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A.1 Introduction

There are different scenarios for using radiometrically calibrated sensors
in space. One scenario is that the sensor is launched into space or stationed
in space to identify and track an object such as a missile in its midcourse
travel in space. The sensor would see the distant object as a point source
against the characteristic space background of a few Kelvin. Radiometric
calibration of such a sensor in the laboratory has to be done for the flux
levels expected in space using a well-known source such as a point-source
blackbody in an environment simulating space. The calibration of such a
point-source blackbody in order to use it as a standard for sensor calibra-
tion is discussed in this Appendix taking the data from Datla et al. [1] as an
example.

A.2 Calibration of a Cryogenic Point-Source Blackbody

In Section 1.5.1, the basic principles for the point-source blackbody cal-
ibration have been discussed. Figure 1.7 illustrates the basic experimental
setup with an absolute cryogenic radiometer (ACR) as the detector. The
ACR directly measures the radiant power irradiating its precision aperture
in watts. The geometric data of the calibration setup for a blackbody cal-
ibration at National Institute of Standards and Technology (NIST) is given
in Table A.1 with associated uncertainties. The values given in Column 2 are
for the cryogenic temperatures of operation and are deduced from ambient
measurements using known temperature dependence of expansion of ma-
terials.

Table A.2 shows the blackbody measurements [1]. Column 1 shows the
nominal setting of the blackbody temperature. Column 2 shows the mean
values of measurements of the platinum resistance thermometer mounted on
the blackbody core. Column 3 shows the standard deviation for 1 s repe-
titions at each setting. The measured value of the radiant power F at the
ACR aperture is shown in Column 4. Each of the measurements was
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repeated at 1.5 s intervals for 3min. Three repeated measurements taken at
different times to assess the reproducibility are shown. These measured val-
ues need to be corrected for diffraction effects in order to use geometrical
optics and deduce the blackbody radiance temperature T. The diffraction
effects are discussed in Section A.2.1, and the corrections are given in Table
A.3. The values of radiant power corrected for diffraction, F0, are shown in
Column 5 of Table A.2. The radiance temperature is then deduced by using
the Stefan–Boltzmann formula,

T ¼
F0

F12A1s

� �1=4

(A.1)

The value of the Stefan–Boltzmann constant is s ¼ 5:6704� 10�8 W/m2/K4.
The configuration factor F12 is evaluated by using the data in Table A.1 and
Eq. (1.13) in Section 1.3.3. The deduced radiance temperatures of the
blackbody are shown in Table A.2, Column 6. Column 7 shows the standard
deviations of the deduced temperatures, sij , using Eq. (A.1) for each of the
120 measurements of radiant flux at each setting.

A.2.1 Diffraction Correction

As discussed in Chapter 9, the radiant power F from the blackbody
incident at the ACR aperture is not solely determined according to geo-
metrical optics because of diffraction effects at both limiting and non-lim-
iting apertures in the beam path shown in Figure A.1. Therefore, diffraction
losses at each one of the apertures in the beam path are estimated by using
the procedures described in Chapter 9. The measured radiant power values
are corrected for diffraction effects at each aperture in the beam path. Table
A.3 gives the calculated correction factors, ðF0 � FÞ=F ¼ DF=F, as a per-
centage of the measured radiant power for various temperatures.

Figure A.1 illustrates the geometry of the optical setup. Items shown are
not to relative scale. From left to right, they are (1) the blackbody cavity and

EMPS : 41011

TABLE A.1. Geometric Data for Cryogenic Blackbody Calibration Setup

Quantity Value Uncertainty in

measurement (1s) (%)

1. Blackbody aperture radius (r1)

at 20K

0.3244mm dr1=r1 ¼ 0:2

2. Radius (r2) of the ACR

aperture at 2.2K

1.4971 cm dr2=r2 ¼ 0:003

3. Distance between the

apertures (R) at 20K

30.77 cm dR=R ¼ 0:136
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its opening, (2) the defining aperture (diameter-0.6488mm) on the variable
aperture disk, (3) the baffle on the front of the blackbody housing, (4) an
isothermal plate, (5) the first ACR baffle, and (6) the precision ACR limiting
aperture. The blackbody cavity opening and its distance from the 0.6488-
mm-diameter aperture define the filling angle of the 0.6488mm aperture.
This filling angle is small enough that blackbody radiation underfills the
baffle on the front of the blackbody housing, which has minimal diffraction
effects. Similarly, the first ACR baffle defines the field of view seen by the
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TABLE A.2. Blackbody Measurements, before and after Corrections, and Uncertainties

(1) (2) (3) (4) (5) (6) (7) (8)

Nominal

blackbody

temp. (K)

Blackbody

sensor

temp. (K)

Std. dev.

