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We consider propagation of radiation through N apertures in series modelled
using the Huygens–Kirchhoff Green’s function method. We present a method to
evaluate the final radiation field using at most N-fold integrals over aperture
perimeters instead of the 2N-fold integration over the aperture areas that one
might anticipate. This generalizes the boundary-diffraction-wave formulation to
higher orders. After deriving a formula for the boundary-diffraction wave at
all orders of diffraction, we provide sufficient detail to realize its implementation
at first, second and third order. We provide a sample calculation of first-, second-
and third-order boundary diffraction waves, discuss ramifications of geometrical
blocking effects that complicate boundary-diffraction-wave formulations
in general, and indicate three key potential applications of the present work in
radiometry.

1. Introduction

The Huygens–Kirchhoff Green’s function method [1] to describe Fraunhofer and

Fresnel diffraction of light by lenses and apertures continues to foster insight into

this important and interesting phenomenon. Despite its formal inconsistencies, the

method can predict irradiance in a detector plane quantitatively. Most applications

of the method consider diffraction by one optical element (first-order diffraction), but

diffraction by multiple elements in series (higher-order diffraction) is also of interest.

This work presents an extension of the boundary-diffraction-wave (BDW) formula-

tion [2] to higher-order diffraction effects for a series of apertures, so that one can

determine these effects more easily because of simplified integration. This work also

furnishes insight into the asymptotic properties of higher-order diffraction effects

at small �. Arrangements of apertures in series arise, for instance, in radiometric

calibrations of reference blackbodies [3] and in prototypical set-ups designed to

analyse diffraction effects [4]. We do not consider focusing optics in this work, and

generalization of this work to set-ups containing such optics is a topic of interest.
The philosophy motivating this work can be stated as follows. If optical

radiation passes through N apertures in series, naı̈ve iterative application of the
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Huygens–Kirchhoff method might suggest that 2N-fold integration is required to

calculate the end-to-end propagation of radiation. Of course, the propagation can be

done stage-wise for a given set of values of the radiation field and its derivative at one

end of the optics. Furthermore, such propagation can often be accelerated by

exploiting separation of variables in the case of cylindrical symmetry or use of

fast-Fourier transform techniques. However, this must be done repeatedly for each

set of values. In many instances, though, the analytical properties of end-to-end

propagation are of interest, such as in the limit of small wavelengths,

where numerical calculations can become prohibitive, but asymptotic behaviour

of end-to-end propagation of radiation becomes simpler to describe. Then the

ability to express end-to-end propagation using a lower-dimensional integral

is obviously advantageous. A reduction of the above 2N-fold integration to an

N-fold integration is derived in what follows, in what can be considered the

generalization of the boundary-diffraction-wave formulation to higher-order

diffraction effects.

2. Background

Consider a scalar wave, with wavelength � and angular wave number q ¼ 2p=�,
originating at P ¼ ðx0, y0, z0Þ as uðrÞ ¼ U0 exp ðiqjr� PjÞ=jr� Pj. It passes through N

apertures to reach Q ¼ ðxNþ1, yNþ1, zNþ1Þ (see figure 1). We adopt the Fresnel,

paraxial (or gaussian optics) approximation [5] for distances in exponents and

denominators. We assume that apertures can be treated as flat and normal to z.

The distance between elements � and �þ 1 is d� ¼ z�þ1 � z�, with P corresponding

to element � ¼ 0, and Q to element � ¼ Nþ 1. With � ¼ ½ðx0 � xNþ1Þ
2
þ

ðy0 � yNþ1Þ
2
�=½2ðd0 þ � � � þ dNÞ� and M ¼ ½ði�ÞNd0, . . . , dN�

�1 exp ½iqðd0 þ � � � þ dNÞ�,

this gives

uðQÞ ¼ U0M

ð
A1

dx1 dy1 . . .

ð
AN

dxN dyN exp iq �þ
XN
�, �¼1

B��ðx
0
�x

0
� þ y0�y

0
�Þ

" #( )
: ð1Þ

Here A� is the area of aperture �, which the line segment connecting P and Q crosses
at ðxi�, yi�, z�Þ, and one has x0� ¼ x� � xi�, y

0
� ¼ y� � yi�, and B�� ¼ ½���ð1=d��1 þ

1=d�Þ � ��þ1;�=d� � ��;�þ1=d��=2. Equation (1) maintains the self-consistency of

Figure 1. Optical set-up with N apertures between points P and Q at indicated positions
along the z axis. Actual distances and aperture sizes are not indicated.
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gaussian optics [6]. For N¼ 0, one has uðQÞ ¼ exp ½iqðd0 þ �Þ�=d0. Having N¼ 1 gives
Kirchhoff’s result, and equation (1) generalizes that result to N>1.

