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Optical Absorption of Insulators and the Electron-Hole Interaction: An Ab Initio Calculation
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We present a computationally efficient scheme to calculate the optical absorption of insulators
from first principles, including the electron-hole interaction. Excited states of the solid are chosen
to consist of single electron-hole pairs. The electron-hole interaction is statically screened using a
model dielectric function. Only two pieces of input are required, the crystal structure of the material
and the macroscopic dielectric constant. We apply this scheme to two wide-gap insulators, LiF and
MgO, and obtain excellent agreement with experimental measurements of their UV reflectance spectra.
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The absorption of light by an insulating solid has bee
important in the development of solid state theory. I
the 1960s, practitioners of the empirical pseudopotent
method [1] used reflectivity measurements to fit pse
dopotential Fourier components, which were then used
calculate the one-electron band structure. Withab ini-
tio electronic structure methods, it is natural to attac
the problem in reverse by using one-electron energi
and wave functions to predict optical properties. Tw
levels of theory have contributed to this. The first i
pseudopotential local-density approximation (LDA) ca
culations [2], where electronic band structures and wa
functions are predicted. In the LDA, the band gap is u
derestimated and the optical absorption edge is too low
energy. This is largely corrected at the next level of th
ory, quasiparticle calculations [3], in which a better trea
ment of electron correlations results in quasiparticle ba
structures that agree well with experiments.

Unfortunately, these theories deal only withsingle-
particle states, and do not describe a key aspect of t
optical absorption process: the electron-hole interactio
When a photon is absorbed, an electron in the valence ba
is excited into the conduction band, leaving a hole behin
Single-particle theories regard the excited electron a
hole as independent, noninteracting particles. In insulati
solids, the electron-hole interaction leads to bound sta
(excitons) and concentrates oscillator strength near a
below the band gap. This is especially important in wide
gap insulators, where the electron-hole interaction is ve
strong, due to insufficient screening. In these system
excitonic effects can dominate the spectrum and wash o
the features found in one-electron spectra.

Two decades ago, Hanke and Sham introduced
scheme in which the electron-hole interaction can be i
cluded [4]. It relies on a calculation of the particle-hol
propagator, which describes the dynamics of a partic
hole pair in a quantum many-body system. It can b
calculated from single-particle energies and wave fun
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tions, and the screened interaction. Hanke and Sham co
sidered tetrahedrally coordinated covalent materials, an
used tight-binding band energies and wave functions
construct the particle-hole propagator and resulting ab
sorption spectrum. There is now a need for a first
principles scheme for computing optical absorption, on
which may readily be applied to awide rangeof materials
with minimal empirical fitting. Only recently have cal-
culations of the Hanke-Sham type been performed wit
single-particle energies and wave functions from LDA
and/or quasiparticle calculations. One of us [5] has calcu
lated x-ray absorption, when the hole is in a core state an
can be considered fixed in position. Albrechtet al. [6]
considered the more complex problem of the hole in a va
lence state, but no absorption spectrum was presented.

In this Letter, we present a computationally efficien
first-principles scheme for calculatinge2svd, including
the electron-hole interaction in the Hanke-Sham frame
work. The input is energies and wave functions from
LDAyquasiparticle calculations. The screened Coulom
interaction is calculated with a model dielectric function
[7]. We consider two wide-gap insulators, where the
electron-hole interaction is very strong: LiF and MgO
The calculated spectra are dramatically different from th
one-electron results, even well above the absorption edg
The results are in excellent agreement with reflectivit
experiments performed on these materials. In what fo
lows, we describe the theoretical/computational mode
and present the results.

We use the Tamm-Dancoff approximation (TDA) [8],
wherein the ground state,j0l, is a filled valence band, and
all excited states aresingly excited,with a hole below
the Fermi level and an electron above. Because the
are two particles singled out in these states (electro
and hole), an excited state wave function depends o
two particles’ coordinates. We use two different base
for periodic systems: thereal spacebasis, and theone-
electron eigenstatebasis. In the first, an excited state is
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of the formX
x,y ,R

csx, y; Rday
x1Ray j0l ­

X
x,y ,R

csx, y; Rd jx, y;Rl ,

(1)
where R is the lattice vector separating the unit cell

containing the electron and hole, andx andy are positions
of the electron and hole in their unit cells. In the secon
an excited state isX

i,j,k
csi, j; kday

i,k1qaj,kj0l ­
X
i,j,k

csi, j; kd ji, j; kl , (2)

wherei andj are electron and hole band indices,k is the
hole wave vector, andk 1 q is the electron wave vector
(h̄q is the photon momentum). The transformation from
the one-electron eigenstate basis to the real space basi

csx, y; Rd ­
X
i,j

Z d3k
s2pd3

eik?sx2y1Rdui,k1qsxd

3 up
j,ksydcsi, j; kd , (3)
n

o
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where ui,k1q and uj,k are the periodic parts of Bloch
functions.

