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9.1 Introduction and Definitions

9.1.1 The Context of Traditional Radiometry

Radiometry is the measurement of energy in the form of electromagnetic
radiation (i.e., light). We can specify such a measurement further by
geometrical definitions that delineate the radiation that is measured. Two
‘‘end-point’’ delineations are self-evident in the definitions of radiance and
irradiance. Radiance (denoted by L) is defined as the power that is emitted
per projected unit area of source per steradian. Irradiance (denoted by E) is
defined as the power incident per unit area of a surface. Radiance, irradiance
and other quantities are further discussed in Chapter 1. The definitions of
radiance and irradiance illustrate how traditional radiometry frequently
involves transfer of electromagnetic energy from points on one surface to
points on a different surface.

9.1.2 Throughput of an Optical Setup

For a given optical setup, it is standard to relate source radiance (L) to
power reaching the detector (F) by a measurement equation [1]. In this
chapter, the measurement equation can have the form

FlðlÞ ¼ TðlÞLlðlÞ (9.1)

A spectral quantity such as FlðlÞ is the power per unit wavelength at
wavelength l, according to the pattern,

F ¼
Z 1
0

dl FlðlÞ (9.2)

The quantity TðlÞ is the ‘‘throughput’’ of the optical setup under
consideration. As a starting approximation, we can compute TðlÞ using
ray-tracing according to geometrical optics. We then have TðlÞ ¼ T0MðlÞ,
where T0 is the ‘‘geometrical throughput’’ of an optical setup, a purely
geometrical entity, with no spectral dependence, and MðlÞ, which has an
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ideal value of unity, can be introduced to account for optical filters, lens
transmittance, mirror reflectance, and so forth. For simple setups, it is often
possible to express T0 in closed form (see Chapter 1 for an example).

9.1.2.1 Diffraction effects

Because electromagnetic radiation actually propagates as a wave entity
instead of according to geometrical (ray) optics, we generally have TðlÞa
T0MðlÞ. The relationship between TðlÞ and T0 can instead be given in
the form

TðlÞ ¼ F ðlÞT0MðlÞ ¼ ½1þ �diff ðlÞ�T0MðlÞ (9.3)

The quantity F ðlÞ is a ratio that would be unity in the ideal case of geometrical
optics. The quantity �diff ðlÞ is the difference between F ðlÞ and unity. This
difference and its impact on radiometric measurements shall be referred to as
‘‘diffraction effects’’ on spectral throughput or spectral power. We can also
consider diffraction effects on spectral and total irradiance, point-to-point
propagation of radiation, and other quantities.

Accounting for the difference between F ðlÞ and unity, and its impact on
measurement results shall be referred to as including ‘‘diffraction corrections.’’
From Eq. (9.3), we may deduce that many quantities, including detector
responsivity, source radiance, and geometrical throughput (as influenced, say,
by the area of an aperture under test), can be inferred from a radiometric
measurement. This requires sufficient knowledge of all other quantities
affecting the measurement. In general, diffraction is one factor that affects the
outcome. Hence, diffraction effects may need to be taken into account.

In the case of complex radiation, such as is encountered when measuring
the radiance of a laboratory blackbody source, diffraction effects on the
spectrally integrated signal are more relevant than diffraction effects at just
one wavelength. Suppose that the output signal S of a sensor (for instance,
this signal may be an output voltage) is given by S ¼

R1
0 dl RðlÞFlðlÞ,

which involves a linear combination of the spectral power FlðlÞ reaching the
detector at each wavelength weighted by the sensor’s relative spectral
response, RðlÞ. The diffraction effects on the signal become

hFi ¼ 1þ h�diffi ¼ 1þ

R1
0 dl½F ðlÞ � 1�RðlÞFlðlÞR1

0 dl RðlÞFlðlÞ
(9.4)

9.1.3 Chapter Organization

In what follows, aspects of diffraction effects are further discussed within
the context of radiometry. Diffraction theory is first discussed, with concepts
and conceptual pictures of diffraction as it affects radiometry being laid
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out. Only the very core essentials are discussed, with much detail left to
the references.

A simplified model for diffraction effects is derived that is appropriate for
describing Fresnel and Fraunhofer diffraction in systems that can be treated
using Gaussian optics [2, 3]. The model is applicable to diffraction by single
apertures and lenses as well as by several optical elements in series, which
can often be more relevant to practical radiometry.

Nonetheless, the main diffraction effects often result from that by one
optical element, which is frequently a circular aperture or lens that is placed
between a coaxial circular ‘‘effective’’ source and ‘‘effective’’ detector. For
example, a defining aperture that is in front of the opening of a blackbody
cavity might be treatable as a Lambertian source for purposes of diffraction
effects that occur downstream from the defining aperture. Therefore,
diffraction effects on the cylindrically symmetrical source–aperture–detector
(SAD) problem are discussed in more detail.

The radiometry literature attests to the considerable attention paid to
diffraction effects. Some of this work, much of it recent, is mentioned. The
role of diffraction in radiometry is still a dynamic and rapidly evolving field.
Because diffraction effects are especially important at longer wavelengths,
the extension of radiometry into the infrared has driven much of the need
for improvement, coupled with the need for ever higher accuracy, thanks to
the innovations in cryogenic radiometry. The reader should therefore also
search the literature written after this volume.

Finally, brief mention is made of novel and/or unconventional radiation
sources, such as synchrotrons. For these sources, novel coherence that is not
present in incoherent sources such as blackbodies may require reassessing
the applicability of conventional ways of thinking about diffraction effects.

9.2 Theories of Diffraction

Here, a ‘‘theory of diffraction’’ could operationally involve electromag-
netic wave propagation in the complex geometry of an optical setup.
However, we do not really want a complete description of such propagation.
For purposes of diffraction studies, we want to estimate how the actual
propagation differs from that predicted by geometrical optics, and how
these differences affect measurements. Distilling just this information is the
goal of diffraction analysis.

A complete description of the propagation of electromagnetic radiation
would not only require solving Maxwell’s equations that govern the radiation
within free space and other media [4]. We would also need to describe the
coupled motion of induced dielectric polarization and electrical currents
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within optical elements. Even now, this task has been carried out, for
instance, in the fields of photonic band structure and optical nanostructures,
only for simple or highly simplified systems [5]. Some simplifications are
usually required to describe electromagnetic wave propagation in conven-
tional optical systems.

9.2.1 Motivation of the Scalar Helmholtz Equation

Within a region of free space or some other uniform medium, the electric
field Eðx; tÞ has the general form,

Eðx; tÞ ¼

Z 1
�1

do
Z

S

d2q̂
X
m

Xmðq̂;oÞêmðq̂;oÞ expfio½nmðq̂;oÞq̂ � x=c� t�g (9.5)

Here x and t are space and time coordinates, o the angular frequency, S the
unit sphere, q̂ a directional unit vector, êmðq̂;oÞ a polarization vector for
polarization m, nmðq̂;oÞ an index of refraction, and c the speed of light in
vacuum. Furthermore, i denotes the square root of �1, and we use the
convention of time evolution having the form, expð�iotÞ. A parameter
Xmðq̂;oÞ is the complex amplitude for a particular combination of frequency,
polarization and direction of propagation. The magnetic induction Bðx; tÞ
may be found from Eðx; tÞ using Maxwell’s equations, which formally
completes one aspect of describing electromagnetic wave propagation.

We now consider monochromatic radiation. We can sum any calculated
result for the electromagnetic field over frequency components to describe
the behavior of complex radiation, once we describe the behavior of
monochromatic radiation. We also now restrict ourselves for simplicity to
isotropic media, so that, for a given value of o, the magnitude of the angular
wavevector is simply q ¼ nðoÞo=c. From Maxwell’s equations, we can
derive the Helmholtz wave equation that is obeyed by the individual vector
components of the electric field Eðx; tÞ and magnetic induction Bðx; tÞ:

½r2 þ q2�Eðx; tÞ ¼ 0

½r2 þ q2�Bðx; tÞ ¼ 0

9>=
>; (9.6)

In optical setups, electromagnetic radiation frequently flows past certain
regions in one general direction. In other instances, such as when radiation
is reflected by a mirror, quantities such as Eðx; tÞ can be decomposed into
incident and reflected parts, each of which obeys the wave equation and can
be considered separately except at the mirror surface. We therefore consider
a field Eðx; tÞ that is associated with radiation flowing along one general
direction.
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We next re-express this field as a superposition of spherical waves
originating from sources outside the region under consideration. From that,
we can show that the electromagnetic energy current density, related to the
Poynting vector, is approximately described as a superposition of the
squares of the transverse parts of Eðx; tÞ associated with both polarizations.

For each polarization state, the energy density W and energy current
density J can be reasonably modeled in terms of a fictitious scalar wave field,
Uðx; tÞ. For the case of monochromatic scalar radiation, this field also obeys
the Helmholtz wave equation,

½r2 þ q2�Uðx; tÞ ¼ 0 (9.7)

In a given region, if the energy density is W ¼ CjUðx; tÞj2, where C is a
scaling constant, the energy current density would be J ¼ ½c=ðnðoÞqÞ�
RefCUnðx; tÞrUðx; tÞg. An asterisk denotes complex conjugation, and ‘‘Re’’
indicates the real part of an expression. For radiation that is nominally
propagating along the direction ê, we have Jffi ðcW=nðoÞÞê. This means
that the irradiance at a surface can be approximated as being proportional
to the time-averaged part of W associated with an incident wave.