(K)

Measured

power (nW)

Diffraction-

corrected

power (nW)

Radiance

temp. (K)

Std. dev. sij

(K)

Weight wij

200 199.874 0.002 72.0 73.29 201.713 1.420 0.4959

199.897 0.005 71.9 73.19 201.643 3.500 0.0816

199.947 0.002 70.6 71.87 200.725 2.130 0.2204

225 224.780 0.003 113.5 115.32 225.910 2.990 0.1119

224.728 0.003 113.4 115.21 225.861 1.384 0.5221

224.823 0.004 113.0 114.81 225.661 1.975 0.2564

250 249.662 0.004 171.3 173.70 250.272 2.100 0.2268

249.639 0.007 172.6 175.02 250.750 1.166 0.7355

249.733 0.005 172.2 174.61 250.600 1.865 0.2875

275 274.685 0.003 252.6 255.88 275.724 1.102 0.8234

274.644 0.006 252.2 255.48 275.620 1.319 0.5748

274.719 0.006 252.8 256.09 275.779 1.101 0.8249

300 299.531 0.007 358.4 362.70 300.851 0.715 1.9561

299.521 0.003 357.3 361.59 300.620 1.135 0.7763

299.588 0.005 358.4 362.70 300.851 0.887 1.2710

325 324.412 0.005 497.6 503.07 326.491 0.830 1.4516

324.457 0.005 492.8 498.22 325.701 0.603 2.7502

324.446 0.003 493.4 498.83 325.800 1.076 0.8637

350 349.306 0.003 665.8 672.46 351.059 0.644 2.4112

349.337 0.008 663.7 670.34 350.782 0.997 1.0060

349.445 0.006 664.8 671.45 350.927 0.869 1.3242

375 374.047 0.005 882.2 891.02 376.648 0.660 2.2957

374.069 0.003 875.7 884.46 375.953 0.816 1.5018

374.171 0.006 877.0 885.77 376.092 1.467 0.4647

400 399.026 0.005 1138.0 1148.24 401.303 0.872 1.3151

399.056 0.004 1134.6 1144.81 401.003 1.266 0.6239

399.131 0.003 1138.8 1149.10 401.373 1.217 0.6752
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ACR, so that the isothermal plate also has minimal diffraction effects. This
is fortunate because the perimeter of the latter is not a knife edge and it is
hard to characterize related diffraction effects.

There are two main diffraction effects: a loss because of the 0.6488mm
defining aperture, and a gain because of the first ACR baffle. One can
estimate the loss by treating the blackbody cavity opening as an extended
source, treating the precision ACR limiting aperture as a detector, and
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TABLE A.3. Calculated Diffraction Correction DF=F
� �

Given as a Percentage of the Measured

Radiant Power Fð Þ. Systematic Uncertainty (type B) in the Correction Due to All Approx-

imations in the Calculations is 710% of DF=F

(1) (2) (3)

Nominal blackbody temp. (K) Diffraction correction, DF=F (%) Uncertainty ð1sÞ (%)

200 1.8 70.18

225 1.6 70.16

250 1.4 70.14

275 1.3 70.13

300 1.2 70.12

325 1.1 70.11

350 1.0 70.10

375 1.0 70.10

400 0.9 70.09

FIG. A.1. Optical setup for blackbody calibration.
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considering diffraction effects of the 0.6488mm defining aperture. One can
estimate the gain by treating the 0.6488mm defining aperture as a source,
the precision ACR limiting aperture as a detector, and considering diffrac-
tion effects of the first ACR baffle. There are many options for treating
diffraction effects, as discussed in greater detail in Chapter 9. For com-
pleteness, a few points are also mentioned here. Section 9.4.3.1 discusses
how to estimate the loss and gain separately. Section 9.4.3.2 discusses how
these effects may be approximately combined as described below.

