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Abstract. We present a topical review of the development of finite-temperature field theories of
Bose–Einstein condensation in weakly interacting atomic gases. We highlight the difficulties in
obtaining a consistent finite-temperature theory that has a gapless excitation spectrum in accordance
with Goldstone’s theorem and which is free from both ultraviolet and infrared divergences.
We present results from the two consistent theories developed so far. These are the Hartree–
Fock–Bogoliubov theory within the Popov approximation and a many-body T -matrix approach
which we have termed gapless-Hartree–Fock–Bogoliubov (GHFB). Comparison with the available
experimental results is made and the remaining difficulties are highlighted.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

The opportunity to compare quantitative microscopic theory with experimental data for many-
body systems is rare. When this is possible, it often leads to the revision of long-standing
theoretical notions and to the development of new, more effective theoretical methods. The
experimental breakthrough in the realization of Bose–Einstein condensed gases has led to just
such an opportunity [1, 2]. The predictions of finite-temperature field theory can be compared
with precise experimental data.

The correct many-body theory that describes a finite-temperature, gaseous Bose–Einstein
condensate (BEC) is, at present, an open question. The results of candidate theories for these
systems have been successfully compared with experiment for quantities such as T -dependent
condensate fractions and specific heats [3]. However, no theory has reproduced low-lying
experimental collective excitation frequencies for BECs near the transition temperature [4]. In
this paper we want to discuss some of the methods developed to produce quantitative predictions
for a version of the mean-field theory appropriate for inhomogeneous trapped condensates. The
theory we develop here is the Hartree–Fock–Bogoliubov (HFB) [5, 6] theory, consisting of a
coupled set of equations; a generalized Gross–Pitaevskii equation (GPE) governing the BEC
order parameter and a coupled pair of Bogoliubov–de Gennes (BdG) equations defining the
quasiparticle amplitudes and energies.
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We shall see that this HFB theory is able to produce excellent predictions for excitation
frequencies that have been measured in the laboratory [7] for temperatures well below the
transition temperature. The deviations from the predictions of the simplest versions of the
theory for higher temperatures have motivated the introduction of corrections to the theory that
we have recently developed. These corrections are related to improving the theory by making
it conform to Goldstone’s theorem [8] for systems with a spontaneously broken symmetry. The
trapped gas is not a translationally invariant system so that the usual prediction of a Goldstone
boson with an energy that vanishes linearly with the wavenumber of the excitation is not valid.
It is possible, however, to check whether the HFB theory is consistent with the theorem in
the translationally invariant limit. This brings us to an old issue in the field. The usual way
to derive mean-field theory proceeds via a variational route. An alternative, but equivalent,
method uses approximate factorization of higher-order correlation functions. Both routes are
self-consistent yet Goldstone’s theorem is not satisfied. These approaches do not yield the
required zero-energy Goldstone mode. The solution to this problem is to evaluate the effective
interactions, or self-energies, for the system beyond the simple variational method. This has
been discussed for the translationally invariant gas. In this paper we expand upon the brief
accounts of the results for the inhomogeneous system presented elsewhere and discuss the
state of the art in finite-temperature field theories of this nature.

In the following section we describe in detail the development of the HFB formalism
within the Popov approximation, together with results using this theory for both isotropic and
anisotropic traps. These results are compared carefully with experiment and discrepancies are
highlighted. In section 3 the problems encountered when trying to extend the theory beyond
HFB–Popov are discussed and in section 4 the resolution to these problems is presented. This
renders a new gapless HFB (GHFB) theory, results from which are presented in section 5
together with comparison to experiment. Our concluding remarks are presented in section 6.
The appendix contains a comprehensive discussion of our numerical techniques.

2. HFB within the Popov approximation

2.1. Formalism

The Hamiltonian for a confined, interacting Bose gas is

Ĥ =
∫

dr ψ̂†(r)

[
− h̄2

2m
∇2 + Vext(r)

]
ψ̂(r) + 1

2 U0

∫
dr ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r) (1)

where Vext(r) is the external confining potential. We assume a short-range interaction with
strength U0 = 4πh̄2a/m which is determined by the s-wave scattering length a. We shall
work in the grand canonical ensemble, in which all thermodynamic quantities are determined
by the partition function

Z = Tr e−β(Ĥ−µN̂) (2)

where µ is the chemical potential. The trace operation is with respect to all many-particle
states having an arbitrary number of particles N .

The field operator ψ̂(r) is now expressed in terms of an appropriate orthonormal single-
particle basis

ψ̂(r) = φ0(r)â0 +
∑

i

′
φi(r) âi ≡ φ0(r)â0 + ψ̃(r) (3)

where the destruction operators satisfy the Bose commutation relations

[âi , â
†
j ] = δij . (4)
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The state φ0(r), to be defined, has the usual significance of representing the condensate in
which most of the particles reside at low temperatures. By its definition, the non-condensate
field operator ψ̃(r) has zero projection on the condensate:∫

dr φ∗
0 (r)ψ̃(r) = 0. (5)

Substituting equation (3) into equation (1) leads to an expression for the Hamiltonian
which can be partitioned into terms with different numbers of the field operator ψ̃(r). The
zeroth-order term is

Ĥ0 =
∫

dr φ∗
0 (r)T̂ φ0(r)n̂0 + 1

2 U0

∫
dr |φ0(r)|4n̂0(n̂0 − 1)

= 〈T̂ 〉n̂0 + 1
2 〈V̂ 〉n̂0(n̂0 − 1) (6)

where T̂ = − h̄2

2m
∇2 + Vext(r) is the single-particle part of the Hamiltonian and n̂0 ≡ â

†
0 â0 is

the number operator for the condensate. This Hamiltonian is diagonal in the non-interacting
particle representation and has a common expectation value

E0(N0) = 〈T̂ 〉N0 + 1
2 〈V̂ 〉N0(N0 − 1) (7)

in each subspace having a definite number of condensate particles N0. The appearance of the
factor (N0 − 1) accounts for the fact that there are no self-interactions between particles in the
condensate. To the extent that we are dealing with states with N0  1, N0(N0 − 1) could be
replaced by N2

0 .
The term linear in ψ̃(r) is

Ĥ1 =
∫

dr ψ̃†(r)
(
T̂ + U0|φ0(r)|2n̂0

)
φ0(r)â0 +

∫
dr φ∗

0 (r)â
†
0

(
T̂ + U0|φ0(r)|2n̂0

)
ψ̃(r). (8)

We consider the following matrix element with respect to the many-particle states |N0; α〉 (an
arbitrary eigenstate of n̂0):

〈N ′
0; α′|Ĥ1|N0; α〉 =

√
N0δN ′

0,N0−1

∫
dr 〈N0 − 1; α′|ψ̃†(r)|N0 − 1; α〉

×(T̂ + U0(N0 − 1)|φ0(r)|2)φ0(r) +
√

N0 + 1 δN ′
0,N0+1

×
∫

dr 〈N0; α′|ψ̃(r)|N0; α〉(T̂ + U0N0|φ0(r)|2)φ∗
0 (r). (9)

If φ0(r) is chosen to be the ground state solution of[
− h̄2

2m
∇2 + Vext(r) + U0(N0 − 1)|φ0(r)|2

]
φ0(r) = ε0(N0)φ0(r) (10)

then by virtue of equation (5), the first term on the right-hand side of equation (9) vanishes
identically. To the extent that N0  1, the same will be true of the second term to a good
approximation, and as a result, there are no single-particle excitations from the N0-subspace.
In other words, the truncation of the many-particle Hamiltonian to Ĥ0 + Ĥ1 with the choice
of equation (10), leads to a reduced Hamiltonian given by equation (6) which commutes with
n̂0 and therefore admits eigenstates having a definite number of particles N0. The remaining
terms in the many-body Hamiltonian of course carry one out of a particular N0-subspace,
but following the usual practice in Bose condensed systems, these terms are approximated in
such a way as to conserve the number of particles in the condensate. As stated previously,
the appearance of the factor (N0 − 1) in equation (10) rather than N0 corrects for particle
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self-interactions. However, if N0  1 the difference is immaterial, and the replacement of
(N0 − 1) by N0 then yields the usual form of the Gross–Pitaevskii equation.