9.2.2 Kirchhoff’s Integral Formula

Instead of solving the Helmholtz wave equation completely for the scalar
radiation field, Kirchhoff (see [4], pp. 427–429, [6]) solved this equation
approximately, as a boundary-value problem using Green’s function
techniques. One Green’s function for the Helmholtz equation, once the
value of q is assumed, is

Gðx;x0Þ ¼
expðiqjx� x0jÞ

jx� x0j
(9.8)

This Green’s function obeys the inhomogeneous equation,

ðr2 þ q2ÞGðx;x0Þ ¼ �4pd3ðx� x0Þ (9.9)

Here the Laplacian is taken with respect to the first argument, and the Dirac
delta function is used, with d3ðx� x0Þ ¼ dðx� x0Þdðy� y0Þdðz� z0Þ. We
henceforth suppress time dependence for monochromatic radiation, so that
Uðx; tÞ ¼ UðxÞe�iot is abbreviated as UðxÞ. The problem to be solved to find
UðxÞ is illustrated with the aid of Figure 9.1. The figure shows a cut-away
view of O, a region of three-dimensional space enclosed by a two-
dimensional boundary surface, Q. Radiation is not emitted anywhere
within O, but it can enter O through an aperture whose area Ap lies on Q. Ap

can be the surface of a mirror, aperture or lens, and can be flat or curved.
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The value UðxÞ and inwardly directed normal derivative of UðxÞ,
@UðxÞ=@n, are assumed to be equal to the value and normal derivative of
an incident wave on Ap, respectively denoted by U iðxÞ and @U iðxÞ=@n, and
to be equal to zero everywhere else on Q. If we set x0 ¼ xd, where xd is a
point of interest in O, multiplication of Eq. (9.7) on the left by Gðx; xdÞ and
integration with respect to x throughout O givesZ

O
d3xGðx;xdÞðr

2 þ k2
ÞUðxÞ ¼ 0 (9.10)

Similarly, multiplication of Eq. (9.8) on the left by UðxÞ and the same
integration gives

Z
O
d3xUðxÞðr2 þ q2ÞGðx;xdÞ ¼ �4pUðxdÞ (9.11)

Subtracting Eq. (9.11) from Eq. (9.10) and application of Green’s theorem
with the assumed boundary conditions gives

UðxdÞ ¼
1

4p

Z
O
d3x½Gðx; xdÞðr

2 þ q2ÞUðxÞ �UðxÞðr2 þ q2ÞGðx;xdÞ�

¼
1

4p

Z
O
d3xfr � ½Gðx;xdÞrUðxÞ �UðxÞrGðx;xdÞ�g

¼
1

4p

Z
Q

d2x½UðxÞ@Gðx; xdÞ=@n� Gðx;xdÞ@UðxÞ=@n�

ffi
1

4p

Z
Ap

d2x½U iðxÞ@Gðx;xdÞ=@n� Gðx; xdÞ@U iðxÞ=@n� ð9:12Þ

FIG. 9.1. Generic context of Kirchhoff boundary-value problem.
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The fact that contributions from every part of Q other than Ap can be
neglected requires more discussion than we provide here. This detail is
available, for instance, in Born and Wolf [7].

From Eq. (9.12), we see that, if values are known or at least assumed for
U iðxÞ and @U iðxÞ=@n on a given optical element, we can find UðxdÞ and its
derivatives anywhere within O. We can use Eq. (9.12) to find UðxdÞ and its
derivatives on the next optical surface (or aperture area) downstream from
Ap, by temporarily considering the next element as being within O. Repeated,
iterative application of Eq. (9.12) in this fashion can help trace the flow of
radiation through an optical setup. In many cases, we can assume that the
radiation field originates as the radiation from infinitely many mutually
incoherent point sources located on the area of a source. Radiation
originating at xs initially has the form UðxÞ ¼ U0 expðiq jx� xsjÞ=jx� xsj.

It is probably safe to say that all or nearly all analyses of diffraction
effects in radiometry are equivalent to some application of Eq. (9.12).
Diffraction effects on the irradiance on a detector area can be inferred from
how the value of W or J computed according to Eq. (9.12) differs from the
‘‘ideal’’ value. The ideal value can be related to the distribution of rays
traced from the source through the optical system according to geometrical
optics that are incident on a given area. Perfect focusing as found in
geometrical optics can lead to infinite ray densities at various places. It is for
this reason that the distribution of incident rays can be most safely described
in fashions such as the quantity of rays falling on a finite area.

9.2.2.1 Some outstanding issues

The last step in Eq. (9.12) is not rigorous, because the assumed boundary
conditions are arbitrary. In fact, it can even be shown that if any solution of
the Helmholtz equation UðxÞ and its normal derivative @UðxÞ=@n are both
zero everywhere on a finite surface such as the portion of Q other than Ap,
then UðxÞ must be zero everywhere in O (see [4], pp. 429–432).

One class of remedies to this problem is to change the boundary
conditions, such as by assuming that only a certain linear combination
aUðxÞ þ b@UðxÞ=@n is known on Q. This leads to the Rayleigh–Sommerfeld
variants of the Kirchhoff diffraction theory [8]. This class of remedies
requires different Green’s functions involving image sources within O that
help satisfy the assumed boundary conditions. Such Green’s functions
cannot be found in all instances, but have been formulated for planar Ap.
The boundary-diffraction wave (BDW) formulation that is discussed in
Section 9.2.3 has been generalized to several boundary conditions and
several different types of incident wave fronts on a planar Ap. (Introducing
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curvature of Ap can be similar to warping wave fronts by means of adjusting
their phase on a fixed, planar Ap.)

More rigorous theoretical treatments of diffraction have also been carried
out. Sommerfeld considered diffraction of s- and p-polarized light at the
straight edge of an infinitely conducting half-plane [9]. Bethe [10] and
Bouwkamp [11] pioneered diffraction by very small, circular holes in
perfectly conducting planes, and Levine and Schwinger [12] have carried
out related investigations. Braunbek [13] has also attempted to refine
Kirchhoff’s theory, and Mielenz [14] has recently pursued a rigorous
investigation of diffraction effects in close proximity to an aperture and
transmission functions of small apertures reminiscent of the work by Levine
and Schwinger. There have been other investigations as well, many of which
have been compiled by Oughstun [15].

The above investigations lead to two main conclusions that summarize the
state of affairs for most diffraction effects in radiometry. First, despite any
formal mathematical inconsistencies, the Kirchhoff, Rayleigh–Sommerfeld
and more rigorous treatments often predict similar diffraction effects,
especially if one is considering a radiation field far from Ap and along a
direction nearly normal to Ap and not too different from the natural path of
geometrical rays. Fortunately, this qualification is met in most instances in
practical radiometry.

Second, the Kirchhoff theory is bound to break down in the case of very
small apertures, if the aperture diameter is at most a few times larger than the
wavelength. Exactly how this breakdown occurs remains a problem of
theoretical and experimental interest, especially when very small apertures are
used in far-infrared measurements. At the time of this writing, measurement
uncertainties remain too large to definitively assess the breakdown of
Kirchhoff’s theory. These uncertainties can have causes ranging from
mundane problems such as measurement noise and limited repeatability to
issues as fundamental as the ambiguity of what defines an aperture’s edge and
corresponding area, finite aperture thickness, and imprecise knowledge of
appropriate boundary conditions for real apertures.

9.2.3 Boundary-Diffraction-Wave Formulation

Maggi [16], Rubinowicz [17] and Miyamoto and Wolf [18] pioneered a
reformulation of Eq. (9.12) that re-expresses the radiation field in the
following fashion:

UðxÞ ¼ UGðxÞ þUBðxÞ (9.13)

The first term is called the ‘‘geometrical wave.’’ It is the continuation of the
wave incident on Ap in the illuminated region of O and zero in the shadow
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region. Therefore, UGðxÞ and UBðxÞ have canceling discontinuities at the
boundary between the illuminated and shadow regions. These regions are
indicated in Figure 9.2 for several incident waves. The second term is called
the BDW, because it re-expresses diffraction effects on UðxÞ as a line
integral around G, the perimeter of Ap.

Formulas for UBðxÞ vary depending on the incident wavefront [19]. As an
example, we can consider the case illustrated in Figure 9.3. If the incident

FIG. 9.2. Illuminated and shadow regions for radiation that is a plane wave,
diverging spherical wave and converging spherical wave downstream from a lens or
aperture. Dashed lines indicate boundary between regions. Cross sections of regions
are illustrated in the plane of observation.
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wave is a spherical wave originating from point xs as the spherical wave

U iðxÞ ¼ U0
expðiqjx� xsjÞ

jx� xsj

� �
(9.14)

one has UGðxdÞ ¼ U iðxdÞ in the illuminated region, UGðxdÞ ¼ 0 in the
shadow region, and

UBðxdÞ ¼
U0

4p

I
G

dl � ðd� sÞ

dsþ d � s

expðiqsÞ

s

� �
expðiqdÞ

d

� �
(9.15)

Here l is a point on G, we have d ¼ l� xd and s ¼ l� xs, and the line
integral is performed in the right-hand sense about the forward direction of
propagation. Besides being easier to evaluate numerically than a double
integral, the single integral in Eq. (9.15) also provides better insight into
the behavior and asymptotic properties of the BDW. The integrand in
Eq. (9.15) has singularities when xd is near a geometrical shadow boundary.
This requires special care by the practitioner, and points to certain
difficulties with the BDW formulation.