Diffraction at the 0.6488mm aperture affects the spectral power Fð1Þl ðlÞ
reaching the detector in the first hypothetical three-element setup by mul-
tiplying it by F1ðlÞ ¼ Fð1Þl ðlÞ=F

ð1;0Þ
l ðlÞ, where Fð1;0Þl ðlÞ is the corresponding

ideal spectral power. Diffraction at the first ACR baffle affects the spectral
power Fð2Þl ðlÞ reaching the detector in the second hypothetical three-element
setup by multiplying it by F 2ðlÞ ¼ Fð2Þl ðlÞ=F

ð2;0Þ
l ðlÞ, where Fð2;0Þl ðlÞ is the

corresponding ideal spectral power. The spectral power FlðlÞ in the actual
set is multiplied by a spectral diffraction factor F ðlÞ ¼ FlðlÞ=F0

lðlÞ, where
F0

lðlÞ is the corresponding ideal spectral power. In this case one has
F ðlÞ � F 1ðlÞF 2ðlÞ.

The more detailed methods discussed in Section 9.5.1.2 can treat diffrac-
tion effects more precisely and account for the series of optics through which
radiation passes. In the context of such a calculation, one can explicitly
show that the diffraction effects of the front of the blackbody housing and
isothermal plate are inconsequential. The dashed curve in Figure A.2 in-
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FIG. A.2. Diffraction effects on spectral and total power in setup in Figure A.1.
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dicates F ðlÞ. For example, there is about a 2.5% loss of spectral power at
40 mm because of diffraction. In this and many other cases, the methods of
Sections 9.4.3.1, 9.4.3.2, 9.5.1.2 give very similar results. Diffraction effects
on spectral power increase in size with wavelength, being almost linear at the
shortest wavelengths, but with an increasingly larger oscillatory part at
longer wavelengths.

For diffraction effects on total power F, one may introduce an overall
effective diffraction factor F e ¼ F=F0 ¼

R1
0 dl F ðlÞF0

lðlÞ=
R1
0 dl F0

lðlÞ,
where F0 is the corresponding ideal total power, and one has
DF=F ¼ 1=F e � 1. The crosses in Figure A.2 indicate calculated values of
F e at various temperatures. When plotting these results in such a way, the
abscissa is le, the effective wavelength (see Section 9.5.2.1). For a Planck
source, one has

le ¼

R1
0 dl lF0

lðlÞR1
0 dl F0

lðlÞ
¼

R1
0 dl l�4fexp½c2=ðlTÞ� � 1g�1R1
0 dl l�5fexp½c2=ðlTÞ� � 1g�1

�
5326:473 mm K

T
.

Here le is in mm, T is in K, and c2 � 0:01437752ð25Þ m K is the second
radiation constant. (In the intermediate steps, there are also other, canceling
factors in the numerator and denominator that are discussed in Chapter 1.)
The solid curve in Figure A.2 extrapolates the small-l behavior of F ðlÞ (see
Section 9.4.2.1) or large-T behavior of F e (see Section 9.5.2.2) to larger l or
le. The solid curve approximates the crosses very accurately, and much
better than would using F ðleÞ, which would follow the dashed curve. This is
a frequent trait of broadband radiation that is discussed further in Section
9.5.2.1.