The BDW formulation for N¼ 1 obviates double integration over x1 and y1,
which can streamline determination of uðQÞ. One instead has uðQÞ ¼ uGðQÞ þ uBðQÞ:
a ‘geometrical’ (spherical) wave uGðQÞ plus a boundary wave uBðQÞ given by a single
line integral around S1, the perimeter of A1. This is related to the geometrical theory
of diffraction (GTD) that is helpful at small � [7]. Here, extending the
BDW formulation to N > 1 correspondingly simplifies calculation of higher-order
diffraction effects.

3. Derivation of formula for higher-order BDW

Let Lðfx�g, fy�gÞ denote the ‘reduced’ path length from P to Q, which is the length of
the ðNþ 1Þ-segment path from P to Q through points fðx�, y�, z�Þg, minus
d0 þ � � � þ dN. A given value of Lðfx�g, fy�gÞ, l, occurs with a frequency described
by the distribution function,

fðl Þ ¼

ð
A1

dx1 dy1 . . .

ð
AN

dxN dyN�ðl� Lðfx�g, fy�gÞÞ

¼

ð
d�1R

2
1ð�1Þ . . .

ð
d�NR

2
Nð�NÞ

ð1
0

ds1s1 . . .

ð1
0

dsNsN�ðl� �� s �M � sÞ: ð2Þ

This expresses f(l ) using Cartesian coordinates and polar transverse coordinates.
The latter are angles f��g and radii fs�R�ð��Þg, with s� ¼ 0 at ðxi�, yi�, z�Þ and
s� ¼ 1 on S�. A function R�ð��Þ may or may not be single-valued, and range(s)
of integration for �� can vary and be sampled forwards and/or backwards, as
illustrated in figure 2. The metric M depends on f��g, with s ¼ ðs1; . . . ; sNÞ. One can
obtain uðQÞ from f(l):

uðQÞ ¼ U0 M lim
�!0þ

ð1
�1

dl exp ðiql� �jljÞfðl Þ: ð3Þ

Damping ensures sensible results when partitioning f(l ) and uðQÞ into a geometrical
part and a part resulting from diffraction.

Like the traditional BDW formulation, the present BDW formulation must be
reconsidered if the distance travelled by diffracted light can equal the distance
travelled by undiffracted light. More generally, we assume that path lengths
represented in contributions to uðQÞ from each order of diffraction cannot equal
path lengths represented in contributions from adjacent orders. This means that the
angles of bends introduced into paths by diffraction at edges never approach zero.
This still permits treatment of many optical systems, and we qualitatively discuss
generalization to other systems later. The above condition ensures that s �M � s is of
one sign. This sign is positive here. If it were negative, one could adapt the present
analysis accordingly.
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For any function FðsÞ, one can show

ð1
0

ds1 . . .

ð1
0

dsNFðsÞ ¼
XN
k¼1

ð1
0

d��N�1

ð
dfs�6¼kgFð�sÞ, ð4Þ

with sk ¼ 1 and integration from 0 to 1 for all fs� 6¼kg in each term.
With FðsÞ ¼ s1; . . . ; sN�ðl� �� s �M � sÞ, we have Fð�sÞ ¼ �Ns1, . . . , sN
�ðl� �� �2s �M � sÞ and

fðlÞ ¼

ð
df��g

XN
k¼1

ð
dfs� 6¼kg

YN
�¼1

s�R
2
�ð��Þ

 !ð1
0

d��2N�1�ðl� �� �2s �M � sÞ

¼
ðl� �ÞN�1�ðl� �Þ

2

ð
df��g

XN
k¼1

ð
dfs� 6¼kg

YN
�¼1

s�R
2
�ð��Þ

 !
�ðs �M � sþ �� l Þ

ðs �M � sÞN
:

ð5Þ

Rearrangement gives

fðl Þ ¼
ðl� �ÞN�1�ðl� �Þ

2

XN
k¼1

ð
d�k

�

ð
df�� 6¼kg

ð
dfs� 6¼kg

YN
�¼1

s�R
2
�ð��Þ

 !
�ðs �M � sþ �� l Þ

ðs �M � sÞN

" #
: ð6Þ

One may write this differently as

fðl Þ ¼
ðl� �ÞN�1�ðl� �Þ

2

XN
k¼1

ð
d�kR

2
kð�kÞ

ð
dfx�6¼k, y�6¼kg

�ðlu þ ld � l Þ

ðlu þ ld � �ÞN

� �
: ð7Þ

Figure 2. Two scenarios for Rð�Þ discussed in the text: (a) � should run from 0 to 2p, and
Rð�Þ is a single-valued function; (b)� should run from �a to �b and from �b to�a, and Rð�Þ

has different values over these two intervals.
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Here lu or ld respectively denotes the reduced path length for the ‘subpath’ from P
to Sk (a point on Sk) or from Sk to Q. In terms of distribution functions fukðluÞ and
fdkðldÞ, which are counterparts of f(l ), the above result can be written

fðl Þ ¼
ðl� �ÞN�1�ðl� �Þ

2

XN
k¼1

ð
d�kR

2
kð�kÞ

ð1
�1

dlu

ð1
�1

dldfukðluÞfdkðldÞ
�ðlu þ ld � lÞ

ðlu þ ld � �ÞN
:

ð8Þ

Noting
�ðlu þ ld � l Þ ¼ 1� �ðl� lu � ldÞ, ð9Þ

we arrive at

fðl Þ ¼ fGðl Þ �
ðl� �ÞN�1�ðl� �Þ

2

�
XN
k¼1

ð
d�kR

2
kð�kÞ

ð1
�1

dlu

ð1
�1

dldfukðluÞfdkðldÞ
�ðl� lu � ldÞ

ðlu þ ld � �ÞN
, ð10Þ

with (assuming N > 0)

fGðlÞ ¼ Dðl� �ÞN�1�ðl� �Þ: ð11Þ

From phase-space arguments, use of a Feynman integral [8], and a general
formula for det B obtained using mathematical induction, we have

D ¼
pN

�ðNÞ det B
¼

ð2pÞNd0d1, . . . , dN
�ðNÞðd0 þ d1 þ � � � þ dNÞ

ð12Þ

if the line segment connecting P and Q is unobstructed and D¼ 0 otherwise.
Introducing fBðl Þ, defined implicitly by equation (10) making the partition,
fðl Þ ¼ fGðl Þ þ fBðl Þ, the geometrical part fGðl Þ determines uGðQÞ, whereas fBðl Þ
determines uBðQÞ, the diffraction effects on uðQÞ. As a check, integrating
equation (10) with respect to l yields the expected gaussian-optics BDW result
for N¼ 1.

Maintaining the correspondence between f(l ), fukðluÞ and fdkðldÞ, one can iterate
the analysis described in equations (2)–(12). This leads to the counterpart to
equation (10) for fukðluÞ, fdkðldÞ, and all subsequent generations of their subpaths.
For a given �k, just as fukðluÞ (or fdkðldÞ) is a reduced path-length distribution
for subpaths from P to Sk (or from Sk to Q); �uk (or �dk) denotes the
shortest reduced subpath length; giving fukðluÞ ¼ �ðlu � �ukÞ for k¼ 1,
fukðluÞ ¼ Dukðlu � �ukÞ

k�2�ðlu � �ukÞ þ . . . for k > 1, and corresponding formulas
for fdk. The pattern established in equation (12) sets the values of Duk and
Ddk. The iterative process must terminate when every remaining subpath has its
N¼ 0.