9.2.4 Geometrical Theory of Diffraction

Keller and co-workers [20] largely spawned the field of the geometrical
theory of diffraction (GTD) in a classic series of papers in 1960s. Two classic
volumes on this are the volumes by James [21] and by Borovikov [22]. In a
sense, the GTD picture gives results that bear strong similarity to what
would result from evaluating the BDW using asymptotic methods such as
the stationary-phase approximation to evaluate the line integral. The GTD
models the radiation that reaches rd as corresponding to a geometrical ray
and/or very few rays that are bent at certain points on aperture edges and

FIG. 9.3. Geometrical construction for BDW formulation.
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other places. In geometrical optics, Fermat’s least-time principle dictates the
path taken by a ray through an optical system. Likewise, the stationary
nature of the total optical path length at points on edges in the BDW
integrand can be deduced from a generalization of Fermat’s principle to the
diffracted part of a radiation field.

If we go one step beyond the GTD, continuing to work backwards from
solving the full Maxwell’s equations with all boundary conditions, one
logical finishing point would be to arrive at geometrical optics. Luneburg
[23] has presented a systematic development of the successive steps and
approximations that can bridge Maxwell’s equations and geometrical optics.
Luneburg’s contribution provides a nearly seamless path from fundamental
physical equations to geometrical optics. A similar critique of logical steps
and approximations made at each stage might provide insight into future
practical approximations describing diffraction effects in radiometry.

9.3 Practical Diffraction Calculations

The Kirchhoff diffraction theory is usually adequate for estimating
diffraction effects in radiometry. We can make several additional, simplify-
ing, mathematical approximations to streamline analytic and numerical
calculations without significant loss of accuracy. In this section, we discuss
some of these approximations, including those related to Gaussian optics
and developments that lead to the Fraunhofer and Fresnel approximations.

9.3.1 Unfolding and Neglect of Obliquity Factors

Note how the optical setup in Figure 9.4a can be ‘‘unfolded’’ into a nearly
equivalent optical system shown in Figure 9.4b, with the following
characteristics: a length that is much larger than its width, and radiation
that is incident on or proceeds downstream from surfaces of optical
elements (including aperture areas) at angles close to normal. This justifies
using the following approximations in Eq. (9.12):

@Gðx; xdÞ

@n
ffi �iqGðx;xdÞ (9.16)

and

@U iðxÞ

@n
ffi þiqU iðxÞ (9.17)

Hence, Eq. (9.12) can be rewritten as

UðxdÞ ffi
1

il

Z
Ap

d2xU iðxÞGðx;xdÞ (9.18)
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9.3.2 Gaussian-Optics Approximation of a Spherical Wave

The Green’s function given in Eq. (9.8) has the form of a spherical wave
that involves the distance between x and x0 in the exponent and in the
denominator. This distance can be expanded in a Taylor expansion,

x� x0
�� �� ¼ ½ðx� x0Þ2 þ ðy� y0Þ2 þ ðz� z0Þ2�1=2

¼ z� z0
�� ��þ ðx� x0Þ2 þ ðy� y0Þ2

2 z� z0j j
þ � � �

ffi z� z0
�� ��þ x2 þ y2

2 z� z0j j

� �
þ

x02 þ y02

2 z� z0j j

� �
�

xx0 þ yy0

z� z0j j

� �
ð9:19Þ

As shown in Figure 9.4b, the z-axis is the optical axis of the unfolded setup,
with propagation generally along the positive-z direction. The Taylor expan-
sion in Eq. (9.19) assumes that distances along the z-axis between points on
successive optical elements are much larger than the corresponding distances
along transverse directions.

In Gaussian or paraxial optics, a distance in the exponent is approximated
by the four terms shown in Eq. (9.19), but a distance in the denominator is

FIG. 9.4. Unfolding of an optical setup: (a) actual setup, (b) unfolded setup.
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approximated by the first term only:

Gðx; x0Þ ffi

exp iq z� z0j j þ
x2 þ y2

2 z� z0j j

� �
þ

x02 þ y02

2 z� z0j j

� �
�

xx0 þ yy0

z� z0j j

� �� �� �

z� z0j j

(9.20)

This combination of approximations has several advantages. One regarding
its efficacy is ‘‘self-consistency,’’ which is discussed later. A key practical
advantage is that the approximate Green’s function is proportional to a
generalized Gaussian-type exponential function. We can use this fact to
great advantage, because of the insight that is available regarding
integration of Gaussian functions. This becomes especially clear when we
realize that such integration is done over two-dimensional surfaces. The
right-hand side of Eq. (9.20) is the product of four factors: an overall
prefactor, a Gaussian that depends on the transverse coordinates x and y on
one optical element, a corresponding Gaussian that depends on x0 and y0,
and an exponential function involving the inner product of both sets of
transverse coordinates, xx0 þ yy0.

One can also easily include curvature of optical surfaces in Gaussian-
optics in an analogous approximate fashion. A curved element is approxi-
mated as a thin lens. A ray passing through such an element is treated as a
ray passing through a constant-z surface, but with a modified effective
optical path length depending on the transverse coordinates x and y where it
crosses the surface. This modification is done by the replacement

U iðx; y; zÞ ! U iðx; y; zÞ exp �
iqðx2 þ y2Þ

2f

� �
(9.21)

after U i is computed and before we iterate Eq. (9.18) to the next element.
The parameter f is the signed focal length of the optical element. A non-
curved element has f ¼ �1.

9.3.3 Fraunhofer and Fresnel Diffraction

In the case of diffraction of a spherical wave originating at x by one
optical element in free space shown in Figure 9.5, we have

Uðx0; y0; z0Þ

ffi
U0e

iqðdþd 0Þ

ildd 0

ZZ
Ap

d2x
00
exp iq

ðx� x00Þ2 þ ðy� y00Þ2

2d

��

þ
ðx0 � x00Þ2 þ ðy0 � y00Þ2

2d 0
�

x002 þ y002

2f

��
ð9:22Þ
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This approximates the initial spherical wave originating at x and Gðx00; x0Þ
according to Gaussian-optics and allows for focusing effects. It can be
rearranged by introducing

xm ¼
xd 0 þ x0d

d þ d 0
; ym ¼

yd 0 þ y0d

d þ d 0
(9.23)

the coefficient

C ¼
1

2d
þ

1

2d 0
�

1

2f
(9.24)

and

x0m ¼ xm 1�
1

2Cf

� �
; y0m ¼ ym 1�

1

2Cf

� �
(9.25)

If we indicate the distance along the geometrical optical path from x to x0 as

L0 ¼ d þ d 0 þ
ðx� x0Þ2 þ ðy� y0Þ2

2ðd þ d 0Þ
þ

xmx0m þ ymy0m
2f

(9.26)

we have the convenient result,

Uðx0; y0; z0Þ ffi
U0e

iqL0

ildd 0

ZZ
Ap

dx00dy00 expfiqC½ðx00 � x0mÞ
2
þ ðy00 � y0mÞ

2
�g (9.27)

Here ðx00 � x0m; y
00 � y0m; 0Þ is the position of a point on the element area Ap

relative to ðx0m; y
0
m; z
00Þ. By Fermat’s principle, the geometrical optical path

from x to x0 intersects the z ¼ z00 plane at ðx0m; y
0
m; z
00Þ.

FIG. 9.5. Parameters pertinent to diffraction by a single optical element.
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Consider a point ðx̄; ȳ; z00Þ near the center of Ap. Then

ðx00 � x0mÞ
2
¼ ½ðx00 � x̄Þ þ ðx̄� x0mÞ�

2

¼ ðx00 � x̄Þ2 þ 2ðx̄� x0mÞðx
00 � x̄Þ þ ðx̄� x0mÞ

2

and

ðy00 � y0mÞ
2
¼ ½ðy00 � ȳÞ þ ðȳ� y0mÞ�

2

¼ ðy00 � ȳÞ2 þ 2ðȳ� y0mÞðy
00 � ȳÞ þ ðȳ� y0mÞ

2

imply that we have

Uðx0; y0; z0Þ ffi
U0e

iqfL0þC½ðx̄�x0mÞ
2
þðȳ�y0mÞ

2
�g

ildd 0

�

ZZ
Ap

dx00dy00eiqC½2ðx̄�x0mÞðx
00�x̄Þþ2ðȳ�y0mÞðy

00�ȳÞþðx00�x̄Þ2þðy00�ȳÞ2�

ð9:28Þ

This involves a prefactor and an integral of an exponential function. The
argument in the exponent has terms that are linear and quadratic in ðx00 � x̄Þ

and ðy00 � ȳÞ. For a sufficiently small aperture, only the linear terms matter,
and Uðx0; y0; z0Þ is proportional to the Fourier transform of a function that is
unity on Ap and zero elsewhere. This function is sometimes called the
‘‘aperture function.’’ In the Fraunhofer approximation, we keep only the
linear terms. In the Fresnel approximation, we keep the linear and quadratic
terms. As C approaches zero, which occurs when x and x0 are in conjugate
planes, x0m and y0m diverge proportionally to C�1, and the quadratic terms
inside the exponent vanish. Hence, only the linear terms matter. The
divergent terms in the exponent in the prefactor all cancel one another when
C approaches zero, so that the exponent reaches a limit.

9.3.4 Diffraction Effects for Multiple Elements

If there are multiple optical elements in series between the point xs at
which radiation is emitted and the point xd, generalization of the foregoing
analysis gives

UðxdÞ ffi
U0e

iqðd0þd1þ���þdN Þ

ðilÞNd0d1 . . . dN

ZZ
Ap1

dx1dy1 . . .