To explore the implications of this further, we consider the simplest approximation of
replacing the full Hamiltonian, equation (1), by equation (6). The partition function in this
reduced space is

Z0 = Tr e−β(Ĥ0−µ0n̂0)

=
∞∑

N0=0

exp{−β[E0(N0) − µ0N0]} (11)

where µ0 is the condensate only approximation to µ. The maximum contribution will come
from the region where the exponent is minimized, namely

µ0 = dE0(N̄0)

dN̄0
. (12)

This is the defining equation for the condensate only chemical potential in terms of the expected
number of particles in the condensate, N̄0. Two alternatives in the evaluation of equation (12)
are available: (a) φ0(r) is allowed to vary with N0 in the evaluation of the matrix elements in
equation (7) and (b) φ0(r) is determined for N̄0 condensate particles and is held fixed. E0(N0)

then has only the explicit N0 dependence shown in equation (7). This latter case corresponds
to choosing a fixed single-particle basis which is independent of the number of particles in the
system.

In case (a), equation (10) can be used to express the expectation value of T̂ in terms of the
eigenvalue and we have

E0(N0) = ε0(N0)N0 − 1
2 N0(N0 − 1)〈V̂ 〉. (13)

Using

dε0(N0)

dN0
= 〈V̂ 〉 +

1

2
(N0 − 1)

d〈V̂ 〉
dN0

(14)

which follows from equation (10), we obtain

µ0 = ε0(N̄0) + 1
2 〈V̂ 〉. (15)

The bar is a reminder that the matrix element is evaluated with a condensate wavefunction
corresponding to N̄0 particles. The first term dominates since it contains the contribution

(N̄0 − 1)〈V̂ 〉, and µ0 is thus the condensate eigenvalue to O(N̄0). The term 〈V̂ 〉/2 can be
traced to the self-interaction correction. Omitting this correction, the same analysis would
lead to µ0 = ε0(N̄0) without the extra term. For the second case, we have

dE0(N0)

dN0
= 〈T̂ 〉 + (N0 − 1

2 )〈V̂ 〉

= ε0(N̄0) + 1
2 〈V̂ 〉 + (N0 − N̄0)〈V̂ 〉. (16)

Setting this equal to the value of µ0 given by equation (15), we find that the expected number
of condensate particles is N0 = N̄0, the same result as found by allowing φ0(r) to vary with
N0.
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To go beyond the Gross–Pitaevskii description requires a treatment of the higher-order
terms (Ĥ2, Ĥ3 and Ĥ4) so far neglected. For Ĥ2 we have

Ĥ2 =
∫

dr ψ̃†(r)[T̂ + 2U0|φ0(r)|2n̂0]ψ̃(r)

+ 1
2 U0

∫
dr
[
â2

0φ0(r)2ψ̃†(r)ψ̃†(r) + â
†2
0 φ∗

0 (r)2ψ̃(r)ψ̃(r)
]

�
∫

dr ψ̃†(r)[T̂ + 2U0nc(r)]ψ̃(r)

+ 1
2 U0

∫
dr
[
�(r)2ψ̃†(r)ψ̃†(r) + �∗(r)2ψ̃(r)ψ̃(r)

]
. (17)

In keeping with the idea of a fixed condensate number N0, we have replaced the â0 and â
†
0

operators by the c-number
√

N0, and have defined the condensate wavefunction

�(r) =
√

N0 φ0(r) (18)

and condensate density

nc(r) = |�(r)|2. (19)

For Ĥ3 we have

Ĥ3 � 2U0

∫
dr ψ̃†(r)ñ(r)φ0(r)â0 + 2U0

∫
dr φ∗

0 (r)â
†
0 ñ(r)ψ̃(r). (20)

In arriving at this result, we have used a Hartree–Fock factorization of the product of three ψ̃

operators, retaining only the average

ñ(r) ≡ 〈ψ̃†(r)ψ̃(r)〉 (21)

and neglecting the anomalous average 〈ψ̃(r)ψ̃(r)〉. This simplification is the Popov
approximation. A comparison of equation (20) with equation (8) shows that the two equations
have the same form and their sum can be eliminated by a generalization of equation (10),[

− h̄2

2m
∇2 + Vext(r) + U0[nc(r) + 2ñ(r)]

]
�(r) = ε0(N0)�(r) (22)

in which the condensate wavefunction is coupled to the non-condensate density ñ(r). The
displayed dependence of ε0 on N0 signifies the normalization of the condensate wavefunction,
however, ε0 also depends implicitly on other parameters through the appearance of ñ(r) in
equation (22). Similarly, we have

Ĥ4 � 2U0

∫
dr ñ(r)ψ̃†(r)ψ̃(r) (23)

which can be combined with Ĥ2 to give the total grand canonical Hartree–Fock Hamiltonian

K̂HF =
∫

dr ψ̃†(r)L̂ψ̃(r) + 1
2 U0

∫
dr
[
�(r)2ψ̃†(r)ψ̃†(r) + �∗(r)2ψ̃(r)ψ̃(r)

]
(24)

with

L̂ = T̂ + 2U0n(r) − µ (25)
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and

n(r) = nc(r) + ñ(r). (26)

The appearance of µ in equation (25) is due to the subtraction of µN̂ from the Hamiltonian as
required in the calculation of the partition function.

The operator K̂HF can be diagonalized with the usual Bogoliubov transformation

ψ̃(r) =
∑

i

[ui(r)α̂i − v∗
i (r)α̂

†
i ] (27)

where the operators α̂i and α̂
†
i satisfy Bose commutation relations. Equation (24) reduces to

K̂HF =
∑

i

Eiα̂
†
i α̂i −

∑
i

Ei

∫
dr |vi(r)|2 (28)

if the functions ui(r) and vi(r) satisfy the coupled Bogoliubov–de Gennes equations

L̂ui(r) − U0nc(r)vi(r) = Eiui(r)

L̂vi(r) − U0nc(r)ui(r) = −Eivi(r).
(29)

These equations define the quasiparticle excitations Ei . Together with equation (22) these
constitute the HFB theory within the Popov approximation.

