).6,7 For example, the scattering matrix ele-
ments appropriate for subsurface defects or material inhomogeneity are
given by6,25, 26 qsub

ss = qss, qsub
sp = qsp, qsub

ps = qps, and

qsub
pp = (ǫ − 1)(kxyikxyr − k′

zik
′
zr cos φr)/[(ǫkzi + k′

zi)(ǫkzr + k′
zr)] (9.21)

That is, only the pp-terms differ, and even then, only when θi and θr are
both non-zero. Purely s-polarized incident light, for example, will yield
no discrimination between these two scattering mechanisms. Thus, we
must have some p-polarized light incident on the sample and use large
incident and scattering polar angles. These restrictions argue for mea-
surements out of the plane of incidence. For example, a useful measure-
ment, which maps out the PSD over a wide range of surface wavevectors,
is to set θi = θr and vary φr from 0◦ to 180◦. The incident polarization
is linear at an angle ηi and continuously varied from 45◦ to 135◦ over
this range, such that when φr = 90◦, the incident light is p-polarized
(ηi = 90◦). That is,

ηi = 45◦ + φr/2 (9.22)

The magnitude of the surface wavevector is then given by

|κ| = 2k sin θr sin(φr/2) (9.23)

At each angle, the Stokes vector can be measured. In many instances,
we only need to measure the linear components of the Stokes vector,
because we expect little circular polarization from surface roughness, if
the material is non- or weakly- absorbing.

We can obtain reasonably good discrimination between scattering
sources by performing the measurement in the plane of incidence by
measuring the Stokes vector for 45◦ incident polarization. However, near
the surface normal, that discrimination disappears, and we are left con-
firming the roughness hypothesis at the beginning and end of a scan, and
hoping that at those angles near the surface normal the trend continues.

We can also perform Mueller matrix measurements to distinguish scat-
tering sources. However, since s-polarized incident light has very little
ability to discriminate sources, we would not expected that Mueller mea-
surements would improve our confidence of the roughness hypothesis
substantially from what we can obtain by optimizing the incident polar-
ization to that which gives the largest discrimination.
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It is interesting to note that, because the scatter by roughness in
the smooth surface limit yields a deterministic polarization, the light
scattered by such a rough surface does not depolarize the light.28 While
we observe speckle fluctuations in the intensity, especially if we use a
small collection solid angle, little of those fluctuations are observed in
the polarization state. Thus, polarization measurements often appear
quite noise-free in comparison to their intensity counterparts.

4.4 Example

To demonstrate the methodology described in Sec. 4.3, we present
data obtained from a thick metallic TiN layer grown on a silicon wafer.
The thickness of the layer, 110 nm, is thick enough and the material
absorbent enough that we can safely ignore any interfaces below the
TiN. The light scattering measurement was carried out using λ = 532 nm
light with θi = θr = 60◦, varying the scattering azimuthal angle φr from
near 0◦ to 170◦. The polarization was varied as described in Eq. (9.22).
The results of the measurements are shown in Fig. 9.3, in terms of the
parameters given in Eqs. (9.6). The systematic uncertainties in the
measurement are less than the size of the symbols, and the random
uncertainties can be estimated by observing the variation of the data
about a smooth curve.

We evaluated the polarization predicted by first-order vector pertur-
bation theory. We chose ǫ = 1.6+4.6i so that the results matched in the
specular direction, which is equivalent to using specular ellipsometry to
determine its value. The measured polarization states agree very well
with the predictions of the perturbation theory, which are shown as solid
curves in Fig. 9.3. In particular, the measured P is close to one, within
about 15 %, the deviations of which may be due to stray light in the
experiment. The parameters PC and η follow very closely to the curves.

