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Optical Absorption of Insulators and the Electron-Hole Interaction: An Ab Initio Calculation
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We present a computationally efficient scheme to calculate the optical absorption of insulators
from first principles, including the electron-hole interaction. Excited states of the solid are chosen
to consist of single electron-hole pairs. The electron-hole interaction is statically screened using a
model dielectric function. Only two pieces of input are required, the crystal structure of the material
and the macroscopic dielectric constant. We apply this scheme to two wide-gap insulators, LiF and
MgO, and obtain excellent agreement with experimental measurements of their UV reflectance spectra.
[S0031-9007(98)06129-8]

PACS numbers: 78.20.Bh, 71.10.—w, 71.35.-y, 78.66.Nk

The absorption of light by an insulating solid has beertions, and the screened interaction. Hanke and Sham con-
important in the development of solid state theory. Insidered tetrahedrally coordinated covalent materials, and
the 1960s, practitioners of the empirical pseudopotentialised tight-binding band energies and wave functions to
method [1] used reflectivity measurements to fit pseuconstruct the particle-hole propagator and resulting ab-
dopotential Fourier components, which were then used tsorption spectrum. There is now a need for a first-
calculate the one-electron band structure. Wathini-  principles scheme for computing optical absorption, one
tio electronic structure methods, it is natural to attackwhich may readily be applied towide rangeof materials
the problem in reverse by using one-electron energiewith minimal empirical fitting. Only recently have cal-
and wave functions to predict optical properties. Twoculations of the Hanke-Sham type been performed with
levels of theory have contributed to this. The first issingle-particle energies and wave functions from LDA
pseudopotential local-density approximation (LDA) cal-and/or quasiparticle calculations. One of us [5] has calcu-
culations [2], where electronic band structures and wavéated x-ray absorption, when the hole is in a core state and
functions are predicted. In the LDA, the band gap is un<an be considered fixed in position. Albrectttal. [6]
derestimated and the optical absorption edge is too low iconsidered the more complex problem of the hole in a va-
energy. This is largely corrected at the next level of thedence state, but no absorption spectrum was presented.
ory, quasiparticle calculations [3], in which a better treat- In this Letter, we present a computationally efficient
ment of electron correlations results in quasiparticle bandirst-principles scheme for calculating,(w), including
structures that agree well with experiments. the electron-hole interaction in the Hanke-Sham frame-

Unfortunately, these theories deal only wislingle- work. The input is energies and wave functions from
particle states, and do not describe a key aspect of theDA /quasiparticle calculations. The screened Coulomb
optical absorption process: the electron-hole interactioninteraction is calculated with a model dielectric function
When a photon is absorbed, an electron in the valence baijd]. We consider two wide-gap insulators, where the
is excited into the conduction band, leaving a hole behindelectron-hole interaction is very strong: LiF and MgO.
Single-particle theories regard the excited electron andhe calculated spectra are dramatically different from the
hole as independent, noninteracting particles. Ininsulatingne-electron results, even well above the absorption edge.
solids, the electron-hole interaction leads to bound stateEhe results are in excellent agreement with reflectivity
(excitons) and concentrates oscillator strength near aneixperiments performed on these materials. In what fol-
below the band gap. This is especially important in widedows, we describe the theoretical/computational model,
gap insulators, where the electron-hole interaction is vergand present the results.
strong, due to insufficient screening. In these systems, We use the Tamm-Dancoff approximation (TDA) [8],
excitonic effects can dominate the spectrum and wash owtherein the ground stat#)), is a filled valence band, and
the features found in one-electron spectra. all excited states arsingly excited,with a hole below

Two decades ago, Hanke and Sham introduced the Fermi level and an electron above. Because there
scheme in which the electron-hole interaction can be inare two particles singled out in these states (electron
cluded [4]. It relies on a calculation of the particle-hole and hole), an excited state wave function depends on
propagator, which describes the dynamics of a particletwo particles’ coordinates. We use two different bases
hole pair in a quantum many-body system. It can beor periodic systems: theeal spacebasis, and thene-
calculated from single-particle energies and wave funcelectron eigenstatbasis. In the first, an excited state is
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of the form where u; x+q and u;) are the periodic parts of Bloch
. 4 functions.
ZR‘MX’Y’R)““R“Y'w ZR¢(X ¥:R) X, y;R), The equation of motion for the electron-hole pair
X.y, X,y

1) creation operator is

where R is the lattice vector separating the unit cells W|[H, alay] 1oy = E(V|alay|Wo), (4)
containing the electron and hole, ané@ndy are positions
of the electron and hole in their unit cells. In the secondwhere H is the exact many-body Hamiltoniahy¥) is
an excited state is an exact excited state with energy, and [¥,) is the