Quasiparticle expectation values are defined by

〈Ô〉 ≡ 1

Z ′ Tr′ Ôe−βK̂HF (30)

where the quasiparticle partition function, Z ′, is determined by taking a trace over quasiparticle
states for fixed N0:

Z ′ = Tr′ exp(−βK̂HF)

= exp

{
−
∑

i

[
ln(1 − e−βEi ) − β

∫
dr Ei |vi(r)|2

]}

≡ exp{−βẼ(N0, µ)}. (31)

Here, Ẽ(N0, µ) can be thought of as the quasiparticle contribution to the total energy. It is first
a function of N0 as a result of the choice of the normalization of the condensate wavefunction
in equation (22) and second, a function of µ through its explicit appearance in the definition of
L̂. As an example of equation (30), the expectation value of the quasiparticle number operator
is

〈α̂†
i α̂i〉 = 1

eβEi − 1
≡ NBose(Ei) (32)

with which we obtain the non-condensate density

ñ(r) =
∑

i

{[|ui(r)|2 + |vi(r)|2]NBose(Ei) + |vi(r)|2}. (33)

To finally determine various physical quantities, we must evaluate the total partition
function

Z =
∞∑

N0=0

exp{−β[E0(N0, µ) + Ẽ(N0, µ) − µN0]}. (34)
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The condensate energy E0(N0, µ) is still defined by equation (7), but with the expectation
values evaluated using the solution of equation (22). It now depends on µ through
its dependence on the condensate wavefunction. Following the discussion leading to
equation (12), the chemical potential is determined by

µ =
(

∂E0(N̄0, µ)

∂N̄0

)
µ

+

(
∂Ẽ(N̄0, µ)

∂N̄0

)
µ

(35)

which implicitly defines the expected number of particles in the condensate, N̄0(µ), as a
function of µ. For this value of N̄0, the number of particles out of the condensate is given by

Ñ(N̄0, µ) =
∑

i

1

eβEi(N̄0,µ) − 1
(36)

and the total number of particles in the system is

N = N̄0(µ) + Ñ(N̄0(µ), µ). (37)

The parameter µ must be adjusted to yield the desired number of particles, N .
The above procedure is quite involved because of the intricate interdependence of all of

the quantities. The procedure simplifies when the number of particles out of the condensate
satisfies Ñ � N̄0. In this case, ñ(r) is a small correction to equation (22) and the first
term in equation (35) can be approximated by the condensate eigenvalue ε0. Likewise, the
quasiparticle energy Ẽ(N0, µ) will be small relative to E0(N0, µ) and as a result, the second
term in equation (35) can be neglected. The approximation µ � ε0(N0) makes the quasiparticle
energies an implicit function of N0 alone, and once N0 is fixed, so too is Ñ in equation (36). This
prescription, however, must fail at sufficiently large temperatures when the non-condensate
number is comparable to N0. For example, Ñ as given by equation (36) will not have an upper
bound as a function of T , regardless of the value of N0, and may, in fact, exceed the total
number of particles N . Thus the simplified treatment of setting µ equal to ε0 is restricted to
small degrees of excitation from the condensate, and the more elaborate procedure summarized
above must be used at elevated temperatures approaching the critical temperature Tc.

We now proceed with the solution of the BdG equations. We write the operator L̂ as

L̂ ≡ ĥ0 + U0nc(r) − µ (38)

where ĥ0 is the Hamiltonian defining the condensate wavefunction in equation (22). As we
shall see, the eigenfunctions of this Hamiltonian provide a particularly convenient basis of
states.

Rather than dealing with the functions ui and vi , it is convenient to define the functions
[3]

ψ
(±)
i (r) ≡ ui(r) ± vi(r). (39)

These functions are solutions of the uncoupled equations

(ĥ0 − µ)2ψ
(+)
i (r) + 2U0nc(r)(ĥ0 − µ)ψ

(+)
i (r) = E2

i ψ
(+)
i (r) (40)

(ĥ0 − µ)2ψ
(−)
i (r) + 2U0(ĥ0 − µ)nc(r)ψ

(−)
i (r) = E2

i ψ
(−)
i (r) (41)

and are related to each other by (ĥ0 − µ)ψ
(+)
i = Eiψ

(−)
i . Equations (40) and (41) defines the

collective excitations of the condensate. The numerical methods used to solve the HFB–Popov
equations are discussed in the appendix.



3832 D A W Hutchinson et al

2.2. Results for an isotropic trap

To illustrate this method it is convenient to consider a spherically symmetric harmonic trap.
In this case, the Hamiltonian ĥ0 is separable and the basis functions in equation (A3) take the
form

φnlm(r) = Rnl(r)Ylm(r̂) (42)

where Ylm(r̂) is a spherical harmonic and Rnl(r) is the solution of the radial equation. The
corresponding eigenvalues εnl are (2l + 1)-fold degenerate. The excited state modes can
likewise be classified by the angular momentum quantum numbers l and m and a radial index
ν. This implies that the expansions in equations (A4) and (A8) are restricted to terms with
angular components Ylm(r̂) and a summation over the radial index n. However, due to the
spherical symmetry, the expansion coefficients c(i)

α ≡ c(νl)
n depend on l but are independent of

m. Equations (A15) and (A16) then take the form

ñ1(r) = 1

8π

∑
νl

(2l + 1)

{∣∣∣∣∑
n

c(νl)
n Rnl(r)

∣∣∣∣
2

+

∣∣∣∣∑
n

εnl

Eνl

c(νl)
n Rnl(r)

∣∣∣∣
2}

NBose(Eνl) (43)

and

ñ2(r) = 1

16π

∑
νl

(2l + 1)

∣∣∣∣∑
n

(
1 − εnl

Eνl

)
c(νl)

n Rnl(r)

∣∣∣∣
2

. (44)

We now consider the specific isotropic harmonic potential Vext(r) = 1
2 mω2

0r2. In addition,
we use the following parameters [1, 7]: m(87Rb) = 1.44 × 10−25 kg, ν0 = ω0/2π = 200 Hz
and an s-wave scattering length of a � 110 a0 = 5.82 × 10−9 m. Throughout we express
lengths and energies in terms of the characteristic oscillator length d = (h̄/mω0)1/2 =
7.62 × 10−7 m and the characteristic trap energy h̄ω0 = 1.32 × 10−31 J, respectively. A
convenient dimensionless parameter [9–11] describing the effective strength of the interactions
is γ ≡ Na/d , which is proportional to the ratio of the average interaction energy U0n̄

(where n̄ = N/d3) to the characteristic energy level spacing h̄ω0. In the absence of ñ(r)

in equations (22) and (29), the various properties of the condensate scale [9, 10] with this
single parameter γ .

For a spherical trap, the eigenfunctions of ĥ0 and the quasiparticle excitations can be
classified according to the angular momentum l. The number of excitations generated for a
given l is determined by the dimension of the eigenfunction expansion and is chosen sufficiently
large to ensure convergence of the non-condensate density as determined by the sum over all
modes in equation (33).