Another likely scattering mechanism in metallic samples is scattering
by material inhomogeneity. We show η and PC predicted by Eq. (9.21)
for this mechanism in Fig. 9.3, too. The data do not agree with such
scattering. Scatter by particles, which depends upon particle size, yield
different behaviors, as well.6,29, 30 It is clear from the comparison that
the data agree very well with the microroughness theory and that the dif-
ferentiation among the alternate scattering mechanisms is unambiguous.
Thus, the polarization measurement establishes the validity of the mi-
croroughness interpretation, allowing us to convert the measured BRDF
to the PSD of the surface height function.

The result of converting the BRDF to PSD is shown in Fig. 9.4. The
results show fractal behavior for large κ, where 〈|Z(κ)|2〉 ∝ |κ|−2.8, and
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Figure 9.3. Results from out-of-plane (θi = θr = 60◦) polarized light scattering
measurements (symbols) for a TiN sample using 532 nm light: (top) the BRDF, fr,
(middle) the degrees of polarization and circular polarization, (open symbols) P and
(closed symbols) PC, respectively, and (bottom) the principal polarization angle η.
The incident polarization was varied as described in Eq. (9.22) in the text. The curves
represent the polarization states predicted for light scattered by (solid) a microrough
surface and (dashed) material inhomogeneity.
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Figure 9.4. The PSD of the surface height function derived from the data shown in
Fig. 9.3.

a distinct peak in the power spectrum near |κ|/(2π) = 0.45 µm−1. By
integrating the two-dimensional PSD, we can obtain an estimate of the
rms roughness. The total rms roughness over the bandwidth shown is
about 2.6 nm.

The excellent agreement between the theory and experiment for mi-
croroughness implies that the polarization of light scattered by micro-
roughness is not determined by the exact details of the surface height
profile, but is a unique signature of the scattering mechanism. It there-
fore suggests that scatterometers can be designed to be blind to micro-
roughness. For example, a device may be constructed with a number of
detectors, each viewing a particular scattering direction, and each with
a polarizer aligned to block the light from microroughness.31 Such a
device would collect light over a large solid angle, be microroughness-
blind, and therefore be more sensitive to other sources of scatter, such
as subsurface defects and particulate contamination.
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5. Roughness of Two Interfaces

In Sec. 4, we described measurements that only used the polarization
to validate the interpretation of the intensity. In this section, we will de-
scribe measurements in which the polarization is not used to validate the
model, but is used to extract information about interface roughness. In
this case, we are interested in the two interfaces of a dielectric film. The
methodology that we describe parallels that used by specular ellipsom-
etry10,32 to determine film thickness. By performing an ellipsometric
measurement of light diffusely scattered out of the specular direction,
we move away from κ = 0 and probe the variations in film thickness.
That is, we measure the relative interface roughness and its degree of
correlation.33,34

5.1 Theory

We now consider a film, having dielectric constant ǫf and mean thick-
ness τ lying above a substrate of dielectric constant ǫ. The surface
height functions of the buried and exposed interfaces are ∆z1 and ∆z2,
respectively (leaving out the explicit dependence on ρ). We apply first-
order vector perturbation theory to this problem. The zero-order, un-
perturbed (∆z1 = 0 and ∆z2 = 0) fields are found from the solution of
the well-known problem of reflection from a dielectric film. The first-
order calculation consists of expanding the electric and magnetic fields
on both sides of each interface and the local surface normal to first order
in the surface height functions ∆zj about their mean. The requirement
that the tangential electric and magnetic fields be continuous across the
boundary leads to relationships between zero-order and first-order fields.
The theory self-consistently handles the multiple reflections that occur
for both orders of the field. However, since it assumes that the film
thickness is constant, it does not account for long-range non-conformal
roughness, which has sufficient amplitude to substantially vary the local
film thickness. In order for the theory to be valid, the modulations of the
surface height functions, ∆zj , must be much less than the wavelength,
λ, and the surface slope must be small.