A.2.2 Radiance Temperature and Calibration Uncertainty

The final radiance temperatures for the calibration are obtained by the
least-squares analysis of temperatures, Tijði ¼ 1; . . . ; n; j ¼ 1; . . . ; 3Þ, de-
duced from Eq. (A.1) as a function of blackbody sensor settings,
X ijði ¼ 1; . . . ; n; j ¼ 1; . . . ; 3Þ. In order to evaluate a confidence band for
the variability of the calibration curve, the following statistical procedure is
followed. The calibration equation is assumed to follow the model

Tij ¼ a0 þ a1X ij þ a2X
2
ij þ a3X

3
ij þ � � � þ akX k

ij þ �ij (A.2)

where a0; . . . ; ak are to be estimated, and �ij , the random errors associated
with the measurements Tij , are assumed to be independent with heteroge-
neous variances s2ij . The sij are estimated from the standard deviation sij

from approximately 120 data points for each temperature setting. Weighted
least-squares analysis [2] accounts for the heterogeneity of variances where
the weights, wij , are calculated from the empirical variances, s2ij , by
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wij ¼ 1=s2ij (A.3)

and are given in Table A.2, Column 8. The standard deviations associated
with Tij are an order of magnitude larger than the standard deviations
associated with X ij data. Therefore, random uncertainties associated with
the measurements X ij are negligible for the purpose of least-squares anal-
ysis.

The degree k for the polynomial in Eq. (A.2) is determined by a goodness-
of-fit test that compares the agreement among three runs with the overall fit
to the data. The lowest degree polynomial which satisfies the goodness-of-fit
criterion is taken as the calibration curve. The least-squares analysis model
is not an expression of physical law and it is only a statistical approximation
for prediction of unknown values based on the given data. Therefore, one
should use a minimal number of fitting coefficients [3]. For a blackbody, the
ideal T versus X fit would be linear with unit slope and zero bias, i.e. the
contact temperature sensor readout would be the same as the radiant tem-
perature measured. If a linear fit is not satisfactory, one should critically
examine why it fails before accepting a higher-order polynomial. A devi-
ation from a linear fit in the current experiment would suggest that sources
of radiation other than the blackbody are contributing to the radiometer
output. These could be objects such as aperture holders and baffles that heat
up radiatively due to the blackbody radiation and are in the field of view of
the radiometer. In such an event, eliminating these possibilities by proper
heat sinking and repeating the experiment would be appropriate. A slope
other than unity also suggests a possible, uncorrected error in the presumed
blackbody aperture radius r1, radiometer aperture radius r2, or distance
between the apertures, R, or stray light from the blackbody. However, these
errors can sometimes be calibrated out in the linear fit and the resulting
expression.

In any case, for a polynomial fit, given a future blackbody sensor setting,
Xh, its calibrated radiance temperature value is given by

Th ¼ a00 þ a01Xh þ a02X
2
h þ a03X

3
h þ � � � þ a0kX k

h (A.4)

where a00; . . . ; a
0
k are least-squares estimates from calibration data. The ran-

dom component of uncertainty U r associated with the predicted value is
computed as

U r ¼ ½ðk þ 1ÞF ð95; k þ 1; n� k � 1Þ�1=2sðThÞ (A.5)

The constant F ð95; k þ 1; n� k � 1Þ is the upper 95 percentile of Snedecor’s
F-distribution with k þ 1 degrees of freedom in the numerator and n� k � 1
degrees of freedom in the denominator, and sðThÞ is the standard deviation
of the predicted value, Th. This uncertainty, based on the Working–Hoe-
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telling confidence bands for the calibration curve, is valid for all future
applications of the calibration curve as long as the model holds. The details
of the statistical analysis can be found in References [4, 5]. Fitting is also
discussed in Section 6.16.

In the least-squares analysis, the temperature values measured by the
platinum resistance thermometer (PRT) sensor (Table A.2, Column 2) are
used for the independent variable, X. Analysis shows that a linear function
(k ¼ 1) is sufficient for describing the data. The equation,

Th ¼ a00 þ a01X h (A.6)

gives the predicted radiance temperature Th for a blackbody temperature Xh

measured by the PRT sensor, as shown in Columns 3 and 2 of Table A.4,
respectively. Column 1 shows the nominal temperature controller setting.
The estimated coefficients and associated standard deviations are

a00 ¼ �0:89; sða00Þ ¼ 0:26

a01 ¼ þ1:007; sða01Þ ¼ 0:0008
(A.7)

Covariance between the fitted parameters is taken into account when prop-
agating the uncertainties.