The first point of interest is the T = 0 quantum depletion given by ñ2(r). The integrated
value of this, Ñ2, does not exceed 0.5% of the total number of atoms for the range of N

considered and the parameters given above. Having most of the atoms in the condensate is
in sharp contrast with the situation in superfluid 4He where 90% of the atoms are outside the
condensate even at T = 0. The monotonic increase of Ñ with N is due to the dependence
of the coupling between the u and v functions in the HFB–Popov equations on the effective
interaction strength γ . The latter increases with N and therefore leads to an increasing number
of excitations out of the condensate. Since Ñ is a small fraction of the total at T = 0, it is to
a very good approximation a function of the single parameter γ .

With increasing temperature, the non-condensate density increases by virtue of the Bose
distribution term in equation (33). We note that ñ2(r) depends weakly on temperature and
is rapidly dominated by ñ1(r) at elevated temperatures. In figure 1(a), we show our self-
consistent results for ñ(r) for N = 2000 atoms for a range of temperatures below the transition
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Figure 1. (a) Non-condensate density for 2000 rubidium atoms at various temperatures. (b) The
non-condensate (full curve) and condensate (broken curve) densities at T = 75 nK [3].

Figure 2. (a) The number of atoms within the condensate for N = 2000, as a function of
temperature. The full curve is the result calculated using the HFB–Popov equations and the broken
curve is the ideal Bose gas result, N0

c /N = 1 − (T /T 0
c )3, with T 0

c = (h̄ω0/kB)(N/ζ(3))1/3. The
chain curve is the fit discussed in the text. (b) The critical temperature versus N for the interacting
(full curve) and non-interacting (broken line) cases [3].

temperature of approximately 100 nK (see below). The inset to figure 1 compares ñ(r) and
nc(r) at T = 75 nK. The trapped atomic gas has a two-component structure [1, 12] at elevated
temperatures, with a relatively dense core of condensed atoms sitting on top of a diffuse cloud
of excited atoms with a long tail. Although the non-condensate density in figure 1(b) looks
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small in comparison with the condensate, both have an approximately equal number of atoms
at this temperature because of the r2 weighting of the integrated density. We also see that
ñ(r) develops a peak at the edge of the condensate with increasing temperature. This is the
analogue of the sharp peak found in the semiclassical Thomas–Fermi approximation [12] in
which the condensate has a sharp cut-off at some radius R0.

In figure 2(a) we show the total number of atoms N0 in the condensate as a function of
temperature for N = 2000 atoms. It can be seen that N0 is falling to zero at approximately
100 nK, which is close to the BEC transition temperature Tc predicted by the semiclassical
approximation [13, 14]. Although there is no sharp transition for a finite system, there is still
a characteristic temperature above which N0 is small. One way of defining this temperature
is to fit the temperature variation of N0 to the functional form N0(T ) = N0(0)[1 − (T /Tc)

α],
treating Tc and α as fitting parameters. As shown in figure 2(a), this functional form provides
a reasonable parametrization over a wide intermediate range of temperatures below Tc. The
values of Tc extracted in this way are found to scale approximately as N1/3, which is the N

dependence found for a trapped, non-interacting Bose gas. As can be seen from figure 2(b), the
numerical values of Tc found here are slightly smaller than the ideal gas values, in agreement
with recent theoretical [15] and experimental [16] results. The value of α extracted from the
fits is approximately 2.3 for all values of N studied, as compared with the ideal Bose gas value
[14] of 3.

The size of the non-condensate ñ(r) is, of course, determined by the quasiparticle
excitations which deplete the condensate. The mode frequencies for the lowest modes of
angular momentum l = 0, 1 and 2 are shown in figure 3(a) for a range of temperatures with
N = 2000 atoms. The l = 0 and 2 mode frequencies split apart from the degenerate harmonic
potential eigenvalue 2ω0. The l = 0 mode is a ‘breathing-type’ mode which is influenced by
the compressibility of the condensate, and increases in frequency as a result of the repulsive
interactions between the atoms. On the other hand, the l = 2 quadrupole mode is a shape
resonance and decreases in frequency with increasing N .

The lowest-lying l = 1 mode is the centre-of-mass mode of the condensate. It lies very
close to, but not exactly at, ω0. According to the generalized Kohn theorem for parabolic
confinement [17], one would expect an l = 1 mode at precisely ω0 corresponding to a
rigid oscillation of the entire trapped gas. This property is satisfied in the Bogoliubov
approximation [10, 11] in which all particles are in the condensate. However, in the HFB–
Popov approximation, the condensate is effectively moving in the presence of the ‘external’
potential Vext(r) + 2U0ñ(r), which deviates from the ideal parabolic form. The generalized
Kohn theorem is very nearly satisfied because at low temperature 2U0ñ(r) is only a relatively
small perturbation upon the effective potential. Hence the l = 1 centre-of-mass mode has a
frequency of almost exactly ω0. At higher temperatures, although the non-condensate density
becomes large, its profile is broad and flat over the region occupied by the condensate. This
leads to a uniform shift in the effective potential, which maintains its parabolic character; the
generalized Kohn theorem is thus still approximately obeyed.

An improved approximation in which the dynamics of the non-condensate is treated on an
equal footing with that of the condensate is needed to recover the true centre-of-mass mode in
which both components of the density oscillate together. This also has potential implications
for comparison with experimental data as will be discussed later.

2.3. Results for JILA experiment

The validity of the HFB–Popov equations is most stringently tested by comparing shifts in
excitation energies as a function of temperature. Such shifts were recently measured at JILA
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Figure 3. The calculated excitation frequencies for 2000 87Rb atoms in a 200 Hz spherical harmonic
trap. The ideal gas (full curve), GHBF (+), HFB (×) and HFB–Popov (◦) results.

[7]. We have solved the HFB–Popov equations under conditions appropriate to this experiment
(in particular, in an anisotropic trap) using an iterative procedure. Figure 4 shows the results of
the comparison of the experimental temperature-dependent excitation spectrum of a cold-atom
cloud contained in the JILA TOP trap, as presented in [7] (full circles) versus the HFB–Popov
predictions for the m = 0 and 2 modes. The horizontal axis is the absolute temperature
scaled by the critical temperature of an ideal Bose gas having the same number of atoms
as the trapped cloud given by T ′ = T /T 0

c (N) where T 0
c (N) = (h̄ω̄/kB) (N/ζ(3))1/3 and

ω̄ = (
ω2

ρωz

)1/3
[14]. The vertical axis is the excitation frequency expressed in units of the

radial trap frequency.
The HFB–Popov results were obtained using the experimentally determined temperature

and a value of µ that produced the experimentally determined total number of atoms, N .
Thus there are no adjustable parameters in this calculation. The agreement between theory
and experiment is very good (on the order of 5%) for low and intermediate temperatures
(T ′ � 0.6). As the temperature increases the HFB–Popov excitation frequencies increasingly
diverge from the experimental data. This feature of the comparison holds true for both the
m = 0 and 2 modes.