Elson35–39 described the solution to the first-order vector perturbation
theory for scattering from interfacial microroughness in a dielectric stack.
For the buried interface (1), the scattering matrix q(1) to replace q in
Eq. (9.12) has elements

q(1)
uv = 4(ǫ − ǫf)k

′′
zik

′′
zr exp[i(k′′

zi + k′′
zi − kzr − kzr)τ ]s(1)

uv (9.24)
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(u, v = s, p) where

s
(1)
ss = −k2 cos φr/(ΓsiΓsr)

s
(1)
ps = ǫfkk′

zi sin φr/(ΓpiΓsr)

s
(1)
sp = ǫfkk′

zr sin φr/(ΓsiΓpr)

s
(1)
pp = −ǫf(ǫkxyikxyr − ǫfkzikzr cos φr)/(ΓpiΓpr)

(9.25)

Γpβ = ǫfF
(+)
pβ kzβ − F

(−)
pβ k′′

zβ

Γsβ = F
(+)
sβ kzβ − F

(−)
sβ k′′

zβ

(9.26)

F
(±)
pβ = ǫfK

(∓)
β k′

β − ǫK
(±)
β k′′

zβ

F
(±)
sβ = K

(∓)
β k′

zβ − K
(±)
β k′′

zβ

K
(±)
β = exp(2ik′′

zβτ) ± 1

(9.27)

k′′
zβ = k(ǫf − sin2 θβ)1/2 (β = i or r). The Fourier transform of the

roughness of the m-th interface is given above in Eq. (9.15), with ∆z
replaced with ∆zm. For the exposed interface (2), the scattering matrix
q(2) to replace q in Eq. (9.12) has elements

q(2)
uv = (ǫf − 1) exp[−i(kzi + kzr)τ ]s(2)

uv (9.28)

where

s
(2)
ss = −k2F

(+)
si F

(+)
sr cos φr/(ΓsiΓsr)

s
(2)
ps = −kk′′

ziF
(−)
pi F

(+)
sr sin φr/(ΓpiΓsr)

s
(2)
sp = −kk′′

zrF
(+)
si F

(−)
pr sin φr/(ΓsiΓpr)

s
(2)
pp = −(ǫfkxyikxyrF

(+)
pi F

(+)
pr − k′′

zik
′′
zrF

(−)
pi F

(−)
pr cos φr)/(ΓpiΓpr)

(9.29)
Just as the matrix elements for scattering by single-interface roughness
given in Eq. (9.13) are independent of the surface height function, those
for scattering by the two interfaces of a dielectric film given in Eqs. (9.25)
and (9.29) do not depend upon the respective surface height functions.
Therefore, to first order, the scattering from a single rough interface
will not depolarized light. Furthermore, the fields resulting from the
scattering of each interface are independent of each other.
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We can evaluate the special case of two interfaces that are totally
conformal (correlated and equal roughness) by coherently adding the
scattering matrices from each of them:

q(corr) = q(1) + q(2) (9.30)

Similarly, if the two interfaces are equally rough, but have a random
phase relationship between them (i.e., they are uncorrelated), then we
can add the two sources incoherently:

Q(uncorr) = M(q(1),q(1)†) + M(q(2),q(2)†) (9.31)

In general, the surfaces may be neither correlated nor of equal roughness.
In this case, we replace the factor Q〈|Z|2〉 in Eq. (9.12) by

〈|Z|2〉Q = 〈M(Z1q
(1) + Z2q

(2), Z∗
1q

(1)† + Z∗
2q

(2)†)〉 (9.32)

where we have dropped the explicit dependence of Zm on κ. Since the
only random variables are Z1 and Z2, Eq. (9.32) can be simplified to

〈|Z|2〉Q = 〈|Z1|2〉M(q(1),q(1)†) + 〈|Z2|2〉M(q(2),q(2)†)

+2Re〈Z1Z
∗
2 〉ReM(q(1),q(2)†)

−2Im〈Z1Z
∗
2 〉ImM(q(1),q(2)†)