The percentage uncertainty in the deduced radiance temperature dT=T is
given by Eq. (A.1) and the theory of uncertainty propagation [6]. An ap-
proximation on a Taylor series expression gives the relationship between the
variables as

dT

T
�

dF
4F
þ

dr1

2r1
þ

dr2

2r2
þ

dR

2R
(A.8)

The first term on the right-hand side of Eq. (A.8) shows the relationship to
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TABLE A.4. Predicted Radiance Temperatures (temp.) and Uncertainties (unc.) for Blackbody

Nominal Temperature Settings

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Nominal

blackbody

temp. (K)

PRT

sensor

output

(K)

Predicted

radiance

temp. (K)

1s random

unc., sðThÞ

(K)

ACR

char. (K)

Diffraction

calculation

unc. (K)

Geometry

measurement

unc. (K)

Total b

(K)

Expanded

unc. U (K)

200 199.92 200.48 0.11 0.06 0.09 0.24 0.26 0.75 (0.4%)

225 224.78 225.52 0.09 0.07 0.09 0.27 0.29 0.80 (0.4%)

250 249.68 250.60 0.07 0.08 0.09 0.30 0.32 0.87 (0.3%)

275 274.68 275.78 0.06 0.09 0.09 0.33 0.35 0.94 (0.3%)

300 299.55 300.83 0.04 0.09 0.09 0.36 0.38 1.01 (0.3%)

325 324.45 325.91 0.04 0.10 0.09 0.39 0.41 1.09 (0.3%)

350 349.36 351.01 0.04 0.11 0.09 0.42 0.44 1.17 (0.3%)

375 374.12 375.94 0.06 0.11 0.09 0.45 0.47 1.25 (0.3%)

400 399.07 401.07 0.07 0.12 0.09 0.48 0.50 1.33 (0.3%)
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the contribution from the uncertainty in the radiant power which has both
type A and B components. The type A component of uncertainty is essen-
tially folded into the least-squares analysis through weights given by Eq.
(A.3) to each of the deduced temperature readings. So sðThÞ, obtained from
the least-squares analysis which includes the covariance of the fitting pa-
rameters, gives the type A component of uncertainty and is shown in Col-
umn 4 of Table A.4. The type B component of the uncertainty due to
systematic effects in the first term of Eq. (A.8) are listed separately in Col-
umns 5 and 6. Column 5 gives the uncertainty in the power, dF=ð4FÞ, due to
the characterization of ACR as an absolute detector based on the principle
of electrical substitution explained in detail in Chapter 2, and Column 6
gives the uncertainty in diffraction calculations. The other type B compo-
nents are obtained by propagating the geometry uncertainties given in Table
A.1 using the last three terms in Eq. (A.8). Their combined contribution to
the temperature measurement uncertainty is shown in Column 7. Column 8
shows the total type B component, b, which is the square root of the sum of
squares of all type B components given in Columns 5–7. The expanded
uncertainty, U, as shown in Column 9, is obtained by expanding Eq. (A.5)
as follows (see [1], p. 85):

U ¼ ½ðk þ 1ÞF ð95; k þ 1; n� k � 1Þ�1=2½s2ðThÞ þ b2
�1=2 (A.9)

The multiplying factor in Eq. (A.9) for n ¼ 27; k ¼ 1 for the data is 2.6. The
value shown in parenthesis in Column 9 is the expanded uncertainty given in
Kelvin and as a percentage of the measured temperature in parenthesis.
Figure A.3 shows the 95% confidence band for the difference between the
calibrated temperature and the PRT temperature. The points represent the
same with measured radiance temperatures. The expanded uncertainty given
in Table A.4 is within 0.4%. However, it can be seen from Figure A.3 that
this model fits well in the middle range of temperatures and not at the
extreme low and high temperatures.

The statistical procedure that leads to Eq. (A.9) did not take into account
possible correlations between type B components because of the relationship
shown in Eq. (A.8). However, calculations of expanded uncertainty, U,
using the complete covariance matrix and least-squares fitting using appro-
priate weights have been carried out and the results are found to be the same
as given by Eq. (A.9). The calibration constants in Eq. (A.7) are also found
to be about the same as reported.