ZZ
ApN

dxNdyN

� exp iq
XNþ1
m;n¼0

Bmnðxmxn þ ymynÞ

" #
ð9:29Þ

Various parameters are defined as indicated in Figure 9.6. The convention of
ðxs; ys; zsÞ ¼ ðx0; y0; zsÞ and ðxd; yd; zdÞ ¼ ðxNþ1; yNþ1; zdÞ is used in the sum in
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Eq. (9.29), with

Bmn ¼ ½ðd
�1
m�1 þ d�1m � f �1m Þdmn þ d�1m�1dm�1;n þ d�1m dmþ1;n�=2 (9.30)

The Gaussian form of Eq. (9.29) permits progress along analytical and
numerical lines regarding diffraction effects in optical systems featuring such
a series of elements. Examples of this are provided later.

9.3.5 Self-Consistency of Gaussian-Optics

If we integrate Eq. (9.27) over the entire z ¼ z00 plane,

~Uðx0; y0; z0Þ ffi
U0e

iqL0

ildd 0

Z þ1
�1

dx00
Z þ1
�1

dy00 expfiqC½ðx00 � x0mÞ
2
þ ðy00 � y0mÞ

2
�g

(9.31)

we obtain the same result as if Ap covered the entire plane. We can evaluate
Eq. (9.31) analytically. Explicitly writing the value of C for f ¼ �1 gives

~Uðx0; y0; z0Þ ¼
U0e

iqL0

dd 0
1

d
þ

1

d 0

� ��1
¼

U0e
iqL0

d þ d 0
(9.32)

and

~Uðx0; y0; z0Þ
�� ��2 ¼ U0j j

2

ðd þ d 0Þ2
(9.33)

Eqs. (9.32) and (9.33) give the same result as would be expected from
geometrical optics, so that Fresnel diffraction is ‘‘self-consistent’’ (see [3],

FIG. 9.6. Optical setup with multiple apertures that can diffract radiation in series.
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pp. 148–152). Changing any interval over which a spherical wave propagates
freely into two subintervals on opposite sides of an infinite clear aperture
does not change results. It may not be immediately obvious that this
‘‘check’’ works, because Eqs. (9.18) and (9.20) involve three different
approximations. However, the combination of all three of these approxima-
tions leads to the above self-consistency. There is a further self-consistency
of Gaussian-optics in the form of a conservation law. Suppose we take
Eq. (9.18) and integrate UðxdÞ

�� ��2 over the entire z ¼ zd plane. The result is

Z þ1
�1

dxd

Z þ1
�1

dyd UðxdÞ
�� ��2

¼
1

l2

Z þ1
�1

dxd

Z þ1
�1

dyd

Z
Ap

d2x

Z
Ap

d2x0½U iðxÞGðx; xdÞ�
nU iðx

0ÞGðx0; xdÞ

¼
1

l2d2

Z
Ap

d2x

Z
Ap

d2x0½U iðxÞ�
nU iðx

0Þ

�

Z þ1
�1

dxd

Z þ1
�1

dyd exp
iq½ðx0 � xdÞ

2
� ðx� xdÞ

2
þ ðy0 � ydÞ

2
� ðy� ydÞ

2
�

2d

� �

¼
1

l2d2

Z
Ap

d2x

Z
Ap

d2x0½U iðxÞ�
nU iðx

0Þ exp
iqðx02 � x2 þ y02 � y2Þ

2d

� �

�

Z þ1
�1

dxd exp
iqðx� x0Þ

d

� �
xd

� �Z þ1
�1

dyd exp
iqðy� y0Þ

d

� �
yd

� �

¼

Z
Ap

d2x

Z
Ap

d2x0½U iðxÞ�
nU iðx

0Þdðx� x0Þdðy� y0Þ ð9:34Þ

or

Z þ1
�1

dxd

Z þ1
�1

dyd UðxdÞ
�� ��2 ¼

Z
Ap

d2x U iðxÞ
�� ��2 (9.35)

Thus, the integrated spectral power falling on the area of one optical
element is conserved when it reaches the plane of the next optical element.
This implies a transmission function of unity even for very small apertures,
which indicates a breakdown of the Kirchhoff diffraction theory in the
small-aperture limit. However, this also ensures that the theoretical
diffraction effects on total transmitted spectral flux approach zero correctly
in the opposite, small-l limit.

9.3.6 Limitations of Approximations

The Gaussian-optics version of the Kirchhoff diffraction theory is widely
found and used in the radiometric literature with good success. This version
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often predicts diffraction effects very similar to results obtained without
making the approximations found in Eqs. (9.18), (9.20) and (9.21).

One should also be mindful of when a Gaussian-optics picture should fail.
It breaks down when describing diffraction effects for very small apertures,
mainly because the Kirchhoff theory itself breaks down. It does not describe
aberrations correctly, so their effects must be otherwise considered. The
present Gaussian-optics implementation of the Kirchhoff theory should also
break down when obliquity factors become appreciably different from unity
or when distances between optical elements do not greatly exceed the
wavelength. However, because the correct results are obtained in the limit of
optical elements whose areas extend over entire constant-z planes, and
because the total integrated flux is conserved in the manner demonstrated
above, a Gaussian-optics picture can be useful in many practical situations
(for which a cursory assessment of its validity might suggest otherwise).

9.4 The SAD Problem

Even in complicated optical setups, diffraction effects can arise mainly
from one optical element. In other setups, the effects might be
approximately described as the sum of effects of several different elements
considered individually. In either type of situation, diffraction effects on the
throughput of an optical system can be related to the diffraction effects that
would occur in fictitious three-element setups that consist of an extended
Lambertian source, aperture and detector. Such setups and the related
diffraction problem may be denoted by the acronym, SAD. The SAD
problem is one of the most studied diffraction problems in optics and
radiometry. Furthermore, its study has been very profitable.

Consider the setup illustrated in Figure 9.7(a). A blackbody cavity placed
behind a defining aperture illuminates a detector. To reduce the stray light
reaching the detector, two non-limiting apertures are also placed strategi-
cally between the defining aperture and detector. Three SAD combinations
are shown in Figure 9.7(b)–(d). Appropriate combination of diffraction
effects arising in cases of the fictitious combinations of three indicated
elements can account reasonably well for overall diffraction effects in the
real setup with relatively little effort. In Figure 9.7(b), the defining aperture
limits the throughput of the model optical system. In Figure 9.7(c) and (d),
the non-limiting apertures would tend to increase the throughput of the
model optical systems. For the non-limiting apertures, the effective source is
the defining aperture. Depending on the geometry and wavelength, the sum
of all diffraction effects can lead to a throughput that is smaller or larger
than that expected geometrically.

DIFFRACTION EFFECTS IN RADIOMETRY426



9.4.1 Lommel’s Treatment for a Point Source

The ratio Uðx0; y0; z0Þ=U0 implied by Eq. (9.28) is a function of x0m and y0m
symmetric with respect to simultaneous exchange x with x0 and d with d 0:

Uðx0; y0; z0Þ

U0
¼ Sðx0m; y

0
mÞ ¼

eiqL0

ildd 0

ZZ
Ap

dx00dy00eiqC½ðx00�x0mÞ
2
þðy00�y0mÞ

2
� (9.36)

We now assume that Ap is circular with radius R and centered on the z-axis.
Introducing polar coordinates, r00 ¼ ðx002 þ y002Þ1=2, r0 ¼ ðx02m þ y02mÞ

1=2, and y,
the relative polar angle between ðx00; y00Þ and ðx0m; y

0
mÞ, we obtain

Sðx0m; y
0
mÞ ¼ Sðr0Þ ¼

eiqL0

ildd 0

Z R

0

dr00r00
Z 2p

0

dyeiqCðr002þr02�2r00r0 cos yÞ (9.37)

In the q!1 limit, we have Sðr0Þ�SGðr
0Þ, with

SGðr
0Þ ¼

eiqL0YðR=r0 � 1Þ

2dd 0C
(9.38)

Here YðxÞ is the Heaviside step function.

FIG. 9.7. Optical setup conceptually treated as three SAD setups for purposes of
diffraction effects.
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Introducing the unit-less parameters r ¼ r00=R (which varies from 0 to 1
on Ap), u ¼ 2qCR2, and v ¼ 2qCRr0

�� ��, we have

Sðr0Þ ¼
R2 exp½iqðL0 þ Cr02Þ�

ildd 0

Z 1

0

drr
Z 2p

0

dyeiur
2=2�ivr cos y (9.39)

Lommel showed that the above integrals can be expressed using Neumann
series’ of Bessel functions [24], and the resulting functions are traditionally
called Lommel functions of two arguments. Lommel’s treatment is also
given by Born and Wolf (see [7], pp. 435–442). Here, the quantity of greatest
interest is the squared ratio, Sðr0Þ=SGð0Þ

�� ��2. The quantity Sðr0Þ=SGð0Þ
�� ��2 � 1

gives the diffraction effects on point-to-point propagation of radiation,
normalized so that the geometrically allowed propagation is unity.

The Lommel functions are

Unðu; vÞ ¼
X1
s¼0

ð�1Þsðu=vÞnþ2sJnþ2sðvÞ (9.40)

and

V nðu; vÞ ¼
X1
s¼0

ð�1Þsðv=uÞnþ2sJnþ2sðvÞ (9.41)

where n is an integer. Unðu; vÞ and V nðu; vÞ can be related to each other
by Unðu; vÞ ¼ V nðv

2=u; vÞ and Vnðu; vÞ ¼ Unðv
2=u; vÞ. These functions also

have other useful symmetries, including Unðu; vÞ ¼ Unðu;�vÞ, Vnðu; vÞ ¼
V nðu;�vÞ, Unðu; vÞ ¼ ð�1Þ

nUnð�u; vÞ, and Vnðu; vÞ ¼ ð�1Þ
nV nð�u; vÞ. Recent

algorithms to evaluate Lommel functions of two arguments efficiently and
to varying degrees of accuracy are described by Mielenz [25], Shirley and
Terraciano [26], Shirley and Chang [27], and Edwards and McCall [28].