The behaviour of the HFB–Popov excitation frequencies can be understood in a simple
way. The HFB–Popov theory can be used to determine the equation of state for state variables
(N, N0, T ). From this, given the values of N and T , one can determine N0. For a fixed total
number, this relationship is given by the condensate fraction as a function of T . One can
easily predict the temperature-dependent mode frequencies for a particular cold-atom cloud
merely by finding the number of condensate atoms, N0, in a cloud at the given temperature and
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Figure 4. The experimental, temperature-dependent excitation spectrum in the JILA TOP trap
(full circles) versus the HFB–Popov predictions for the m = 0 mode (top, labelled by ‘+’) and the
m = 2 mode (bottom, labelled by ‘×’) and the GHFB results (‘◦’). The full curves are excitation
frequencies for a zero-temperature condensate having the same number of condensate atoms as the
experimental condensate in the finite-T cloud.

then finding the zero-temperature frequency of a condensate of this size. The two full curves
in figure 4 are the frequencies determined by the same procedure except that the number of
condensate atoms was taken from experiment.

As figure 4 clearly shows, the HFB–Popov solutions reproduce the experimental results
quite well when T � 0.6T 0

c (N), but fail to reproduce the excitation frequencies at higher
temperatures. One possible reason for this failure of the HFB–Popov theory is that it does
not account for density variations in the thermal cloud. The thermal density is assumed to be
stationary. This is what leads to the violation of the generalized Kohn theorem as discussed in
the previous section. In actual experiments the thermal cloud could be driven by the same force
as that which drives the condensate. The thermal and condensate modes will also, in general,
be coupled. This means that the frequencies calculated from the HFB–Popov approximation
will only correspond to the experimentally measured ones if the condensate is driven in such
a way as not to perturb the thermal density. An alternative problem is due to the omission of
terms due to the Popov approximation. In the Popov approximation the anomalous density
〈ψ̃(r)ψ̃(r)〉 is assumed to be zero. This is equivalent to assuming that correlations between
the particles can be neglected. At higher temperatures, where there is a significant fraction
of atoms in the thermal cloud, this is not necessarily the case. It is the inclusion of these
two-particle correlations that we now consider.

3. Beyond Popov: HFB?

If we do not make the Popov approximation then the condensate wavefunction obeys a
generalized Gross–Pitaevskii equation with an additional term containing the anomalous
average of the field operator m̃(r) ≡ 〈ψ̃(r)ψ̃(r)〉,

{
− h̄2

2m
∇2 + Vext(r) + U0[nc(r) + m̃(r) + 2ñ(r)]

}
�(r) = µ�(r). (45)
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The collective excitations are given by the modified BdG equations [5]

L̂ui(r) − U0[nc(r) + m̃(r)]vi(r) = Eiui(r)

L̂vi(r) − U0[nc(r) + m̃(r)]ui(r) = −Eivi(r)
(46)

with

L̂ ≡ − h̄2

2m
∇2 + Vext(r) + 2U0(nc(r) + ñ(r)) − µ. (47)

The anomalous average can be calculated in terms of the quasiparticle transformation functions
uj (r), vj (r) and populations NBose(Ej ) using the expression

m̃(r) =
∑

j

uj (r)v∗
j (r)

[
2NBose(Ej ) + 1

]
. (48)

The above equations form the basis of the HFB theory beyond the Popov approximation.
Unfortunately, there are a number of difficulties with the full HFB theory, notably the

appearance of infrared and ultraviolet divergences and the failure of the theory to predict a
gapless spectrum. Ultraviolet divergences appear in the expression for the anomalous average
of equation (48) as the sum is not convergent at its upper limit if a contact interaction is used to
calculate the quasiparticle amplitudes uj (r) and v∗

j (r). To go beyond the HFB–Popov theory,
we need to remove this ultraviolet divergence†. To do this we renormalize m̃ by subtracting
its value in the two-body perturbative limit. This subtraction can be motivated by noting that
the physical interpretation of the anomalous average is that it modifies particle interactions
and introduces the many-body T -matrix (see section 4). This T -matrix includes effects of the
medium on the scattering of two particles, but also contains two-body effects which exist even
in vacuum. These vacuum contributions have already been included in the theory, however,
because they are contained in the measured value of the scattering length which appears in
the interaction strength U0. The renormalization of the anomalous average ensures that these
two-body effects are not counted twice [19].

In fact, the simplest way to implement the renormalization numerically is to remove
the zero-temperature component of m̃(r) (i.e. neglect the 1 in the [2NBose(Ei) + 1] term of
equation (48)), since this contains the divergent part. This procedure is not quite correct as
it neglects the contribution from many-body effects at zero temperature. These are extremely
small, however, and at temperatures where the corrections from m̃ are important it is calculated
to an excellent approximation.

The renormalization of m̃ removes the ultraviolet divergences in the HFB theory, but
leaves the problems of infrared divergences and the appearance of a gap in the excitation
spectrum. Infrared divergences occur if the energy shifts produced by m̃ are calculated using
ordinary perturbation theory. In the homogeneous limit these energy shifts are proportional to
m̃/k in the regime where the wavevector of the excitation satisfies (h̄k)2/2m � ncU0. Thus
in the infrared limit (k → 0) the energy shift is divergent. This divergence is removed if
equations (45) and (46) are solved self-consistently rather than perturbatively. In this case the
resulting excitation spectrum is not gapless, i.e. there is no solution with zero energy. This
is problematic because Goldstone’s theorem predicts that there should be such a solution,
corresponding to rotations of the condensate phase. In addition, since the HFB–Popov energy
spectrum is gapless, the energy shift from the self-consistent calculation, although now finite,
is still large compared with the leading-order contribution. The full HFB approach thus leads
to incorrect predictions for the low-energy excitation spectrum and cannot be considered to be
a well defined theory.

† Alternatively one can employ a more complicated pseudopotential as discussed in [18].
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The physical reason for these difficulties is the inconsistent treatment of interactions
between particles in the HFB approach. We argued above that the anomalous average
introduces the many-body T -matrix into the description of particle collisions. However, these
corrections only appear in the description of collisions between condensate particles, whereas
collisions involving non-condensate particles are described by the two-body T -matrix. On
physical grounds, one would expect the effective interaction between any pair of particles to
be the same, regardless of whether or not they come from the condensate. This is the case in
the HFB–Popov theory where all collisions are described using the two-body T -matrix. An
alternative procedure is to include the many-body T -matrix in all collisions. This approach is
discussed in the next section, where we motivate the introduction of additional terms into the
HFB equations which put many-body effects into collisions involving the non-condensate. The
inclusion of these terms produces a gapless HFB theory (GHFB) and removes the difficulties
with infrared divergences.

4. The many-body T -matrix and gapless HFB

When two atoms collide their interaction is modified if a condensate is present in two
principal ways [20, 21]: (a) the intermediate collisional states may be occupied, leading to
a modification of the scattering amplitude via bosonic enhancement and (b) the spectrum of
initial, intermediate and final states is altered, i.e. the atoms participating in the collisions
are not bare atoms, but dressed ones, or quasiparticles. The medium therefore modifies the
effective interaction experienced by a pair of colliding atoms from its value in vacuo [22].
These effects lead to the replacement of the two-body T -matrix by the many-body T -matrix
[23].