. + _ s exact ground state (with energy set to zero). The secular
i% i, ji k) aiicqakl0) = i% . K1 j k), (2) equation for the TDA effective Hamiltonian is obtained by
wherei and j are electron and hole band indicésis the replacing|Wo) with 0), and|W) with the singly excited
hole wave vector, anlt + q is the electron wave vector States above [8]. The resulting equation has two parts: a

one-electron part, and the electron-hole interaction, which

(hq is the photon momentum). The transformation from
the one-electron elgenstate basis to the real space ba5|sh(h§3 both exchange and direct parts. Following Ref. [4],
e exchange terms involve the bare Coulomb interaction

Y(x,y;R) = Z f =Y ’k'("_”R)ui,Hq(x) V, while the direct terms involve the statically screened
(2m) interactionW [9]. In the one-electron eigenstate basis,
x uj,k(y)¢(z,1, k), (3) we have

[Ei(k + q) — E;(k) — EJ(i, jik) = Z [ o) [230<i,j;kIV|i’,j’;k’> — (@, s kIWI KD G 7 KD (5)

I
E; and E; are one-electron band energiek; = 0 for  potential, Voir.  In the direct integral, the electrons in
triplet states, andl for singlet states. We consider the first and second pair are at the same point (as are
singlets from now on. The exchange matrix elementthe holes). The Levine-Louie-Hybertsen model [7] is

i, j;KIVIi, j' K, is used to calculat® (x, y; R) from the ground-state charge
ia-(x— . density, p(x), and the macroscopic dielectric constant

3 3 q( +R) _* ) ! 1 ’

. [ d X[ d7ye TR U] g (X)u 1 (X) €. This model reproduces the correct short- and long-

(6) range behavioW (x,y;0) — ¢?/|x — y| asx — y, and
W(x,y;R) — ¢?/[ex]x — y + R|]]asR — .

Instead of solving Eq. (5) to obtain the energiés,
Z ] d3x] d3yefi(k—k’).(rym)uihq(x)uj’k(y) and statesy/ (i, j; k), we perform all computations by
R repeatedly acting with the TDA Hamiltonian on singly

X WX, y; Rujg+q(X)uj(y). (7)  excited states. The Hamiltonian has three terfis,,

Both terms describe the scattering of péirj;k) into  H., and Hg,. Our strategy is to act with each term
pair (i’j’;k’). In the exchange integral, the electron andseparately in the basis in which it is easily handled (the
hole of each pair are at the same spatial point. Thusxchange term is treated by standard reciprocal space
it can be rewritten in terms of an effective one-electrontechniques [10]),

Hrpaty = Hie Y (i, j;k) i, j3 k) + HexZ:p(G) IG) + Hair Y. ¢(x,y;R)Ix,y;R)

X V(X y: R)uigo+q(y)uf o (y)
while the direct matrix elementi, j; k|W|i’, j/; k'), is

i.j:k x,y;R
= MIEk + q — E;&G,j;k) i, j; k) + 2Zveff(G Q¥ (G)|G)
i,j:k
- > WEy:R)¥(x.y:R) [x,y:R). ®)
x,y;R

I
This is accomplished by first expressiggin the various to the Brillouin-zone size, we sdt + q = k in what
bases using transformation laws, e.g., Eq. (3). Then, thiollows.
Hamiltonian is applied with the above equation. Finally, Optical absorption is characterized by the imagi-
the inverse transformations are applied to transform alhary part of the dielectric functions;(w). Within the
terms back to one basis. Becaugdés small compared TDA, one has
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exw) = Z|<0|A I PRS0 — Ey) —4w|m{2<0|—|b><b|( - — — )|b’><b| |o>}

b.b'
(9)