It is traditional to express the value of Sðr0Þ=SGð0Þ
�� ��2 using either of two

equivalent formulas:

Sðr0Þ

SGð0Þ

����
����
2

¼ U2
1ðu; vÞ þU2

2ðu; vÞ (9.42)

or

Sðr0Þ

SGð0Þ

����
����
2

¼ 1þ V 2
0ðu; vÞ þ V2

1ðu; vÞ

� 2V 0ðu; vÞ cos
1

2
vþ

u2

v

� �� �
� 2V1ðu; vÞ sin

1

2
vþ

u2

v

� �� �
ð9:43Þ

Equation (9.42) tends to be more convenient if the geometrical optical path
between x and x0 is obstructed (which implies r04R). Equation (9.43) tends
to be more convenient if that path is not blocked (which implies r0oR).
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In the BDW formulation, when we have r04R, the combination U2
1ðu; vÞ þ

U2
2ðu; vÞ on the right-hand side of Eq. (9.42) results from the square of the

BDW UB. Likewise, when we have r0oR, the leading ‘‘1’’ on the right-hand
side of Eq. (9.43) results from the square of the geometrical wave UG,
V 2

0ðu; vÞ þ V 2
1ðu; vÞ results from the square of UB, and the remaining terms

result from interference of UG with UB.

9.4.1.1 Asymptotic properties of Lommel’s result

In the small-l regime, when the geometrical optical path between x and x0

is not blocked, the asymptotic behavior of Bessel functions of a large
positive argument,

JmðvÞ�
2

pv

� �1=2

cosðv�mp=2� p=4Þ (9.44)

gives

V 0ðu; vÞ ffi
2

pv

� �1=2
cosðv� p=4Þ
1� v2=u2

(9.45)

and

V 1ðu; vÞ ffi
2

pv

� �1=2
v

u

� 	 sinðv� p=4Þ
1� v2=u2

(9.46)

Substitution of these approximations into Eq. (9.43) gives

Sðr0Þ

SGð0Þ

����
����
2

ffi 1þ
1

pv

1þ v2=u2

ð1� v2=u2Þ
2

" #
þ

1

pv

sinð2vÞ

1� v2=u2

� �
�

2

pv

� �1=2

�
cos½ðuþ vÞ2=ð2uÞ � p=4�

1þ v=u
þ

cos½ðu� vÞ2=ð2uÞ þ p=4�
1� v=u

� �
ð9:47Þ

When the geometrical optical path is blocked, we have

U1ðu; vÞ ffi
2

pv

� �1=2
u

v

� 	 sinðv� p=4Þ
1� u2=v2

(9.48)

U2ðu; vÞ ffi �
2

pv

� �1=2
u

v

� 	2 cosðv� p=4Þ
1� u2=v2

(9.49)

and

Sðr0Þ

SGð0Þ

����
����
2

ffi
u2

pv3
1þ u2=v2

ð1� u2=v2Þ2

" #
�

u2

pv3
sinð2vÞ

1� u2=v2

� �
(9.50)
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While Eqs. (9.42) and (9.43) are formally equivalent, the asymptotic approxi-
mation being used here requires that Eq. (9.47) or Eq. (9.50) is used only in the
respective case of non-blockage or blockage of the geometrical optical path
from x to x0. In each case, Eq. (9.47) or (9.50) breaks down as r0 approaches R.

Equations (9.47) and (9.50) illustrate the main behavior of diffraction
effects on point-to-point propagation of radiation using simple functions.
These equations contain both non-oscillatory and oscillatory terms. The
non-oscillatory terms often matter the most. Cumulative effects of oscillatory
terms can be largely self-canceling upon x sampling the source area, such as
in the case of an extended source, x0 sampling the finite detector area, and/or
l sampling the relevant spectrum in the case of complex radiation.

9.4.2 Wolf’s Formula for Integrated Flux

Wolf [29] introduced the function, Lðu; v0Þ, which is the fraction of the flux
that is incident on Ap that subsequently falls on a circular area A0 of the z ¼ z0

plane. For all points fx0g on A0, we have vov0, and we have v ¼ v0 for points
on the perimeter of A0. In analogy with Lommel’s result, Lðu; v0Þ can be given
by one expression that is more convenient when the geometrical optical paths
between points on the perimeter of A0 and x are blocked, implying v04 uj j,
and by a different expression that is more convenient when these paths are not
blocked, implying v0o uj j. First, we introduce the functions,

Q2sðv0Þ ¼
X2s

p¼0

ð�1Þp½Jpðv0ÞJ2s�pðv0Þ þ Jpþ1ðv0ÞJ2sþ1�pðv0Þ� (9.51)

and

Y nðu; v0Þ ¼
X1
s¼0

ð�1Þsðnþ 2sÞðv0=uÞnþ2sJnþ2sðv0Þ (9.52)

For v04 uj j, we have

Lðu; v0Þ ¼ 1�
X1
s¼0

ð�1Þs

2sþ 1

u

v0

� �2s

Q2sðv0Þ (9.53)

For v0o uj j, we have

Lðu; v0Þ ¼
v0

u

� 	2
1þ

X1
s¼0

ð�1Þs

2sþ 1

v0

u

� 	2s

Q2sðv0Þ

" #

�
4

u
Y 1ðu; v0Þ cos

1

2
uþ

v20
u

� �� ��

þY 2ðu; v0Þ sin
1

2
uþ

v20
u

� �� ��
ð9:54Þ
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This formula is typeset incorrectly in several editions of Born and Wolf’s
classic text.

9.4.2.1 Asymptotic properties of Wolf’s result

Focke [30] considered the asymptotic properties of the above integrated
flux, based on work by Schwarzschild [31], van Kampen [32] and Wolf’s
treatment, and obtained

Lðu; v0Þ�1�
2

p
v0

v20 � u2

� �
(9.55)

which is valid for large v0 subject to having v04 uj j.
One may also consider the more general asymptotic expansion for a

Bessel function of large non-negative argument [33],

JmðvÞ�
2

pv

� �1=2

cos z
X1
s¼0

ð�1ÞsA2sðmÞ

v2s
� sin z

X1
s¼0

ð�1ÞsA2sþ1ðmÞ

v2sþ1

" #
(9.56)

with z ¼ v�mp=2� p=4, A0ðmÞ ¼ 1, and AsðmÞ ¼ ð4m2 � 12Þð4m2 � 32Þ � � �
½4m2 � ð2s� 1Þ2�=½8sðs!Þ� for all other s, and apply this approximation to
Wolf’s result. For wj jo1, this gives

X1
s¼0

ð�1Þs

2sþ 1
w2sQ2sðvÞ ¼

2s0
pv
�

s0 cosð2vÞ

pv2

�
16s4 þ 32s3 þ 8s2 � 8s1 � 3s0

12pv3

þ
8s2 þ 8s1 � s0

4pv3

� �
sinð2vÞ

þ
64s4 þ 128s3 � 16s2 � 80s1 þ 9s0

32pv4

� �

� cosð2vÞ þOðv�5Þ ð9:57Þ

The sk parameters are defined by

sk ¼
X1
s¼0

skw2s ¼ w2 d

dðw2Þ

� �k
1

1� w2
¼

W kðw
2Þ

ð1� w2Þ
kþ1

(9.58)

The first six W-polynomials are

W 0ðxÞ ¼ 1;W 3ðxÞ ¼ x3 þ 4x2 þ x;

W 1ðxÞ ¼ x;W 4ðxÞ ¼ x4 þ 11x3 þ 11x2 þ x;

W 2ðxÞ ¼ x2 þ x;W 5ðxÞ ¼ x5 þ 26x4 þ 66x3 þ 26x2 þ x

(9.59)
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Application of Eq. (9.56) also gives

Y 1ðu; vÞ ¼
v2

2u

2

pv

� �1=2
2s0 þ 4s1

v

� �
sinðv� p=4Þ

�

þ
3s0 þ 22s1 þ 48s2 þ 32s3

4v2

� �
cosðv� p=4Þ

þ
15s0 þ 62s1 � 160s2 � 960s3 � 1280s4 � 512s5

64v3

� �

� sinðv� p=4Þ
�
þOðv�7=2Þ ð9:60Þ

and

Y 2ðu; vÞ ¼ �
v

2

2

pv

� �1=2
4s1

v

� �
sinðvþ p=4Þ þ

�s1 þ 16s3
2v2

� �
cosðvþ p=4Þ

�

þ
�9s1 þ 160s3 � 256s5

32v3

� �
� sinðvþ p=4Þ

�
þOðv�7=2Þ ð9:61Þ

As mentioned earlier and as noted by Focke, oscillatory terms can be less
relevant and even undesirable to include when considering diffraction effects,
because they can be self-canceling upon spatial or spectral integration, and
when sampled at discrete wavelengths they can lead to randomly biased
results.

9.4.3 Diffraction Effects on Spectral Throughput

The above analysis lays the groundwork for estimating diffraction effects
on spectral throughput of optical systems. In this Section, we show how this
is done for the SAD problem and its application to treat systems with
varying degrees of complexity.