(9.33)

5.2 The Inverse Problem

Eq. (9.33) is an overdetermined equation in the PSD of the two inter-
faces, 〈|Z1|2〉 and 〈|Z2|2〉, and the cross-PSD, 〈Z1Z

∗
2 〉. That is, we can

write Eq. (9.33) in the form 〈|Z|2〉Q = DZ, where D is a 16× 4 matrix

D =











M(q(1),q(1)†)

M(q(2),q(2)†)

2ReM(q(1),q(2)†)

−2ImM(q(1),q(2)†)











(9.34)

where each row consists of a flattened 4 × 4 matrix, and Z is a four
element column vector,

Z =













〈

|Z1|2
〉

〈

|Z2|2
〉

Re 〈Z1Z
∗
2 〉

Im 〈Z1Z
∗
2 〉













(9.35)

We can solve for Z in a least-squares sense by calculating the pseu-
doinverse, D−1 = (DTD)−1DT. Thus, we can determine the roughness
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statistics for the two interfaces of a thin film from the measured Mueller
matrix BRDF Fr from Eqs. (9.12),

Z =
λ4

16π2 cos θi cos θr
(DTD)−1DTFr (9.36)

Let us consider the simpler case of a specific incident polarization
state, specified by a unit intensity Stokes vector S. The scattered Stokes
vector will then be given by left-multiplying S by Eq. (9.33):

〈|Z|2〉QS = 〈|Z1|2〉M(q(1),q(1)†)S

+〈|Z2|2〉M(q(2),q(2)†)S

+2Re〈Z1Z
∗
2 〉ReM(q(1),q(2)†)S

−2Im〈Z2Z
∗
1 〉ImM(q(2),q(1)†)S

(9.37)

Eq. (9.37) is a fully determined equation in the roughness statistics.
That is, Eq. (9.37) can be written as 〈|Z|2〉QS = D′Z, where D′ is a
4 × 4 matrix

D′ =











M(q(1),q(1)†)S

M(q(2),q(2)†)S

2ReM(q(1),q(2)†)S

−2ImM(q(1),q(2)†)S











(9.38)

and each row is the transpose of a 4 element vector. Eq. (9.38) can be
inverted, provided the two surfaces scatter with different polarization
states. Thus, the four degrees of freedom of a measured Stokes BRDF
fr map onto the four degrees of freedom of the roughness statistics:

Z =
λ4

16π2 cos θi cos θr
(D′)−1fr (9.39)

It is convenient for us to define a relative roughness

χ =
√

〈|Z1|2〉/〈|Z2|2〉 (9.40)

and a complex correlation coefficient

c = 〈Z1Z
∗
2 〉/

√

〈|Z1|2〉〈|Z2|2〉 (9.41)

Just as there is one constraint on a Stokes vector (S2
0 ≥ S2

1 + S2
2 + S2

3),
the parameter c must satisfy |c| ≤ 1. For most realistic surfaces, c should
have no imaginary component. It is interesting to note that the inten-
sity and the polarization state of the scattered light separate in much
the same way as for single interface roughness: the polarization state
uniquely determines χ and c, while the intensity, once χ and c are known,
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Figure 9.5. Polarization parameters P , PC, and η for scattering out of the plane
of incidence from (solid) correlated and equal roughness, (dashed) uncorrelated and
equal roughness, (dotted) roughness of the exposed interface, (dash-dot) roughness
of the buried interface, and (symbols) experimental results from a SiO2 layer grown
on microrough silicon. The incident light was (left column) s-polarized and (right
column) p-polarized. Other parameters in the model are described in the text.

determines the magnitude of the PSDs of the two interfaces. Another
point to note is that when |c| = 1, we will observe no depolarization. In
this case, there is no randomness in the ratio or relative phase of both
sources, and so there is no randomness in their sum. Depolarization only
occurs when there is incoherence between two sources.