whereA - J is the component of the macroscopic currentpare with experiment. A broadening parameterof=
operator along the polarization direction € 1). The 0.2 eV is used, and 100 iterations (actionsfp,) are
|f)'s are eigenstates ofitpa, wWhile |b) and |b’) are  performed. The calculateg(w) is presented in Fig. 1(a),
members of the one-electron eigenstate basis (with ond¢egether with results deduced from a reflectance experi-
electron energiew, and w;/). The radiation field acts ment [15]. Note that the calculation shows significant
on [0) to create an electron-hole pair. The second lindeatures below the 14.2 eV band gap, the most signifi-
of Eqg. (9) has the form of a resolvent element and iscant of which is the huge peak at 12.4 eV. This is the
readily calculated with the Haydock recursion methodI’ exciton, which is at 12.6 eV in the reflectance data.
[11], in which the partial density of states ditpan  Analysis reveals that the peak is comprised of three states,
weighted by A - J is calculated by repeated actions of each consisting primarily of a hole in the three nearly
Hrpa. Thus, calculation o&,(w) is reduced to the action degenerate Bp bands, and an electron in the first con-
of the Hamiltonian on state vectors. The advantage ofluction band. The general agreement between theory and
this is that the number of actions needed depends chieflgxperiment is quite good, although there is a large discrep-
on the energy broadening parametgt, and is roughly ancy in the height of the peak at 22 eV. Note that neglect
independent of the dimension of the problem. of the electron-hole interaction [where we use only the
We obtainu functions from pseudopotential LDA cal- first term in Eq. (8)] yields ar,(w) which is drastically
culations performed on a dense meshkopoints in the different atall energies. These one-electron results are
first Brillouin zone. An optimized basis set for large- shown in Fig. 1(b). Thus, excitonic effects are important
point calculations is used [12]. Band energies are adjusteelven far above the absorption edge [4].
to mimic the results of our quasiparticle calculations [13] For MgO, we use the Qs and2p valence bands, and
when used in the first term of Eq. (8). We calculate thethe first four conduction bands. Valence and conduction
values ofu functions on a mesh of points in the unit cell,
used in the transformation of Eq. (3). The mesh of lattice

. A . . 12 L] L] L] L] L] L] L]
vectors,R, is chosen to be compatible with thkepoint , @
mesh so fast Fourier transform techniques can be employed 10k i 4
in k < R transformations. The;x(x) are also used to I
computep (x), needed in the determination Bf(x,y; R). Y I -

The time it takes to computeédtpay is domi- 3 l
nated by the evaluation of the direct interaction term. = 6r I i
There are three steps involved: (i) transformation from Al I i
Y(i,j; k) — ¢(x,y;R) via Eq. (3), (i) local multi- I\
plication ¢(x,y;R) = W(x,y; R)#(x,y;R), and (iii) 2F I\ J
transformation from ¢(x,y;R) — ¢(i,j;k) via the ) = RN
inverse of Eq. (3). Each action offirpy scales as 0 a 1 1 1 1 E—|
N.N,Ni log(Nx)N2, where N. and N, are the numbers 12 — 111
of conduction and valence bands, aNg and N, are \ (b)
the numbers ofk and x points. Since the number of 10F I .
actions ofHrps hecessary to determing(w) is roughly l|
independent of the dimension é&ftps, the computation 8 I| 7
as a whole scales roughly &N, Ny Iog(Nk)N,f. 3 6l [ i
We now present results for LiF and MgO, two rocksalt- & [
structure crystals. We use experimental lattice constants sk [ 4
for both materials. For LiF, we include theXs and2p I\
bands in the valence, and the first four conduction bands. 2F |\~ .
Valence bands are stretched by 15% and conduction bands /[ N =T N
by 2%, and the direct band gap is moved to 14.2 eV, e e 5
bringing LDA bands into accord with quasiparticle cal- Photon energy, eV

culations [14]. The dielectric constant (used in the de- FIG. 1. (a) ex(w) VS fiw for LiF. Solid line: calculation:

termination of the screened interaction)eis = 1.92. A dashed line: experimental data of Ref. [12]. (b) Solid line:

k-point mesh of6 X 6 X 6 and anx-point mesh of3 X &(w) for LiF calculated with no electron-hole interaction:;
3 X 3 are sufficient to converge the calculation to com-dashed line: experiment.
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FIG. 2. (a)ex(w) vs hw for MgO. Solid line: calculation;
dashed line: experimental data of Ref. [12]. (b) Solid line:
e(w) for MgO calculated with no electron-hole interaction;
dashed line: experiment.

bands are stretched by 14% and 2%. The quasiparticlgo]

direct band gap is 7.8 eV [16], ard. is 3.03. A10 X
10 X 10 k-point mesh and & X 3 X 3 x-point mesh
are used. Again, 100 iterations are performed, gnid
chosen to be 0.2 eV. The calculateglw) is presented

in Fig. 2(a), together with the results deduced from a re-

flectance measurement [15]. The agreement is very goo
with peak positions well reproduced. Note that there i

no significant absorption at energies well below the band

gap; unlike for LiF, the exciton binding energy is small.

crystal structure and dielectric constant. The model
was applied to two materials where the electron-hole
interaction is very strong. With this first-principles
computational scheme, accurate absorption spectra
can now be calculated for a wide range of materi-
als, and optical properties of new materials can be
predicted.
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