We will now show how the effect of including the many-body T -matrix can be
approximated using the anomalous average and how this leads to a new gapless theory [24].
In order to do this we need to write our equations in terms of a basis state expansion. To do
this we use an approach based on the linearization of the time-dependent equations of motion.
Our time dependent Bose-field operator is then given by

ψ̂(r, t) =
∑

i

φi(r) âi(t). (49)

The splitting of the field operator into mean value and fluctuation parts now reads âi (t) =
zi(t) + ĉi (t). Again we take the average of the fluctuations to vanish, 〈âi (t)〉 = zi(t). If we
assume only two-body collisions the exact equation of motion for the mean field is

ih̄
d

dt
zn(t) = h̄ωnzn(t) +

∑
ijk

〈ni|V̂ |jk〉{z∗
i (t)zj (t)zk(t) + 2ρji(t)zk(t)

+κjk(t)z∗
i (t) + λijk(t)

}
. (50)

Here h̄ωnδni = 〈n|T̂0|i〉 = ∫
φ∗

n(r) T̂0 φi(r) dr is the matrix for the kinetic energy plus the
trap potential, which in the trap basis can be taken to be diagonal. The matrix elements of
the interaction terms have been conveniently symmetrized to be 〈ni|V̂ |jk〉 ≡ 1

2 [(ni|V̂ |jk) +

(ni|V̂ |kj)] with (ni|V̂ |jk) = ∫∫
φ∗

n(r)φ∗
i (r′) V̂ (r − r′) φj (r)φk(r′) dr dr′. ρji(t) is the

basis state representation of the pair average ñ(r, t) = ∑
ij φ∗

i (r)φj (r)ρji(t), the anomalous
average m̃(r, t) is given analogously by κjk(t). We do not assume a contact interaction but
keep the full inter-atomic potential V̂ . We also do not neglect the triplet anomalous average
λijk(t) = 〈

c
†
i (t) cj (t) ck(t)

〉
. We have argued that the pair correlations are needed to account for

collisions between condensate atoms. In order to properly account for the collisions between
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condensed and excited atoms one must deal explicitly with correlations of three particles,
λijk(t).

We now linearize the above equation about its static value by writing

ψ(r, t) = [ψ0(r) + δψ(r, t)] e−iµt . (51)

When allowing the condensate to change in time we must do the same for the correlations
between the atoms, so we linearize κji(t) = [κ0

ji + δκji(t)] e−2iµt , and λijk(t) = [λ0
ijk +

δλijk(t)] e−iµt . The HFB approach assumes the populations of the thermal cloud to be static,
so we take ρij (t) = ρ0

ij δij = ni . Here ni are the quasi-particle populations of the respective
levels and are given by the Bose–Einstein distribution. We then obtain as the equation for the
ground state

µz0
n = h̄ωnz0

n +
∑
ijk

〈ni|V̂ |jk〉{z0
j z0

kz0 ∗
i + κ0

jkz0 ∗
i + 2niδij z0

k + λ0
ijk

}
(52)

and the following equation for the excitations:

ih̄
d

dt
δzn(t) = (h̄ωn − µ) δzn +

∑
ijk

〈ni|V̂ |jk〉{z0
j z0

k δz∗
i + κ0

jkδz∗
i

}

+
∑
ijk

〈ni|V̂ |jk〉{2z0 ∗
i z0

j δzk + z0 ∗
i δκjk

}
+
∑
ijk

〈ni|V̂ |jk〉{2niδij δzk + δλijk

}
.

(53)

Using the usual linear response ansatz δzn(t) = unie−i0nt + vniei0nt in the equation for the
excitations, we then obtain equations analogous to the coupled HFB equations.

We now make use of the fact that in equation (53) the terms containing anomalous averages
modify the interaction potential V̂ . The equations of motion for κij (t) and λijk(t) can be
obtained directly from their commutator with the Hamiltonian. Subsequent linearization then
gives the required equations for κ0

ij , δκij , λ0
ijk and δλijk . By way of example we show how

the grouping of the average κ0
ij with the single vertex term of z0

j z0
kz0 ∗

i in the equation for the
static condensate allows us to define an effective interaction. The expression for κ0

ij reads as
follows:

κ0
jk = (1 + nj + nk)

2µ − ωj − ωk

∑
lm

〈jk|V̂ |lm〉[z0
l z0

m + κ0
lm

]
. (54)

This is, in fact, not the full expression for κ0
jk . We include terms which give ladder

interactions to all orders but neglect terms involving higher-order correlations. Inserting this
into the equation for the static condensate allows us to write∑

ijk

〈ni|V̂ |jk〉z0 ∗
i (z0

j z0
k + κ0

jk) =
∑
ilm

〈ni|T̂MB|lm〉z0 ∗
i z0

mz0
l (55)

where we have defined to all orders the many-body T -matrix, the effective interaction,
according to the recursive Lipmann–Schwinger equation:

T̂MB = V̂ +
∑
jk

V̂ |jk〉 (1 + nj + nk)

2µ − ωj − ωk

〈jk|T̂MB. (56)

All other correlation terms can be grouped to effective interactions in a similar fashion. The κ

terms give rise to effective interactions for condensate–condensate collisions and λ introduces
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them for collisions between condensate and excited atoms. The equations for the ground state
and the excitations then become

0 = (h̄ωn − µ) z0
n +

∑
ijk

〈ni|T̂MB|jk〉z0
j z0

kz0 ∗
i +

∑
ik

2ni〈ni|T̂MB|ik〉z0
k (57)

ih̄
d

dt
δzn(t) = (h̄ωn − µ) δzn(t) +

∑
ijk

〈ni|T̂MB|jk〉z0
j z0

k δz∗
i (t)

+
∑
ijk

2〈ni|T̂MB|jk〉z0 ∗
i z0

j δzk(t) +
∑

ik

2ni〈ni|T̂MB|ik〉δzk(t). (58)

We have thus obtained a set of equations that supports a zero-frequency mode with
[u0(r), v0(r)] = [ψ0(r), −ψ∗

0 (r)] and the theory is thus termed gapless.
It is convenient to express 〈T̂MB〉 in terms of contact interactions. We shall use Ũcon to

describe collisions between condensate atoms and Ũexc for the terms describing collisions
between condensed and excited particles. In general, the two effective interactions are
momentum dependent and they need not necessarily be the same. We should expect the
interaction between condensed and excited atoms to be similar to that between two condensate
atoms, as long as the change in relative momenta of the colliding particles between the two
cases is not too great. This is the version of the theory we use in this paper, upgrading U0

to 〈T̂MB〉 everywhere in the HFB–Popov equations. In the limit of high relative momenta
the condensate–excited-state interactions are best described by the two-body T -matrix since
many-body effects die out in this regime. We do not treat this scenario explicitly in this
work.

If we assume 〈T̂MB〉 to be roughly momentum independent we can use 〈00|T̂2B|00〉 =
U0δ(r − r′), where U0 = 4πh̄2a/m is the usual dilute Bose gas effective interaction strength,
to write

〈T̂MB〉 � 〈00|T̂MB|00〉 = 〈00|T̂2B +
∑

ij

T̂2B|ij〉 [1 + nj + ni]

(2µ − ωi − ωj )
〈ij |T̂MB|00〉

→ U0

[
1 +

m̃(r)

ψ2(r)

]
. (59)

We therefore substitute Ũ0 (r) = Ũcon = Ũexc = U0
[
1 + m̃/ψ2

]
everywhere in the HFB–

Popov theory [25].