9.4.3.1 SAD case

The preceding analysis considered flux arising from a point source, but
the finite extent of the source may also need to be taken into account. It
is helpful to introduce the parameters, vs ¼ qRsR=d, vd ¼ qRdR=d 0, vM ¼

maxðvs; vdÞ, and s ¼ minðvs; vdÞ=maxðvs; vdÞ. Rs and Rd are the
source and detector radii, respectively. Overall cylindrical symmetry is
assumed. Edwards and McCall [28] have noted the connection between
Wolf’s result and the spectral power reaching the detector. As long as we
have uj j=vMo1� s or uj j=vM41þ s, the ratio of the spectral power
incident on the detector to the source spectral radiance is given by the
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source-detector-symmetric expression:

FlðlÞ
LlðlÞ

¼ D

Z 1

�1

dxfð1� x2Þ½ð2þ sxÞ2 � s2�g1=2Lðu; vMð1þ sxÞÞ

1þ sx
(9.62)

The leading factor is D ¼ 4p3R4R2
sR

2
d=½d

2
sd

2
dðlvMÞ

2
�, which is source-

detector-symmetric and independent of l. Integration over x can be done
using Gauss–Chebyshev quadrature. In a recent calculation that is discussed
in the next section, Edwards and McCall have also considered
1� so uj j=vMo1þ s.

9.4.3.2 Case of other optical systems

The preceding SAD problem was relatively self-contained, and the
diffraction effects could be quantified in considerable detail. In more
complicated optical systems, it may not be possible to break down diffraction
effects, in a simple way, into those arising in SAD problems and related
analyses without making gross simplifications and incurring significant
inaccuracies. However, with care, SAD and related analyses can be used in
many—though not all—radiometric situations in multistage optical systems,
including one that arose in an actual blackbody calibration [34].

Two examples of the complexities that can arise are illustrated here.
Figure 9.8 shows an optical setup that was considered when modeling
diffraction effects in an actual blackbody calibration. Diffraction at the
edges of the non-limiting apertures Ap 1 and 3 enhanced the irradiance at
the detector. The simulated relative excess irradiance at points on the
detector is illustrated as a percentage in the bottom panel of Figure 9.9, for
the cases of only Ap 3 being present and both apertures being present.

In the top panel, the difference between the two results is shown, both as a
dashed curve and as a solid curve based on a combination of the BDW
formulation and asymptotic analysis in the spirit of the GTD. The distance
of a point on the detector from the optical axis is indicated in the figure by
rd. Near rd ¼ 8:2 mm, a step is visible in the top panel of Figure 9.9. This
can be explained in terms of one of the GTD-type rays bent by Ap 1 being
geometrically blocked by the boundary of Ap 3. The model in Reference [34]
attempts to address this type of vignetting effect in diffraction calculations
and to address some higher-order diffraction effects in terms of SAD and
related analyses.

The second example of possible complexities is similar. Figure 9.10
depicts an experimental setup used by Boivin [35] to study diffraction effects
of four non-limiting apertures, A1, A2, A3 and A4, placed in series between a
source and detector. The source featured a tungsten lamp that was located
behind a 1mm diameter aperture. In a simulation of the diffraction effects,
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this source was modeled as if the aperture was illuminated by plane waves
with angles of incidence not exceeding 0.020 rad from normal. Agreement
between measured and simulated diffraction effects indicated that the
simulated model of the source was reasonable [26].

The flux reaching the detector for a given plane wave is depicted as a
function of the angle of incidence in Figure 9.11. It is normalized so that the
total flux incident on the source defining aperture is that aperture’s area
(p=4 mm2). Six results are shown, featuring only A1, only A2, only A3, only
A4, none, or all of the four non-limiting apertures being included in the
simulation. The effect of each non-limiting aperture is to deflect excess
radiation onto the detector, especially when the perimeter of that aperture is
geometrically illuminated through the source defining aperture. Therefore,
the effects of a non-limiting aperture can depend on the angle subtended by
the simulated lamp filament at the source defining aperture. This subtlety
might not be addressed correctly in a casual application of the SAD analysis,
but could be treated appropriately using the method found in Reference [34].

9.5 Impacts of Diffraction Effects on Radiometry

We begin with a cursory survey of the radiometry literature dealing with
diffraction effects. This survey highlights the insight gained into the role of

FIG. 9.8. Optical setup used to treat diffraction in a blackbody calibration.
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FIG. 9.9. Diffraction-induced irradiance because of non-limiting apertures in Figure 9.8.
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diffraction effects and the cumulative developments regarding how to estimate
or mitigate them. Because this chapter attempts to report the current state of
affairs, it should be noted that some of the earlier developments or aspects
thereof that are cited in this Section are no longer current.

Much of diffraction theory is formulated for monochromatic radiation,
yet radiometric applications frequently involve complex radiation. This
mismatch is not fully resolved, but some methods to overcome this mis-
match are discussed in Section 9.5.2. These include the effective-wavelength

approximation and other recent methods for more directly finding total
irradiance and power.

Section 9.5.3 mentions three recent examples of diffraction modeling in
support of actual radiometric measurements. In order of increasing complexity,

FIG. 9.10. Optical setup featuring four apertures in series studied by Boivin.

FIG. 9.11. Normalized flux versus plane-wave angle of incidence y in setup in
Figure 9.10. At y ¼ y1, the perimeter of A1 is geometrically illuminated, etc.
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these situations involve solar radiometry, spectral calibration of a radiometric
telescope, and the already mentioned calibration of a reference blackbody
source.

9.5.1 Radiometry Literature Survey

In 1881, Rayleigh [36] derived the fraction of flux in the Airy diffraction
pattern enclosed within a circular area in the case of a circular aperture.
Rayleigh obtained the well-known result,

Lð0; v0Þ ¼ 1� J2
0ðv0Þ � J2

1ðv0Þ (9.63)

This was one of the earliest ‘‘modern’’ analyses of diffraction effects in
optics. The Airy pattern is a consequence of Fraunhofer diffraction. A
strong motivation for analyzing the Airy pattern was its impact on the
resolving powers of optics. However, an internally consistent measurement
of, say, the spectral irradiance of celestial objects, also requires accounting
for diffraction losses, because v0 depends on wavelength.

The 1885 work by Lommel and 1950s work by Wolf and Focke generalize
the Rayleigh result for integrated flux to the case of Fresnel diffraction (or
of not being in a focal plane). Some other analyses are included in the
volume compiled by Oughstun and cited in the above references. These
developments provided a good working model of diffraction effects to study
the impact on radiometry. Much of the analysis in the context of radiometry
considers the SAD problem, but other topics have also been addressed.

9.5.1.1 Study of the SAD problem

A survey of the radiometric literature shows that a remarkable fraction of
the work on diffraction effects was done at or in association with, various
national measurement institutes. In 1962, Sanders and Jones [37] discussed
the role of diffraction effects and the need to account for them in the context
of the then-current ‘‘problem of realizing the primary standard of light.’’
Shortly thereafter, Ooba [38] studied the related diffraction effects
experimentally.

In 1970, Blevin [39] considered the diffraction loss in the context of the
SAD problem for the case of an axial point source, implying s ¼ 0, and
under-filled detector, implying uj jovM. (When discussing analysis of the
SAD problem, mathematical formulas from the radiometric literature are
presented using the SAD notation of this chapter.) Blevin derived a
diffraction loss consistent with Lðu; vMÞ ffi 1� 2vM=½pðv2M � u2Þ�, in agree-
ment with earlier work, and confirmed this experimentally for at least two
experimental geometries. Blevin used a broadband source and detector, and
the diffraction analysis was based on using an effective-wavelength
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approximation, an idea that has sometimes been credited to Blevin and is
discussed in Section 9.5.3. Note that a more up-to-date evaluation of
Lðu; vMÞ is discussed in Section 9.4.2.

In 1972, Steel et al. [40] provided an approximate extension of Blevin’s
result to finite s and analyzed the two cases, uj joð1� sÞvM and
uj j4ð1þ sÞvM. Their results were also extended to allow for the effective-
wavelength approximation. Their analysis of the case of a non-limiting
aperture ( uj j4ð1þ sÞvM) is flawed, as noted by Boivin [41].

Steel et al. also referred to the case of having a limiting aperture as ‘‘Case
1’’ and the case of having a non-limiting aperture as ‘‘Case 2.’’ This
terminology has become quite standard, so much so that the factor F that
describes diffraction effects is often denoted by F1 or F2. Recently, Edwards
and McCall [28] have also considered the intermediate case of
ð1� sÞvMo uj joð1þ sÞvM, which can be referred to as ‘‘Case 3’’ and which
leads to an associated F 3. Edwards and McCall made an insightful
geometric construction shown in Figure 9.12 that differentiates the three
cases if there is a non-focusing aperture (i.e., f ¼ �1).

In a series of several papers in the 1970s [35, 41–44], Boivin studied
diffraction effects along the same lines. Boivin primarily analyzed effects of
non-limiting apertures, which are used to reduce stray light. As long as a

FIG. 9.12. Geometrical construction of Edwards and McCall. Top left: three
(disconnected) regions of space are defined by dotted lines. If the rim of an aperture
lies within any region, 1, 2, or 3 (as shown), then Cases 1, 2, or 3 applies.
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detector is significantly overfilled, Boivin found that a non-limiting aperture
gives F 2ðu; vMÞ ffi 1þ 2=ðpvMÞ, both experimentally and theoretically. A
more precise result is F 2ðu; vMÞ ffi 1þ 2=½pvMð1� v2M=u2Þ� þ � � �, as described
in Section 9.4.2. To help establish his reported approximation for F2, Boivin
varied vs=vd, the ratio of angles subtended by the source and detector at the
center of a non-limiting aperture in an experimental SAD setup. The ratio
vs=vd was sometimes smaller and sometimes larger than unity.