5.3 Example

To demonstrate the application of the perturbation theory analysis for
roughness of a dielectric film, we consider the behavior of λ = 632.8 nm
light scattered by a 52 nm SiO2 (ǫf = 2.13) layer grown on a silicon
(ǫ = 15.07 + 0.15i) substrate. We let the incident angle be θi = 60◦ and
scattering angle be θr = 60◦.
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Before we present experimental results, we will make a number of
observations about the theoretical predictions for four different limiting
cases of interfacial roughness (roughness of each interface alone, cor-
related, and uncorrelated roughness). Figure 9.5 shows the scattered
polarization state as a function of φr for s- and p-polarized incident
light calculated for these cases. The results for s-polarized incident light
(left column of Fig. 9.5) show only a small amount of differentiation be-
tween the roughness conditions, with none existing at φr = 0◦, 90◦, and
180◦. These results are similar to what we found for a single interface in
Sec. 4 above. Symmetry dictates the polarization for φr = 0◦, 90◦, and
180◦: for s-polarized light incident upon an isotropic sample in the static
approximation, the scattered field must be anti-symmetric about the in-
cident plane and symmetric about the perpendicular plane. Therefore,
in the plane of incidence (φr = 0◦ and 180◦), the scattered light must be
s-polarized (ssp = sps = 0) , while for φr = 90◦, the scattered light must
be p-polarized (sss = 0).

The results for p-polarized incident light (right column of Fig. 9.5)
show significantly greater differentiation between the different limiting
cases, as long as we are sufficiently out of the plane of incidence (i.e.,
φr 6= 0◦ or 180◦). Again, symmetry requires that the scattered light
be p-polarized in the plane of incidence. However, symmetry no longer
exists about the perpendicular plane, so that for φr = 90◦, each case can
yield a different polarization. Previous measurements have exploited this
geometry to differentiate scattering from small particles, single rough
surfaces, and subsurface defects.7 We are often interested in extracting
roughness statistics from data over as wide range of surface wavevectors
as possible. Since there is little differentiation between cases near φr =
0◦, the dynamic range of available spatial frequencies is limited.

Fig. 9.6 presents two schemes that differentiate between interfacial
roughness conditions for most scattering angles. One of these schemes
uses circularly polarized incident light (left column of Fig. 9.6). Another
scheme changes the incident polarization state as the viewing direction
is varied. In the right column of Fig. 9.6, the incident light is linearly
polarized, varied according to Eq. (9.22), as was done above for the
single interface roughness measurements. We observe reasonably good
differentiation between the different roughness conditions at most scat-
tering angles, using either of the two schemes, with somewhat better
differentiation observed for the varying incident polarization scheme.

Because measurements out of the plane of incidence generally require
more complicated instrumentation than those required for measurements
in the plane of incidence, we include two schemes that work reasonably
well in the plane of incidence. Figure 9.7 shows calculated polariza-



24

Figure 9.6. Polarization parameters P , PC, and η for scattering out of the plane
of incidence from (solid) correlated and equal roughness, (dashed) uncorrelated and
equal roughness, (dotted) roughness of the exposed interface, (dash-dot) roughness of
the buried interface, and (symbols) experimental results from a SiO2 layer grown on
microrough silicon. The incident light was (left column) left circularly polarized and
(right column) linearly polarized at an angle ηi = 45◦ + φr/2. Other parameters in
the model are described in the text.

tion parameters for the different roughness conditions evaluated in the
plane of incidence (θi = 60◦, φr = 0◦). Since the scattering matrices
are diagonal for this geometry, we do not show results for s-polarized
or p-polarized incident light. Incident light of either circular polariza-
tion or 45◦ linear polarization maps the four independent Mueller matrix
elements onto the four Stokes vector elements. While we observe dis-
crimination between the roughness cases in Fig. 9.7, it is relatively weak,
with numerous curves crossing near θr = 0◦.