5. Results using GHFB

Having developed a gapless theory [25] that takes into account the effects of two-particle
correlations, we now examine quantitatively what effects those correlations have. Let us first
return to the case of the 200 Hz spherical trap. Again we initially consider the case of 2000
rubidium atoms. At T = 0 the anomalous average is approximately zero and we hence
obtain identical results to HFB–Popov. As the temperature is increased, so the magnitude
of the anomalous average increases as the non-condensed states become populated. For
the 2000-atom case the non-condensate density profiles and anomalous density profiles are
shown in figures 5(a) and (b), respectively, at temperature of 20, 40, 60, 80 and 100 nK.
Although the non-condensate density, of course, increases monotonically with temperature, at
temperatures approaching Tc, the anomalous average begins to decrease. This is because of
the large depletion of the condensate. At temperatures greater than the transition temperature
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Figure 5. (a) Non-condensate density as a function of position for the spherical trap with 2000
rubidium atoms at temperatures of 20, 40, 60, 80 and 100 nK. (b) Anomalous density profiles for
the same temperatures. (c) The integrated anomalous density as a function of temperature. (d) The
spatially dependent effective interaction for the same range of temperatures.

the anomalous average goes to zero. The integrated value of the anomalous average is shown
in figure 5(d). The maximal (absolute) value of the anomalous average occurs when there
are approximately equal non-condensate and condensate populations. So how is the effective
interaction between the particles modified? As m̃ becomes more negative with temperature
the spatially dependent effective interaction, Ũ0(r), develops a dip near the edge of the
condensate. Far away from the condensate Ũ0 returns to the vacuum value of U0. At its
greatest depletion in the case studied here the minimum in Ũ0 was reduced to approximately
75% of its vacuum value. The effect of this reduction upon the condensate fraction and
excitation frequencies is surprisingly small in the isotropic case, however. Figure 4 shows the
excitation frequencies and condensate fraction for both the HFB–Popov calculation and for
the GHFB calculation. There is clearly very little difference. Even for calculations involving
much larger numbers of atoms (up to 10 000 or 20 000 atoms) the differences never exceeded
1%.

In the case of the anisotropic trap corresponding to the JILA experiment, we again see
that there are virtually no effects due to pair correlations for temperatures below about 0.6Tc.
This is the region in which the HFB–Popov calculations agree well with the experimental data.
However, the inclusion of correlations does have an effect precisely in the region where the
experimental results begin to deviate from the HFB–Popov theory. Replacing the two body
T -matrix with the many body T -matrix produces a downward shift in the excitation spectrum
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for both the m = 0 and 2 excitations. The size of the shift increases as one approaches Tc up
to a maximum of order 10%. The shift is in quantitative agreement with the experimental data
for the m = 2 mode (figure 3). It therefore appears that the inclusion of correlations between
particles in the inter-particle scattering accounts well for the shifts in the lower-lying excitation
of the JILA experiment. This does not explain the shift in the m = 0 mode, however. Although
the onset of the shift away from the excitation frequencies of the HFB–Popov calculation is
in the same region for both the experimental data and the GHFB calculation, the shifts are
of opposite sign. It is assumed therefore that the shift in the m = 0 mode observed in the
experiment may be due to some dynamical behaviour of the non-condensate not included in the
present calculation. Encouraged by the excellent agreement with the lower mode, however,
perhaps further experimental investigation of the excitation spectra of these systems would
be fruitful in helping to understand what validity the finite-temperature mean-field theory
calculations have for the upper mode.

6. Conclusions

In this paper we have shown in detail how to formally develop a self-consistent finite-
temperature field theory treatment of the Bose–Einstein condensation of trapped dilute atomic
gases. We have shown that the simplest such theory that satisfies Goldstone’s theorem is the
Popov approximation to the Hartree–Fock–Bogoliubov formalism. The numerical methods for
implementing this formalism, in both an isotropic trap and an anisotropic trap corresponding
to real experiments, have been expounded and a detailed comparison with experiment has been
made. The results are excellent for temperatures below about 0.6Tc. As the critical temperature
is approached, however, the calculated excitation frequencies diverge from those measured in
the JILA experiment.

We have therefore discussed possible problems with the theory, highlighting the facts
that the dynamics of the non-condensate are neglected and that two-body correlations are
not described in a complete manner. To address the first of these points would require a
new significant extension to the formalism. This is described by Morgan elsewhere in this
issue [26]. We have therefore focused upon the second point. The anomalous average,
neglected in the Popov approximation, was identified as the quantity that represents two-
body correlations. To go beyond the HFB–Popov treatment, one must include this term. This
presents some difficulty as the usual HFB formulation has a gap in the excitation spectrum,
violating Goldstone’s theorem. The source of this failure was identified and the correct method
of including correlations (the replacement of the two-body T -matrix by the many-body T -
matrix everywhere) expounded in detail, together with a derivation of an expression for the
many-body T -matrix in terms of the anomalous average. Other problems concerning infrared
and ultraviolet divergences were addressed.

The results of the new gapless HFB theory were again compared with experiment. The
small corrections at higher temperatures brought the theory into agreement with the measured
values for the m = 2 mode at least. Problems remain in the understanding of the behaviour
of the higher-lying m = 0 mode, however. The resolution of this problem may lie with our
knowledge of exactly what is happening in the experiments or with the fact that the theory
does not include the dynamics of the thermal cloud. Further experiments are needed to clarify
this, as is further theoretical work to include the higher-order terms required to represent these
dynamics [27, 28].
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Appendix. Numerical solution of the HFB–Popov equations

The HFB–Popov equations, in this work, have been solved numerically differently according
to whether the harmonic trap potential confining the gas was isotropic or anisotropic. In both
methods the solutions are expanded in basis-set functions and the resulting matrix eigenvalue
problems are solved by standard techniques. Using a basis set consisting of eigenstates of
the combined potential due to the trap and the mean field of the condensate in the isotropic
case yields an efficient numerical solution. Calculation of corresponding eigenstates in the
anisotropic case becomes very expensive and so a basis set consisting of eigenstates of the trap
potential alone must be used. We describe both methods in detail below.

A.1. Isotropic trap

The basic equations that must be solved are the uncoupled equations (equations (40) and (41))

(ĥ0 − µ)2ψ
(+)
i (r) + 2U0nc(r)(ĥ0 − µ)ψ

(+)
i (r) = E2

i ψ
(+)
i (r) (A1)

(ĥ0 − µ)2ψ
(−)
i (r) + 2U0(ĥ0 − µ)nc(r)ψ

(−)
i (r) = E2

i ψ
(−)
i (r) (A2)

and the solutions are related to each other by (ĥ0 − µ)ψ
(+)
i = Eiψ

(−)
i .