Boivin recommended that, if possible, a practitioner should use as few
apertures as possible in an optical setup, with at most one aperture giving
rise to substantial diffraction effects. This is consistent with trying to ensure
that the extensive analysis applied to the SAD problem can be almost
directly brought to bear in a real optical setup. Boivin also recommended
against letting parts of an over-filled detector’s area be anywhere near a non-
limiting aperture’s geometrical shadow boundary. This is at variance with
the recent, novel idea of Edwards and McCall, discussed below. (Using the
same reasoning by Boivin, a practitioner should also not let an under-filled
detector’s perimeter be anywhere near the penumbra or fully illuminated
region in the case of a limiting aperture.)

Based on an idea attributed to Purcell and Koomen [45], Boivin [35] also
experimentally demonstrated that using toothed instead of circular non-
limiting apertures can reduce the associated diffraction effects. This was
motivated by observing that toothing of an aperture perimeter introduces
dephasing and concomitant self-cancellation of UB at a detector. This idea
was subsequently explored and extended theoretically [46], but the author
knows of no subsequent applications using toothed non-limiting apertures.
It can be difficult to manufacture such apertures, the largest diffraction
effects in radiometry are often losses because of limiting apertures, and the
effects of non-limiting apertures can often be substantially reduced by
modifying the design of an optical setup.

The author has reinvestigated the SAD problem for point and extended
sources [47], as well as monochromatic and complex radiation, including
radiation from a Planckian source [48]. This has led to more detailed
expressions for F ðlÞ and analogous expressions for hFi in the case of a
Planckian source in the Fraunhofer and Fresnel regimes. A 1998 work
introduced the formula found in Eq. (9.62), but the accompanying formulas
for Lðu; vMÞ have been superceded by subsequent work.

Edwards and McCall [28] also recently considered the SAD problem,
introducing an algorithm for calculating diffraction effects that is applicable
to Case 1–3. These workers consider diffraction effects as a function of
intermediate aperture radius for a fixed extended source and detector.
Noting that diffraction losses occur for uj joð1� sÞvM, whereas diffraction
gains tend to occur for uj j4ð1þ sÞvM, Edwards and McCall deduced that
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diffraction effects on throughput must cross zero at some point when Case 3
applies.

Such a zero crossing can be advantageous and feasible to arrange in some
instances in radiometry. A zero crossing should occur nearly simultaneously
for a wide range of wavelengths, so that diffraction effects and concomitant
uncertainties in measurement results with complex radiation could be
greatly reduced. However, a practitioner must also take into account the
greater complexity involved in calculating geometrical throughput of the
optical setup in Case 3. Furthermore, there are optical setups (for instance, a
collimator involving a blackbody cavity, small defining aperture, and
collimating mirror to simulate a remote object) for which Case 1 appears
unavoidable.

9.5.1.2 Other studies

People have also considered more elaborate optical setups than those that
can be mapped onto the SAD problem. In 2001, Suárez-Romero et al. [49]
and Shirley and Terraciano [26] independently treated diffraction by a series
of optical elements. The former authors made use of the cross-spectral
density [50] and analyzed the problem of two apertures in series. The latter
authors showed how a practitioner can analyze diffraction in multi-staged
cylindrically symmetrical systems using Gaussian-optics and full Kirchhoff
and Rayleigh–Sommerfeld treatments, with an arbitrary number of aper-
tures in series. Two examples of the application of the latter development
were already mentioned in Section 9.4.3.2, and two additional examples are
mentioned in Sections 9.5.3.1 and 9.5.3.2.

Much less work regarding diffraction effects in radiometry has been done
for cases without cylindrical symmetry. It is well known that the multiple
integrations in Eq. (9.29), which does not assume cylindrical symmetry, can
be done one aperture at a time by use of fast Fourier-transform (FFT)
techniques [51]. Care must be taken during such a procedure to appropriately
account for curved perimeters of optical surfaces, in order to faithfully
reproduce the part of a wave front corresponding to UB. In the case of
cylindrical symmetry, the double loops over radial coordinates r and s implicit
in Eq. (9.25) of Reference [26] can also be accelerated by FFT methods. This
can be realized by using logarithmic radial meshes that are spaced at regular
intervals of the logarithm of r or s within a Gaussian-optics analysis.

9.5.2 Complex Radiation

Virtually all of the analysis presented thus far in this chapter has involved
monochromatic radiation, but many radiometric applications involve
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complex radiation. In the diffraction analysis for complex radiation, the
effective-wavelength approximation has been of longstanding use, and
methods recently developed for directly evaluating diffraction effects on
total irradiance and total power have also been recently introduced [48, 52].

9.5.2.1 Effective-wavelength approximation

Formulas for diffraction effects in Section 9.4 and the lowest-order
expressions cited above indicate that �diff ðlÞ can scale approximately linearly
with l. Assuming exact proportionality, Blevin noted that Eq. (9.4) becomes

hFi ¼ F ðleÞ (9.64)

with the effective wavelength le being

le ¼

R1
0 dllRðlÞMðlÞLlðlÞR1
0 dlRðlÞMðlÞLlðlÞ

(9.65)

Note that the product RðlÞMðlÞ can include a factor that realizes effects of
the spectral luminous efficiency function V ðlÞ. Hence, as shown by Blevin,
the effective-wavelength approximation can be used in subfields of radio-
metry other than absolute radiometry, such as photometry. Because F ðlÞ
contains oscillatory terms that tend to average to nearly zero upon
integration over wavelength, better approximations to Eq. (9.4) are often
obtained in the effective-wavelength approximation if F ðleÞ is computed
with oscillatory terms omitted. Otherwise, their inclusion at a discrete
wavelength ðleÞ is not representative of the result found after averaging over
a spectrum.

9.5.2.2 Diffraction effects on total irradiance

If we introduce

f ðlÞ ¼

ZZ
Ap1

dx1dy1 . . .

ZZ
ApN

dxNdyN

� d d0 þ d1 þ � � � þ dN þ
XNþ1
m;n¼0

Bmnðxmxn þ ymynÞ � l

 !
ð9:66Þ

Eq. (9.29) can be rewritten as

UðxdÞ ffi
U0

ðilÞNd0d1 . . . dN

Z þ1
�1

dleiql f ðlÞ (9.67)
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Rearranging and squaring Eq. (9.67) gives

X ðl; xd;xsÞ ¼
UðxdÞ

U0

����
����
2

ffi ðlNd0d1 . . . dNÞ
�2

Z þ1
�1

dl

Z þ1
�1

dl0eiqðl�l0Þf ðlÞf ðl0Þ

(9.68)

Here X ðl; xd; xsÞ is a type of transfer function.
The detector-responsivity-weighted irradiance at xd,

E0ðxdÞ ¼

Z 1
0

dl RðlÞElðl; xdÞ (9.69)

may be considered as arising from the sum of contributions from area
elements of the source, according to

E0ðxdÞ ¼

Z
As

d2xs

Z 1
0

dl RðlÞX ðl; xd; xsÞLlðl; xsÞ (9.70)

We may substitute the definition of X ðl; xs;xsÞ given in Eq. (9.68) into the
integral Eq. (9.70). If we change the variable of integration over the
spectrum from l to q, using q ¼ 2p=l and dl ¼ �2p dq=q2, after a little
rearrangement we obtain

E0ðxdÞ ¼
ð2pÞ1�2N

ðd0d1 . . . dN Þ
2

Z
As

d2xs

Z þ1
�1

dl

Z þ1
�1

dl0f ðlÞf ðl0Þ

Z 1
0

dq

� q2N�2RðlÞLlðl; xsÞeiqðl�l0Þ ð9:71Þ

Dependence of f ðlÞ and f ðl0Þ on xs is implicit.
If Llðl; xsÞ is separable regarding its spectral and spatial dependences,

according to Llðl; xsÞ ¼ aðlÞbðxsÞ, the integration in Eq. (9.71) is analo-
gously separable. In this case, evaluation of Eq. (9.71) is greatly simplified.
For a Planckian source with emissivity �, giving

Llðl; xsÞ ¼
�c1

pl5
exp

c2

lT

� 	
� 1

h i�1
(9.72)

and a spectrally flat detector with RðlÞ ¼ R0, we have

E0ðxdÞ ¼
ð2pÞ�4�2N�c1R0

pðd0d1 . . . dN Þ
2

Z
As

dAs

Z þ1
�1

dl

Z þ1
�1

dl0f ðlÞf ðl0Þ

Z 1
0

dqq2Nþ3eiqðl�l0Þ

ebq � 1

¼
ð2pÞ�5�2N

ð2N þ 3Þ!�c1R0

ðd0d1 . . . dNÞ
2

Z
As

dAs

Z þ1
�1

dl

�

Z þ1
�1

dl0f ðlÞf ðl0ÞS2Nþ4ðb; l � l0Þ ð9:73Þ

with b ¼ c2=ð2pTÞ and Snðx; yÞ ¼
P1

n¼1½ðnxþ iyÞ�n þ ðnx� iyÞ�n�.
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The remaining integrals have smoother integrands, permitting coarser
numerical sampling, than their monochromatic counterparts, which have
intrinsically oscillatory integrands. The utility of Eq. (9.73) has been
demonstrated in Reference [52], which also shows how S4ðx; yÞ in the present
notation can be efficiently evaluated. It is also in principle possible to
generalize Eq. (9.73) to optical setups with other forms of RðlÞLlðl; xsÞ
while continuing to exploit separability of Llðl; xsÞ.