Each iteration of equation (10) partitions the geometrical and diffraction parts of
a given f(l ). The overall f(l ) and uðQÞ are sums of terms at each order m of diffraction
from m¼ 0 to m ¼ N, with fðlÞ ¼

PN
m¼0 fmðl Þ, where fmðl Þ truncates the iterative

process by including only the first term on the right-hand side of equation (10) on
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iteration mþ 1. For instance, such a truncation on the first (m¼ 0) iteration gives

f0ðl Þ ¼ fGðl Þ, which includes no diffraction effects. Finally, as a cautionary remark,

we note that the radius function used on each iteration depends on all preceding

members of f��g in the iterative process. This is because the counterparts of

fðxi�, yi�, z�Þg are on the line segment connecting the counterparts of P and Q on

each iteration.
Suppose that one truncates the calculation by including only the geometrical part

on the second iteration of equation (10), and that the system has no geometrical

blocking effects. That is, line segments between any two members of the set of points,

P, Q and those on fS�g, pass through the interiors of all intervening apertures. In this

case, the approximate result obtained for uBðQÞ is the sum of the BDW results that

would be obtained for each aperture if it were the only one. This is often a useful

approximation for treating first-order diffraction effects in multi-staged optical

systems, and this analysis motivates it explicitly [3, 4, 9].
A prescription for determining diffraction effects at all orders follows from

equation (10). (We still assume that there are no geometrical blocking effects.)

Consider the figurative paths depicted in figure 3, chosen at random for the sake

of illustration. Three iterations of the type described above are indicated diagram-

matically by three schematic bends introduced in turn at the perimeters of various

optical elements. The first bend introduced at element k(1) replaces a solid

segment with two dashed segments k1. Successive bends are introduced at elements

k(2) and k(3). Excluding the geometrical part on each iteration yields one of

five contributions by these three elements to f3ðl Þ and related quantities.

Avoiding erroneous multiple counting, there can be up to NðN� 1Þ � � � ðN�mþ 1Þ

contributions to fmðl Þ ¼
P

p fm, pðl Þ, where p is an index that specifies a contribution,

for which bends are introduced in sequence at element k(1), element k(2), and

so forth up to element k(m). (The dependence of fkðnÞg on p is suppressed.) A subset

of m apertures can lead to up to m! contributions. (Fewer contributions result

in cases where one has kðbÞ < kðaÞ and kðcÞ > kðaÞ for any a, b and c with b > a

and c > a.)

Figure 3. Schematic drawing of creation of a four-segment path by introduction
of three bends in three steps: (1) bend at element k(1) converts a solid segment
into two dashed segments, (2) bend at element k(2) converts a dashed segment into
two dotted segments, and (3) bend at element k(3) converts a dotted segment into two
dot-dashed segments.
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A contribution fm,pðl Þ involves integration over f�kðnÞg for n¼ 1 through n ¼ m
and accompanying radius functions fRðmÞ

n ðP,Q; fkðtÞg, f�kðtÞgÞg. For a given point on
SkðnÞ, a function RðmÞ

n , whose dependences as well as the dependences of many other
quantities are henceforth suppressed, depends on the optical set-up, P, Q, p through
fkðtÞg, and f�kðtÞg for t¼ 1 through t ¼ n.

After iterating equation (10), evaluating a given fm;pðlÞ requires integration with
respect to m pairs of length variables as equation (10) dictates. One way to do this
exploits properties of the family of functions fgsðxÞg, given by g0ðxÞ ¼ �ðxÞ and
gsðxÞ ¼ xs�1�ðxÞ=�ðsÞ for integer s > 0, which are scaled versions of shifted geome-
trical path-length distributions in the case of s intervening apertures. If one has
�þ 	 > �, one can use

ðL� �Þbþc�ðL� �Þ

ðþ1

�1

dl

ðþ1

�1

dl 0
gbðl� �Þgcðl

0 � 	Þ�ðL� l� l 0Þ

ðlþ l0 � �Þbþcþ1
¼

gbþcþ1ðL� �� 	Þ

�þ 	 � �

ð13Þ

to perform integrations over length variables analytically beginning with the inner-
most integrals and proceeding outward. With all prefactors in path-length distribu-
tions included, one obtains

fm;pðl Þ ¼
ð2pÞNð�1Þmd0, . . . , dN

ð4pÞmZ0, . . . ,Zm

ð
df�kðnÞg

Ym
n¼1

ðRðmÞ
n Þ

2

l
ðmÞ
n � s

ðmÞ
n

" #
gN l� l

ðmÞ

1

� �
: ð14Þ

By defining Pm ¼ U0ð�1Þm exp ½iqðd0 þ � � � þ dNÞ�=ð4pÞ
m and integrating with respect

to l, we have this result for a contribution to a general-order BDW:

um, pðQÞ ¼
Pm

Z0, . . . ,Zm

ð
df�kðnÞg

Ym
n¼1

ðRðmÞ
n Þ

2

l
ðmÞ
n � s

ðmÞ
n

" #
exp iql

ðmÞ

1

� �
: ð15Þ

The factor ð�1Þm results from the �-function on the right-hand side of equation (9)
being subtracted on each iteration. Each denominator lðmÞ

n � sðmÞ
n arises in turn from

the denominator on the right-hand side of equation (13), so that lðmÞ
n is the

reduced length of a subpath between two elements in the optical systems
(where the list of elements includes P, Q and the N apertures), and sðmÞ

n is the
reduced length of the line segment connecting the endpoints of that subpath.
The difference l� l ðmÞ

n appears in order of decreasing n in the argument in the
numerator on the right-hand side of equation (13) when one iterates that equation.
The fZig, which depend on m and p, are intervening distances along the z axis
between P, the m elements andQ. As a consequence, um;pðQÞ can be evaluated with at
most an N-fold integral in equation (15) instead of the 2N-fold integral
in equation (1).

3.1 Implementation of formula

To enhance clarity, the following illustrates how the geometrical-optics and first-
and higher-order BDW results follow from equation (15). For m¼ 0, evaluating
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equation (15) involves Z0 ¼ d0 þ � � � þ dN and l
ð0Þ
1 ¼ �, to yield the familiar

geometric optics result,

u0ðQÞ ¼
U0 exp ½iqðd0 þ � � � þ dN þ �Þ�

d0 þ � � � þ dN
: ð16Þ

For m¼ 1, and for each optical element, a contribution which reflects the familiar
first-order BDW result is obtained, with Z0Z1 ¼ ðd0 þ � � � þ dkð1Þ�1Þðdkð1Þ þ � � � þ dNÞ
and

l
ð1Þ
1 ¼ d0;kð1Þ þ dkð1Þ;Nþ1;

s
ð1Þ
1 ¼ d0,Nþ1:

)
: ð17Þ

Here dk, k0 denotes the reduced distance between points Sk and Sk0 , with S0 ¼ P and
SNþ1 ¼ Q. In particular, we have d0,Nþ1 ¼ �. This gives

u1, pðQÞ ¼ �
U0 exp ½iqðd0 þ � � � þ dNÞ�

4pZ0Z1

ð
d�kð1Þ

ðR
ð1Þ
1 Þ

2 exp ðiql
ð1Þ
1 Þ

l
ð1Þ
1 � s

ð1Þ
1

 !
, ð18Þ

which can be related to the traditional BDW result for m¼ 1.
For m¼ 2, and for each pair of optical elements, there are two different

contributions fu2, pðQÞg, according to the ordering of k(1) and k(2). For m > 1, we
do not restate the entire result that follows from equation (15). Instead, we note that,
for kð1Þ < kð2Þ, one has Z0Z1Z2 ¼ ðd0 þ � � � þ dkð1Þ�1Þðdkð1Þ þ � � � þ dkð2Þ�1Þ

ðdkð2Þ þ � � � þ dNÞ and

l
ð2Þ
1 ¼ d0;kð1Þ þ dkð1Þ;kð2Þ þ dkð2Þ;Nþ1;

s
ð2Þ
1 ¼ d0;Nþ1;

l
ð2Þ
2 ¼ dkð1Þ;kð2Þ þ dkð2Þ;Nþ1;

s
ð2Þ
2 ¼ dkð1Þ;Nþ1;

9>>>>>>>=
>>>>>>>;

ð19Þ

whereas, for kð1Þ > kð2Þ, one has an analogous result.
For m¼ 3, and for each set of three optical elements, there are five different

contributions fu3;pðQÞg, even though k(1), k(2) and k(3) can have six orderings. (In all
cases, the values of fZig should now be clear and are not discussed further.)
For kð1Þ < kð2Þ < kð3Þ, fl ðmÞ

n g and fsðmÞ
n g are given by

l
ð3Þ
1 ¼ d0;kð1Þ þ dkð1Þ;kð2Þ þ dkð2Þ;kð3Þ þ dkð3Þ;Nþ1;

s
ð3Þ
1 ¼ d0;Nþ1;

l
ð3Þ
2 ¼ dkð1Þ;kð2Þ þ dkð2Þ;kð3Þ þ dkð3Þ;Nþ1;