The results for polarized light scattering measurements from a 52 nm
SiO2 film thermally grown on a photolithographically-produced micror-
ough silicon surface are included in Figs. 9.5–9.7. The microrough sur-
face consisted of a pseudorandom distribution of nominally 8 nm deep
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Figure 9.7. Polarization parameters PC, P , and η for scattering in the plane of
incidence from (solid) correlated and equal roughness, (dashed) uncorrelated and
equal roughness, (dotted) roughness of the exposed interface, (dash-dot) roughness
of the buried interface, and (symbols) experimental results from a SiO2 layer grown
on microrough silicon. The incident light was (left column) left circularly polarized
and (right column) linearly polarized at an angle ηi = 45◦. Other parameters in the
model are described in the text.

circular pits having diameters of nominally 1.31 µm and 1.76 µm.40 De-
tails of the experiment, its uncertainties, and the sample are given else-
where.12,33 This system should exhibit conformal roughness, at least for
small surface wavevectors. The results shown in Figs. 9.5–9.7 indeed be-
have most like the equal roughness model for all incident polarizations,
though close inspection of the results reveals small discrepancies, which
result from the buried interface being smoother than the exposed inter-
face. The relative roughness of the two interfaces (χ) and the correlation
coefficient c can be extracted using the technique outlined in Sec. 5.2.
Figure 9.8 shows c and χ as functions of spatial frequency extracted from
the data shown in Figs. 9.5–9.7. The indicated uncertainties represent
single standard deviations of the extracted results obtained from the
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Figure 9.8. Roughness parameters extracted from polarized light scattering mea-
surements from the 52 nm SiO2 layer thermally grown on silicon. The results are
obtained from measurements out of the plane of incidence (solid symbols) and in the
plane of incidence (open symbols).

statistical uncertainties in the original data. The results obtained from
all incident polarizations are consistent with each other, showing χ > 1
and c ≈ 1 for most spatial frequencies. Further validation of the method
has been achieved by performing the measurements at multiple wave-
lengths and incident angles.33 While measurements of the full Mueller
matrix may allow different scattering mechanisms to be distinguished
and quantified using the analysis given in Sec. 5.2, the results shown in
Fig. 9.5 suggest that certain incident polarization states do not allow for
much differentiation.

Figure 9.8 includes the results using data obtained in the plane of in-
cidence. Large uncertainties and discrepancies result from the poor dis-
crimination near 1 µm−1. Comparison between the results of Figs. 9.5–
9.7 suggest that maximum discrimination between different roughness
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conditions occurs in directions out of the plane of incidence. Other
calculations show that such improvements also tend to occur for other
scattering sources such as particles or subsurface defects.6 While other
researchers have performed light scattering ellipsometry measurements
in the plane of incidence,41 we chose to make full use of the polarization
by performing such measurements in out-of-plane geometries.

It is noteworthy to point out that in Figs. 9.5–9.7, the theoretical pre-
dictions for buried interface roughness and uncorrelated roughness are
the most poorly resolved. In both cases, the roughness of the bottom
interface is present, and the top interface is incoherent with the bottom
interface. When sources are incoherent, they add as intensities, rather
than as fields, so that the smaller field has a correspondingly smaller
effect. Hence, when the dielectric contrast between the substrate and
the film is much larger than between film and the ambient environment,
which is the case for our example, uncorrelated roughness of the top in-
terface will be more difficult to observe in the presence of buried interface
roughness.

In many realistic cases, any correlations between two interfaces are
expected to be such that c is real and lies in the interval 0 ≤ c ≤ 1.
Any imaginary component to c implies a lateral offset in the roughness
function. For this reason, it may be reasonable to use Eq. (9.39) to obtain
a starting point for the roughness statistics, but to constrain Im c = 0
and perform a least-squares fit of the theory to the data.