Expressions for integrated total flux in the case of a Planckian source have
also been derived. These are analogous to Wolf’s expressions for integrated
spectral flux. As an important example, in the case of Fraunhofer diffraction
by a limiting circular aperture, the fraction of total power incident on the
aperture that reaches a circular detector is [48]

F ðsÞ ¼ 1�
4zð3ÞA
6pzð4Þ

þ
A3logeA

24pzð4Þ
þ
ð3� 2g� 6loge2ÞA

3

48pzð4Þ
þOðA5logeAÞ (9.74)

with A ¼ c2=½ð1þ sÞvMlT �, zðzÞ being the Riemann zeta function, and gffi
0:577216 the Euler’s constant. The parameter A depends on s, T, and the
geometry. However, A does not depend on vM or l separately, because we
have vM / l�1, so that the product lvM is a wavelength-independent,
geometrical entity. In the spirit of Eq. (9.62), this gives

F
L
¼ D

Z 1

�1

dxfð1� x2Þ½ð2þ sxÞ2 � s2�g1=2F ðsxÞ

1þ sx
(9.75)

which relates total power to total source radiance including diffraction effects.

9.5.3 Practical Examples

Three practical examples of diffraction effects in radiometry are presented
below. These are solar radiometry, blackbody calibration of a telescope used
to measure spectral irradiance of celestial objects, and calibration of a
standard reference blackbody.

9.5.3.1 Solar radiometry

The layouts of two different absolute solar radiometers are shown in
Figure 9.13. The PMO6 radiometer [53] features a view-limiting aperture
that acts as a non-limiting aperture between the extended source (sun) and
the defining aperture placed in front of an absolute radiometer. The SAD
geometry is defined by R ¼ 4:25 mm, Rd ¼ 2:5 mm, d 0 ¼ 95:4 mm,
d ffi 1:5� 1014 mm, and Rs ffi 6:75� 1011 mm. If we model the sun as a
5900K Planckian source, the corresponding version of Eq. (9.75) for the
Fresnel regime and a non-limiting aperture gives h�diff i ffi 0:0012798,
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implying that about 0.13% excess power reaches the detector compared to
that expected from the geometrical throughput. This result automatically
includes integration with respect to wavelength over the entire spectrum.
In comparison, the effective-wavelength approximation gives h�diffi ffi
0:0012720 if oscillatory terms are neglected and h�diff i ffi 0:0011656 if
oscillatory terms are (unadvisedly) included.

The total-irradiance monitor (TIM) instrument [54], which is also used in
absolute solar radiometry, features a R ¼ 3:9894 mm defining aperture that
is d 0 ¼ 101:6 mm from a Rd ¼ 7:62 mm radiometer entrance. Three
intervening, non-limiting apertures (labeled AP2, AP3, and AP4) are also
noted. These non-limiting apertures are barely large enough to permit
passage of all marginal rays from the perimeter of the defining aperture to
the perimeter of the radiometer entrance. This makes it difficult to treat their

FIG. 9.13. Layouts of two solar radiometers.

DIFFRACTION EFFECTS IN RADIOMETRY444



diffraction effects using asymptotic methods. If the non-limiting apertures
are ignored, the SAD problem leads to a diffraction loss of total power
given by h�diff i ffi �0:000432. If the non-limiting apertures are taken into
account, this loss is barely unchanged, based on calculations using the
method of Reference [26].

9.5.3.2 Calibration of a radiometric telescope

Figure 9.14 shows an unfolded, model optical setup used to simulate
diffraction effects in a blackbody calibration of a radiometric telescope [55].
A calibrated blackbody with a 10mm radius diameter cavity opening (I) is
100mm behind a Rs ¼ 1:778 mm radius aperture (II), which is 150mm from
a Rd ¼ 6:35 mm radius detector (IV). To help simulate a remote object, a
pinhole aperture (III) with diameter 2R ¼ 202 mm or 2R ¼ 262 mm is
located 23mm downstream from the 1.778mm aperture and 127mm
upstream from the detector. In the real optical setup, a fold mirror was
located at the position corresponding to the model’s detector, and a focusing
mirror had one focus on the pinhole aperture and concentrated radiation
onto a spectrometer entrance. In a field deployment, the telescope optics
would have one focus at infinity and concentrate radiation onto the same
spectrometer entrance in similar fashion.

If we treat the last three optical elements (II–IV) as a SAD setup, the
diffraction effects indicated by the solid curves in Figure 9.15 are obtained.
If instead the 100mm separation between I and II is taken into account, and
the system is treated according to Reference [26], the diffraction effects
indicated by the dashed curves in Figure 9.15 are obtained. This further
illustrates both the significance of diffraction effects in a measurement and
the potential need to go beyond the SAD model.

FIG. 9.14. Setup used to calibrate a radiometric telescope.
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9.5.3.3 Blackbody calibration

Diffraction effects that arose in an actual blackbody calibration were
already discussed in Section 9.4.3.2 and in Reference [34]. These included
significant losses at the defining aperture, partially compensating gains
because of non-limiting apertures, and the need to go beyond the SAD
model as discussed further in Reference [34]. Other blackbody calibrations
have repeatedly raised similar issues.

9.5.4 Diffraction Effects and Measurement Uncertainties

To illustrate the role of diffraction effects in measurement uncertainties,
note that Eq. (9.3) gives

U2
RðTðlÞÞ ¼ U2

RðF ðlÞÞ þU2
RðT0Þ þU2

RðMðlÞÞ þ � � � (9.76)

Here URðX Þ denotes the relative uncertainty of the quantity X, and terms
involving correlations of the factors F ðlÞ, T0 and MðlÞ are not explicitly
noted.

Note that, for numerical reasons and for systematic reasons related to use
of an approximate theory, the correct value of F ðlÞ is not precisely known,
and its uncertainty contributes to the overall uncertainty of a measurement.
Obviously, ignoring diffraction effects does not reduce overall measurement
uncertainties. Rather, theoretical and/or experimental diffraction analysis
can reduce and better define the actual uncertainties by better determining
the value of F ðlÞ.

It has been difficult to determine the uncertainty of the theoretical F ðlÞ, in
part because measurements of F ðlÞ intended to compare theory and the
‘‘correct’’ result have appreciable uncertainties. All indications are that the

FIG. 9.15. Diffraction effects on spectral throughput of setup shown in Figure 9.14.
The solid lines indicate a SAD treatment, whereas the dashed lines indicate a more
complete treatment.
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Kirchhoff theory can be accurate to within a few percent of �diff ðlÞ, say
about 5%. However, this estimate remains to be confirmed.

Statistical correlations that are suppressed in Eq. (9.76) can also be
important, and it is desirable to ensure that correlations and other systematic
effects are kept as similar as possible between characterization of optical
instrumentation and its application. In this way, diffraction effects, statistical
correlations in the measurement equation and other aspects of performance
can be experimentally and/or theoretically determined and compensated. The
transmittance of such information is an indispensable part of reports on
measurements. To accomplish this, Wyatt et al. note [1]: ‘‘A cardinal rule
of calibration is that one should calibrateyunder the same conditions
[as usage].’’

9.6 Radiometry of Novel Sources

Thus far, the discussion in this chapter has been phrased in terms of
tracing the energy flow from points frsg on a ‘‘source’’ surface to points frdg
on a ‘‘detector’’ surface. Between the source and detector, the wave nature of
the radiation was respected and approximately described using the Kirchhoff
theory. By summing irradiance at the detector over source points frsg, mutual
incoherence of waves originating at different points was implicitly assumed.

Walther [56] called attention to this and related issues in 1968. To help
generalize the classical, local definition of radiance, Walther introduced a
‘‘generalized radiance function.’’ For radiation emitted from around a point
rs into the direction ŝ, Walther’s function can be given by

Bðrs; ŝ;oÞ ¼
cos y

l2

Z
d2r0W ð0Þðrs þ r0=2; rs � r0=2;oÞ expð�ikŝ � r0Þ (9.77)

where

W ð0Þðx; x0;oÞ ¼
Z þ1
�1

dt expðþiotÞhV ðx; tÞV�ðx0; tþ tÞi (9.78)

is the cross-spectral density for two points x and x0 at frequency o, angle
brackets indicate temporal averaging, and V denotes a radiation field
amplitude function in the same spirit as does U. There are pathologies
associated with Walther’s generalized radiance function, as discussed by
others [57]. However, it does help to bridge the gap between real sources and
the traditional, ‘‘local’’ definition of radiance used in classical radiometry.

An important result of further analysis made possible by Eqs. (9.77)
and (9.78) is that traditional radiometric concepts such as radiance re-
quire no substantial modification for many incoherent sources, including
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blackbodies. This is discussed by Nugent and Gardner [58], Gardner [59],
and Mielenz [60], whose work was stimulated in part by issues raised by
Wolf [61].

Currently, there is also interest in using a synchrotron as a standard
radiation source [62]. The spectral and spatial characteristics of synchrotron
radiation can be computed if the electron energy, electron beam current and
geometrical parameters of the electrons’ orbit are known (see [4], pp.
672–679). In this case, the radiation in a plane near an electron is certainly
not incoherent, and the concept of a generalized radiance function must be
reconsidered. However, once the radiation field is known, for instance, at
the first aperture through which the radiation passes, the Kirchhoff theory
should still be useful for understanding subsequent propagation of this and
other novel forms of radiation.
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