To solve equations (A1) and (A2), we define the normalized eigenfunctions of the
Hamiltonian ĥ0 by

(ĥ0 − µ)φα(r) = εαφα(r). (A3)

The lowest energy solution of equation (A3) defines the condensate wavefunction φ0(r) with
eigenvalue ε0 = ε0(N0) − µ. More generally, the eigenvalues εα are shifted by µ with respect
to the eigenvalues εα of ĥ0. We use this basis to expand ψ

(+)
i (r) as

ψ
(+)
i (r) =

∑
α

c(i)
α φα(r) (A4)

where, in keeping with equation (5), the state φ0(r) is excluded from the expansion.
Substituting this result into equation (A1), we obtain the eigenvalue equation∑

β

{
Mαβ + εαδαβ

}
εβc

(i)
β = E2

i c(i)
α (A5)

where the matrix Mαβ is defined as

Mαβ = 2U0

∫
dr φ∗

α(r)nc(r)φβ(r). (A6)

Equation (A5) can be put into a symmetrical form by means of the transformation w(i) =
D1/2c(i), where D is the diagonal matrix Dαβ = εαδαβ . We then have(D2 + D1/2MD1/2

)
w(i) = E2

i w(i). (A7)
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The matrix multiplying the vector w(i) is Hermitian and the eigenvalues E2
i are real.

Furthermore, since the matrix (M+D) is positive definite, the eigenvalues E2
i are positive and

hence the Ei are real. In a similar way, the function ψ
(−)
i (r) can be expanded as

ψ(−)
m (r) =

∑
α

d(i)
α φα(r) (A8)

where the expansion coefficients are given by

d(i)
α = εα

Ei

c(i)
α . (A9)

Finally, we note that the original Bogoliubov amplitudes are given by

ui(r) = 1
2

∑
α

(
1 +

εα

Ei

)
c(i)

α φα(r)

vi(r) = 1
2

∑
α

(
1 − εα

Ei

)
c(i)

α φα(r).

(A10)

These functions satisfy the orthonormality conditions∫
dr
[
u∗

i (r)uj (r) − v∗
i (r)vj (r)

] = δij (A11)

which implies that the c(i)
α ’s are normalized according to∑

α

εαc(i)∗
α c(j)

α = Eiδij . (A12)

This equation is consistent with the fact that equation (A7) defines a Hermitian eigenvalue
problem, and hence the eigenvectors w(i) are orthogonal,

∑
α w(i)∗

α w
(j)
α ∝ δij .

The non-condensate density defined in equation (33) consists of a part

ñ1(r) =
∑

i

[|ui(r)|2 + |vi(r)|2]NBose(Ei) (A13)

which vanishes in the T → 0 limit and a part

ñ2(r) =
∑

i

|vi(r)|2 (A14)

which is finite in this limit. The latter then represents the non-condensate density in the ground
state of the system. However, ñ2(r) is a function of temperature as a result of the temperature
dependence of L̂ and nc(r) which determines the function vi .

In terms of the coefficients c(i)
α , we have the explicit expressions

ñ1(r) = 1
2

∑
i

{∣∣∣∣∑
α

c(i)
α φα(r)

∣∣∣∣
2

+

∣∣∣∣∑
α

εα

Ei

c(i)
α φα(r)

∣∣∣∣
2}

NBose(Ei) (A15)

and

ñ2(r) = 1
4

∑
i

∣∣∣∣∑
α

(
1 − εα

Ei

)
c(i)

α φα(r)

∣∣∣∣
2

. (A16)

The total number of particles out of the condensate is obtained by integrating these expressions
over all space. We then have

Ñ1 = 1
2

∑
i

∑
α

(
1 +

ε2
α

E2
i

)
|c(i)

α |2NBose(Ei)

Ñ2 = 1
4

∑
i

∑
α

(
1 − εα

Ei

)2

|c(i)
α |2.

(A17)
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A.2. Anisotropic trap

We have also solved HFB–Popov equations under conditions appropriate to the JILA
experiment [7] using an iterative procedure. Each iteration consisted of two parts: (a) solving
the generalized GP equation (equation (22)) using the value of ñ(r) from the previous iteration,
which yields �(r) and a new value of N0 from normalization; (b) solving the coupled HFB–
Popov equations (equations (29)) using �(r) from step (a) and ñ(r) from the previous iteration.
This yields the {uj (r)}, {vj (r)} and {Ej } which are then used in equation (33) to update ñ(r).
The total number of trapped atoms, N , is updated by integrating ñ over all space and adding
this to N0. Convergence is reached when the change in N from one iteration to the next is
smaller than a specified tolerance.

To perform step (a), we use the basis-set method. The solution of equation (22) is expanded
in a finite basis of eigenfunctions of the trap potential, �(r) = ∑

k ckφk(r), and the scalar
product of the result is taken with each φk . Since ñ comes from the previous self-consistent
iteration, equation (22) is similar to the zero-temperature GP equation and can be solved by
Newton–Raphson iteration.

Step (b) is performed by expanding the quasi-particle amplitudes in trap eigenfunctions,
uj (r) = ∑

i a
(j)

i φi(r) and vj (r) = ∑
i b

(j)

i φi(r). Insertion of these expansions in
equations (29) yields a generalized matrix eigenvalue problem for the coefficients {a(j)

i } and
{b(j)

i }. The size of the matrix problem can be significantly reduced using rotational and
reflection symmetry about the trap axis. Thus each quasi-particle amplitude pair

{
uj (r), vj (r)

}
will have a definite value of the azimuthal quantum number m and will be even or odd under
the reflection z → −z. Hence the quasi-particle index j can be replaced with the set {m, ±, q}
(below we label states within a subspace of fixed m, z-parity, and q). The generalized matrix
eigenvalue problem can be recast as an ordinary eigenvalue problem for the squares of Ej

within each subspace of fixed m and z-parity using the following decoupling transformation:
(sq)p ≡ a

(q)
p + b

(q)
p and (dq)p ≡ a

(q)
p − b

(q)
p , where sq and dq denote column vectors. This

decoupling transformation is equivalent to that used in [3] except that it appears here within
the context of basis-set expansion coefficients. The form of the eigenvalue equations actually
solved are

A−A+sq = E2
qsq dq = 1

Eq

A+sq (A18)

the matrices A± are given by (A±)pp′ = (εp − µ)δpp′ + U0
[
N0 (2 ± 1) ρpp′ + 2ñpp′

]
, where

ρpp′ and ñpp′ are matrix elements of φ(r) and ñ(r) within the basis set, respectively.
We have checked our numerical results in several ways. First, we have reproduced the

results of [3]. We have verified that the ideal gas result is recovered when the scattering length
is set to zero. Finally, we have written two completely independent versions of the code and
have checked that they produce the same answers.

We should note that the convergence problems in the excitation frequencies at high
temperatures, discussed in [3], were avoided simply by adding a correction to the total number
of atoms, N , at each iteration. For high-energy oscillator eigenfunctions, the overlaps of the
quasi-particle amplitudes with the condensate wavefunction are negligible. These amplitudes
do not modify the low-lying excitation frequencies but do contribute to N . Furthermore,
the {uj } and {vj } approach oscillator eigenstates and zero, respectively, as εj becomes large,
while the eigenvalues behave as Ej → εj − µ, where εj is the oscillator energy eigenvalue.

Hence a sum over Bose–Einstein factors of the form
∑

j,εj >εmax

(
eβEj − 1

)−1
is added to the

N calculated by integration of ñ computed within the truncated basis set. The energy cut-off,
εmax, is chosen to converge the condensate fraction and low-lying excitation frequencies.
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