The blackbody calibration discussed above is for one aperture setting. In
general, the point-source blackbodies are equipped with a filter wheel with
multiple apertures of various sizes to be able to project different flux levels
to the sensor. As the aperture size gets smaller, the uncertainty in its area
measurement gets larger. It is possible to measure the effective aperture size
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at the cryogenic temperature of operation radiometrically to reduce the
aperture measurement uncertainty. Reference [7] discusses this in detail. The
method to follow is to determine the radiance of the blackbody core for its
highest possible temperature setting and the largest aperture size to ensure
that the diffraction correction and aperture area are characterized as well as
possible. Under the assumption that the radiance does not change with
aperture size, one can deduce the aperture size from the ACR radiant power
measurements for other apertures, which probably involves diffraction cor-
rections as well. In this way, the blackbody calibration described here can be
carried out for each aperture using radiometrically determined aperture
sizes.

EMPS : 41011

FIG. A.3. The solid line represent difference between the deduced radiance temper-
ature and the temperature measured by the blackbody PRT sensor plotted as a
function of the blackbody nominal temperature setting. The circles represent the
same for measured radiance temperatures and are not of equal weights. The dashed
lines represent upper and lower bounds of 95% confidence bands.
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A.2.3 Example with Fewer Temperature Settings

In cases where measurements are done at only one or two temperature
settings, least-squares analysis as described above is not applicable because
of insufficient data. Then the ACR measurement of radiant power at each
temperature setting is used to deduce the corresponding radiance temper-
ature using Eq. (A.1). Again, the percentage propagated uncertainty in the
deduced radiance temperature is given by Eq. (A.8). The type B components
are evaluated as discussed in the previous Section A.2.2. The type A un-
certainty in the radiant power measurement is analyzed by pooling the var-
iances between groups of measurements. The radiant power data collected
for 3min leading to approximately 120 data points in each group is averaged
to determine the average, P̄, and the standard deviation, srpt. It is a measure
of the repeatability of the measurements in each set, and in general the ACR
data show very good repeatability. At least at three different times, the data
are taken to have three groups of data to estimate a standard deviation, srpr,
for reproducibility. The average power for three runs is calculated as

¯̄P ¼
1

3

X3
j¼1

P̄j (A.10)

and a standard deviation, st, is calculated from

s2t ¼
1

2

X3
j¼1

ðP̄j �
¯̄PÞ2 (A.11)

The standard deviation st is a measure of both repeatability and reproduc-
ibility of the ACR power measurements [1]. The standard deviation of the
mean, st=

ffiffiffi
3
p

, is the type A uncertainty in the power measurement. In Table
A.5, the case for such analysis for measurements at 3 temperature settings
are given based on the data of Table A.2. The average power after correcting
for diffraction is given in Column 3 and the corresponding uncertainty
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TABLE A.5. Analysis of Uncertainty (unc.) in the Case of Fewer Temperature Settings

(1) (2) (3) (4) (5) (6) (7) (8)

Nominal

blackbody

temp. (K)

PRT

sensor

output

(K)

Measured

diffraction-

corrected

power (nW)

Std. dev., st
(nW)

Radiance

temp. (K)

Type A

propagated

unc. (K)

Type B

propagated

unc. (K)

Expanded

unc., U (K)

300 299.55 361.2 0.4 300.77 0.08 0.38 0.78 (0.3%)

350 349.36 669.8 0.8 350.93 0.10 0.44 0.90 (0.3%)

400 399.07 1144.6 1.3 401.22 0.11 0.50 1.12 (0.3%)
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evaluated using Eq. (A.11) is given in Column 4. Column 5 has the radiance
temperature, and the propagated type A uncertainty due to uncertainty in
radiant power measurement and total propagated type B uncertainty b,
obtained as described in Table A.4, are given in Columns 6 and 7. The
relative standard uncertainty, uc;rðTÞ, which is the square root of the sum of
squares of the propagated uncertainties, is determined. The expanded un-
certainty, U, is obtained by multiplying uc;rðTÞ by the coverage factor 2,
which will give less than 95% confidence band because of the small sample
size [6]. In any case, the difference between the values predicted in Table A.4
and the deduced temperatures given in Table A.5 are within this expanded
uncertainty.
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