We have also investigated a number of other systems, including a
case of anti-correlated roughness (nominal c = −1) and a case of offset
roughness [nominal c = exp(iκ ·R), where R is a lateral offset in the two
roughness functions].42,43 These cases were much more complicated to
analyze. While the amplitude of the roughness was small compared to
the wavelength of the light, the lack of correlation caused unacceptably
large variations in the thickness throughout the film. Thus, we find that
the analysis presented here has much more rigid requirements in terms
of the tolerable roughness amplitude over which the theory is valid.

6. Final Comments

It is worth considering, at the end, whether it is worth extending this
methodology to three or more interfaces (that is, two or more films).
After all, the space of valid Mueller matrices can be shown to be spanned
by four scattering matrices. For example, we can decompose any valid
Mueller matrix M into the sum

M =
3

∑

j=0

3
∑

k=0

ajkM(σj,σ
†
k) (9.42)
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where σj are the Pauli matrices given in the Appendix, and the 16
coefficients obey ajk = a∗kj. Therefore, one ought to be able to extract
the roughness statistics for up to four interfaces from a Mueller matrix
scattering measurement. However, the method would be very limited.
In the specular direction, the scattering matrix for any interface will not
have any off-diagonal elements, so only two of the four basis matrices
are available. Since we cannot differentiate the different interfaces near
the specular direction, the technique would therefore have a very narrow
range of spatial frequencies over which to operate.

Appendix: 4 × 4 Matrix Product of Two Scattering
Matrices

We define a 4×4 matrix product M(q1,q2) between two 2×2 scattering matrices,
such that its elements are given by

M(q1,q2)jk =
1

2
Tr (q1σkq2σj) (9.A.1)

(j, k = 0, 1, 2, 3) where the Pauli matrices are

σ0 =

(

1 0
0 1

)

σ1 =

(

1 0
0 −1

)

σ2 =

(

0 1
1 0

)

σ3 =

(

0 −i
i 0

)

(9.A.2)
This operation is associative with addition,

M(q1 + q2,q3) = M(q1,q3) + M(q2,q3)
M(q1,q2 + q3) = M(q1,q2) + M(q1,q3)

(9.A.3)

and associative with multiplication by a scalar,

M(kq1,q2) = kM(q1,q2)
M(q1, kq2) = kM(q1,q2)

(9.A.4)

Although it is not commutative, the following relationship holds:

M(q1,q
†
2
) = [M(q2,q

†
1
)]∗ (9.A.5)

If q1 6= q
†
2
, the matrix M(q1,q

†
2
) is complex. The Mueller matrix M(q,q†), which is

real, is the Mueller matrix equivalent of the scattering matrix q.
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14 ASTM E2387, “Standard Practice for Goniometric Optical Scat-
ter Measurements,” (ASTM International, West Conshohocken, PA,
2005).

15 J.W. Goodman, “Statistical Properties of Laser Speckle Patterns,”
in Laser Speckle and Related Phenomena, J.C. Dainty, Ed. (Springer-
Verlag, Berlin, 1984).

16 R.M.A. Azzam, “Photopolarimetric measurement of the Mueller ma-
trix by Fourier analysis of a single detected signal,” Opt. Lett. 2,
148–150 (1978).

17 D.S. Sabatke, M.R. Descour, E.L. Dereniak, W.C. Sweatt,
S.A. Kemme, and G.S. Phipps, “Optimization of retardance for a com-
plete Stokes polarimeter,” Opt. Lett. 25, 802–804 (2000).



30

18 J.S. Tyo, “Design of optimal polarimeters: maximization of signal-
to-noise ratio and minimization of systematic error,” Appl. Opt. 41,
619–630 (2002).

19 A. De Martino, Y.-K. Kim, E. Garcia-Caurel, B. Laude, B. Drévillon,
“Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28,
616–618 (2003).