s
ð3Þ
2 ¼ dkð1Þ;Nþ1;

l
ð3Þ
3 ¼ dkð2Þ;kð3Þ þ dkð3Þ;Nþ1;

s
ð3Þ
3 ¼ dkð2Þ;Nþ1:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

: ð20Þ
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An analogous result applies for kð1Þ > kð2Þ > kð3Þ. For kð1Þ < kð3Þ < kð2Þ, we have

l
ð3Þ
1 ¼ d0;kð1Þ þ dkð1Þ;kð3Þ þ dkð3Þ;kð2Þ þ dkð2Þ;Nþ1;

s
ð3Þ
1 ¼ d0;Nþ1;

l
ð3Þ
2 ¼ dkð1Þ;kð3Þ þ dkð3Þ;kð2Þ þ dkð2Þ;Nþ1;

s
ð3Þ
2 ¼ dkð1Þ;Nþ1;

l
ð3Þ
3 ¼ dkð1Þ;kð3Þ þ dkð3Þ;kð2Þ;

s
ð3Þ
3 ¼ dkð1Þ;kð2Þ

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð21Þ

and the analogous result applies for kð1Þ > kð3Þ > kð2Þ. Of the orderings,
kð2Þ < kð1Þ < kð3Þ and kð3Þ < kð1Þ < kð2Þ, only one of the two should be considered,
because they correspond to the same u3;pðQÞ. Choosing kð2Þ < kð1Þ < kð3Þ, one has

l
ð3Þ
1 ¼ d0;kð2Þ þ dkð2Þ;kð1Þ þ dkð1Þ;kð3Þ þ dkð3Þ;Nþ1;

s
ð3Þ
1 ¼ d0;Nþ1;

l
ð3Þ
2 ¼ d0;kð2Þ þ dkð2Þ;kð1Þ;

s
ð3Þ
2 ¼ d0;kð1Þ;

l
ð3Þ
3 ¼ dkð1Þ;kð3Þ þ dkð3Þ;Nþ1;

s
ð3Þ
3 ¼ dkð1Þ;Nþ1:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

: ð22Þ

Similar reasoning can be used to deduce umðQÞ for all higher values of m.

4. Numerical demonstration

As a concrete example, we consider the set-up specified by N¼ 3,
d0 ¼ d1 ¼ d2 ¼ d3 ¼ 500mm, and three circular apertures centred and normal to
the z axis with radii r1 ¼ 3mm, r2 ¼ 4mm and r3 ¼ 3mm. For visible radiation with
� ¼ 580 nm and x0 ¼ �ð1=2Þmm, y0 ¼ 0mm, the ratios jumðQÞ=u0ðQÞj2 for m¼ 1 to
m¼ 3 are indicated in figure 4 for yNþ1 ¼ 0mm but a range of xNþ1. At such a small
wavelength, the typical ratios fall off rapidly with increasing m, so the ratios are
shown using different scales. (In practice, the sum j

PN
m¼0 umðQÞj2 is also of interest.)

The local maxima in ju1ðQÞ=u0ðQÞj2, near xNþ1 ¼ þð3=2Þmm, xNþ1 ¼ þð1=2Þmm
and xNþ1 ¼ þð1=6Þmm, result from the Poisson bright spot associated with diffrac-
tion on the respective edges, S1, S2 and S3. The features in ju2ðQÞ=u0ðQÞj2 can be
understood qualitatively by considering the points in ð�kð1Þ;�kð2ÞÞ-space where at
least one l

ð2Þ
1 is stationary with respect to both angles, and evaluation of equation (15)

using the method of stationary phase. It appears that higher-order counterparts
of Poisson bright spots can arise, some of which are conjectured to appear on
the line sampled in figure 4. Germane stationary-phase analysis shall be considered in
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future work. The presence of a non-zero baseline plus oscillations is understandable
from ju2ðQÞj2 ¼ j

P
p u2;pðQÞj2, associating the baseline with

P
p ju2;pðQÞj2, and the

oscillations with the cross-terms. Presumably one can motivate ju3ðQÞ=u0ðQÞj2 along
similar lines.

Figure 4. Relative magnitudes of boundary diffraction waves at first, second and third
order for a set-up discussed in the text.
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5. Ramifications of blocking effects

One can identify geometrical blocking effects as belonging to one of two categories.
In the first, simpler category, complete geometrical blocking prevents an element or
elements from being involved in a contribution at a given order altogether. This is
because at least one pertinent D-factor is always zero, making the contribution zero.
This is illustrated in figure 5(a). In the second, more complicated case, lines of sight
from a perimeter or perimeters to P, Q and/or other perimeters are partially blocked,
as shown in figure 5(b). The second category arises when aperture perimeters or Q
intersect geometrical shadow boundaries or the N > 1 generalizations thereof.
In contrast to our present analysis, the first- and higher-order BDW formulations
then involve arbitrarily slight bends of paths. This situation requires extreme care,
because various expressions in the above analysis can exhibit singularities and/or
discontinuities that can cancel in the total uðQÞ.

The mutually cancelling singularities and/or discontinuities can even arise within
terms that formally occur at different orders of diffraction. For instance, at m¼ 1,
both uGðQÞ ¼ u0ðQÞ and uBðQÞ ¼ u1ðQÞ are discontinuous at a geometrical shadow
boundary, whereas uGðQÞ þ uBðQÞ ¼ u0ðQÞ þ u1ðQÞ is continuous there. Better
understanding of the second category and extension of the current method to
treating focusing elements are both topics of interest.

6. Potential applications

There are many potential applications for a higher-order BDW formulation, and
three situations from practical radiometry are illustrated in figure 6. We have studied
such situations for m¼ 2 by performing angular integrations numerically and using
the method of stationary phase. For m¼ 1, the method of stationary phase was
already applied in [3]. There, it was found that the method breaks down when P, Q
and the centre of a circular aperture are sufficiently close to being collinear.
For m¼ 2, the method of stationary phase can be applied when Lðfx�g; fy�gÞ is
simultaneously stationary with respect to �kð1Þ and �kð2Þ. By finding the points in
the two-dimensional angle space where this condition holds, the stationary-phase
method can be used according to standard techniques [10]. Determining this

Figure 5. Two scenarios of geometrical blocking for N¼ 2: (a) perimeter of B is totally
blocked from lines of sight to P and cannot participate in first-order diffraction; (b) perimeter
B is partially blocked from lines of sight to P.
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method’s range of validity for m > 1 is beyond the scope of this work, but it is a topic
of interest.

Figure 6(a) depicts a set-up used by Boivin [4] to study diffraction effects on light
from the source (S) reaching the detector (D). The non-limiting apertures (A and B)
can lead to first- and second-order diffraction effects, all of which can be treated as
described here. In figure 6(b), a source (S) illuminates a detector (D) through two
non-limiting apertures (A and B). The one labelled B is large, unilluminated, and
very close to the one labelled A and the detector. Computing second-order diffrac-
tion effects of B on the radiation falling on D by equation (1) can be numerically
intensive. Despite degradation of paraxial analysis in such a situation, the second-
order effects are presumed to be small, so it can be sufficient to estimate them using
the present higher-order BDW.

In figure 6(c), a blackbody (BB) is calibrated by measuring total power at the
detector (D) that passes through the defining aperture (DA). A non-limiting aperture
(NLA) is placed between the defining aperture and detector to reduce the stray
radiation that reaches the detector. One may first consider a simple combination of
first- and second-order diffraction by the DA and NLA, treating the DA as an
extended Planck source in the latter case. Such N¼ 1 calculations involving three
elements (BBþDAþD or DAþNLAþD) have been studied extensively [11]. One
can determine remaining diffraction effects on measured power by letting P sample
the portion of the plane of the blackbody cavity opening that is not on the opening
and Q sample the detector, and subtracting the second-order part of this last result.

7. Summary

In summary, we have presented a way to extend the boundary-diffraction-wave
formulation to higher-order diffraction effects for radiation propagating through
N apertures in series. This permits the 2N-fold integration that Kirchhoff’s theory

Figure 6. Three specific optical set-ups discussed in the text.
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suggests to be replaced by integrations that are at most N-fold, which can be
numerically important. Furthermore, this work helps organize diffraction effects
arising at different orders and helps facilitate analysis of their asymptotic properties.
At present, we are seeking to derive simple expressions for the small-wavelength
properties of diffraction effects mentioned in section 7, or, correspondingly, for the
high-temperature properties of the average effects for broadband, thermal sources.
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