20 G.E. Jellison and F.A. Modine, “Two-modulator generalized ellipsom-
etry: theory,” Appl. Opt. 36, 8190–8198 (1997).

21 S.O. Rice, “Reflection of Electromagnetic Waves from Slightly Rough
Surfaces,” Comm. Pure and Appl. Math. 4, 351–378 (1951).

22 D.E. Barrick, “Rough Surfaces,” in Radar Cross Section Handbook,
G.T. Ruck, ed., (Plenum, New York, 1970).

23 T.V. Vorburger, E. Marx, and T.R. Lettieri, “Regimes of surface
roughness measurable with light scattering,” Appl. Opt. 32, 3401–
3408 (1993).

24 T. Karabacak, Y.-P. Zhao, M. Stowe, B. Quayle, G.-C. Wang, and
T.-M. Lu, “Large angle in-plane light scattering from rough surfaces,”
Appl. Opt. 39, 4658 (2000).

25 J.M. Elson, “Theory of light scattering from a rough surface with an
inhomogeneous dielectric permittivity,” Phys. Rev. B 30, 5460–5480
(1984).

26 J.M. Elson, “Characteristics of far-field scattering by means of sur-
face roughness and variations in subsurface permittivity,” Waves in
Random Media 7, 303–317 (1997).

27 J.M. Elson, J.M. Bennett, and J.C. Stover, “Wavelength and angular
dependence of light scattering from beryllium: comparison of theory
and experiment,” Appl. Opt. 32, 3362–3376 (1993).

28 T.A. Germer, C.C. Asmail, and B.W. Scheer, “Polarization of out-of-
plane scattering from microrough silicon,” Opt. Lett. 22, 1284–1286
(1997).

29 L. Sung, G.W. Mulholland, and T.A. Germer, “Polarized light-
scattering measurements of dielectric spheres upon a silicon surface,”
Opt. Lett. 24, 866–868 (1999).

30 J.H. Kim, S.H. Ehrman, G.W. Mulholland, and T.A. Germer, “Po-
larized light scattering by dielectric and metallic spheres on silicon
wafers,” Appl. Opt. 41, 5405–5412 (2002).

31 T.A. Germer and C.C. Asmail, “Microroughness-blind optical scatter-
ing instrument,” United States Patent #6,034,776 (2000).

32 H.G. Tompkins, A User’s Guide to Ellipsometry (Academic Press,
New York, 1993).



Polarized Optical Scattering 31

33 T.A. Germer, “Measurement of roughness of two interfaces of a di-
electric film by scattering ellipsometry,” Phys. Rev. Lett. 85, 349–352
(2000).

34 T.A. Germer, “Polarized light scattering by microroughness and small
defects in dielectric layers,” J. Opt. Soc. Am. A 18, 1279–1288 (2001).

35 J.M. Elson, “Light scattering from surfaces with a single dielectric
overlayer,” J. Opt. Soc. Am. 66, 682–694 (1976).

36 J.M. Elson, “Infrared light scattering from surfaces covered with mul-
tiple dielectric overlayers,” Appl. Opt. 16, 2872–2881 (1977).

37 J.M. Elson, “Diffraction and diffuse scattering from dielectric multi-
layers,” J. Opt. Soc. Am. 69, 48–54 (1979).

38 J.M. Elson, J.P. Rahn, and J.M. Bennett, “Light scattering from mul-
tilayer optics: comparison of theory and experiment,” Appl. Opt. 19,
669–679 (1980).

39 J.M. Elson, “Multilayer-coated optics: guided-wave coupling and scat-
tering by means of interface random roughness,” J. Opt. Soc. Am. A
12, 729–742 (1995).

40 B.W. Scheer, “Development of a physical haze and microroughness
standard,” in Flatness, Roughness, and Discrete Defect Characteriza-

tion for Computer Disks, Wafers, and Flat Panel Displays, J.C. Stover,
Ed., Proc. SPIE 2862, 78–95, (1996).
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