The equation of motion for the electron-hole pai
creation operator is

kCj fH, ay
e ahg jC0l ­ EkCjay

e ahjC0l , (4)

where H is the exact many-body Hamiltonian,jCl is
an exact excited state with energyE, and jC0l is the
exact ground state (with energy set to zero). The secu
equation for the TDA effective Hamiltonian is obtained by
replacingjC0l with j0l, and jCl with the singly excited
states above [8]. The resulting equation has two parts:
one-electron part, and the electron-hole interaction, whic
has both exchange and direct parts. Following Ref. [4
the exchange terms involve the bare Coulomb interactio
V , while the direct terms involve the statically screene
interactionW [9]. In the one-electron eigenstate basis
we have
fEisk 1 qd 2 Ejskd 2 Egcsi, j; kd ­
X
i0,j0

Z d3k0

s2pd3
f2dski, j; kjV ji0, j0; k0l 2 ki, j; kjW ji0, j0; k0lgcsi0, j0; k0d . (5)
re

,
-

e
ce
Ei and Ej are one-electron band energies;ds ­ 0 for
triplet states, and1 for singlet states. We conside
singlets from now on. The exchange matrix eleme
ki, j; kjV ji0, j0; k0l, isX
R

Z
d3x

Z
d3ye2iq?sx2y1Rdup

i,k1qsxduj,ksxd

3 V sx, y ; Rdui0,k01qsydup
j0,k0syd , (6)

while the direct matrix element,ki, j; kjW ji0, j0; k0l, isX
R

Z
d3x

Z
d3ye2isk2k0d?sx2y1Rdup

i,k1qsxduj,ksyd

3 W sx, y; Rdui0,k01qsxdup
j0,k0syd . (7)

Both terms describe the scattering of pairsi, j; kd into
pair si0j0; k0d. In the exchange integral, the electron a
hole of each pair are at the same spatial point. Th
it can be rewritten in terms of an effective one-electr
r
nt,

d
us,
n

potential, Veff. In the direct integral, the electrons in
the first and second pair are at the same point (as a
the holes). The Levine-Louie-Hybertsen model [7] is
used to calculateW sx, y; Rd from the ground-state charge
density, rsxd, and the macroscopic dielectric constant
e`. This model reproduces the correct short- and long
range behavior:W sx, y; 0d ! e2yjx 2 yj as x ! y, and
W sx, y; Rd ! e2yfe`jx 2 y 1 Rjg asR ! `.

Instead of solving Eq. (5) to obtain the energies,E,
and states,csi, j; kd, we perform all computations by
repeatedly acting with the TDA Hamiltonian on singly
excited states. The Hamiltonian has three terms,H1-e,
Hex, and Hdir . Our strategy is to act with each term
separately in the basis in which it is easily handled (th
exchange term is treated by standard reciprocal spa
techniques [10]),
HTDAc ­ H1-e

X
i,j;k

csi, j; kd ji, j; kl 1 Hex

X
G

csGd jGl 1 Hdir

X
x,y;R

csx, y; Rd jx, y; Rl

­
X
i,j;k

fEisk 1 qd 2 Ejskdgcsi, j; kd ji, j; kl 1 2
X
G

VeffsG; qdcsGd jGl

2
X

x,y;R
W sx, y; Rdcsx, y; Rd jx, y; Rl . (8)
i-
This is accomplished by first expressingc in the various
bases using transformation laws, e.g., Eq. (3). Then,
Hamiltonian is applied with the above equation. Finally
the inverse transformations are applied to transform
terms back to one basis. Becauseq is small compared
he
,

all

to the Brillouin-zone size, we setk 1 q ­ k in what
follows.

Optical absorption is characterized by the imag
nary part of the dielectric function,e2svd. Within the
TDA, one has
4515
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e2svd ­
4p2

v2

X
f

jk0jl̂ ? Jj flj2dsv 2 Efd ­ 4p Im

"X
b,b0

k0j
l̂ ? J
vb

jbl kbj

√
1

HTDA 2 v 2 ih

!
jb0l kb0j

l̂ ? J
vb0

j0l

#
,

(9)
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wherel̂ ? J is the component of the macroscopic curre
operator along the polarization direction (h̄ ­ 1). The
jfl’s are eigenstates ofHTDA, while jbl and jb0l are
members of the one-electron eigenstate basis (with o
electron energiesvb and vb0 ). The radiation field acts
on j0l to create an electron-hole pair. The second lin
of Eq. (9) has the form of a resolvent element and
readily calculated with the Haydock recursion metho
[11], in which the partial density of states ofHTDA
weighted byl̂ ? J is calculated by repeated actions o
HTDA. Thus, calculation ofe2svd is reduced to the action
of the Hamiltonian on state vectors. The advantage
this is that the number of actions needed depends chie
on the energy broadening parameter,h, and is roughly
independent of the dimension of the problem.

We obtainu functions from pseudopotential LDA cal-
culations performed on a dense mesh ofk points in the
first Brillouin zone. An optimized basis set for large-k-
point calculations is used [12]. Band energies are adjus
to mimic the results of our quasiparticle calculations [13
when used in the first term of Eq. (8). We calculate th
values ofu functions on a mesh ofx points in the unit cell,
used in the transformation of Eq. (3). The mesh of lattic
vectors,R, is chosen to be compatible with thek-point
mesh so fast Fourier transform techniques can be emplo
in k $ R transformations. Theuj,ksxd are also used to
computersxd, needed in the determination ofW sx, y; Rd.

The time it takes to computeHTDAc is domi-
nated by the evaluation of the direct interaction term
There are three steps involved: (i) transformation fro
csi, j; kd ! csx, y ; Rd via Eq. (3), (ii) local multi-
plication fsx, y; Rd ­ W sx, y; Rdcsx, y ; Rd, and (iii)
transformation from fsx, y; Rd ! fsi, j; kd via the
inverse of Eq. (3). Each action ofHTDA scales as
NcNyNk logsNkdN2

x, whereNc and Ny are the numbers
of conduction and valence bands, andNk and Nx are
the numbers ofk and x points. Since the number of
actions ofHTDA necessary to determinee2svd is roughly
independent of the dimension ofHTDA, the computation
as a whole scales roughly asNcNyNk logsNkdN2

x.
We now present results for LiF and MgO, two rocksal

structure crystals. We use experimental lattice consta
for both materials. For LiF, we include the F2s and2p
bands in the valence, and the first four conduction ban
Valence bands are stretched by 15% and conduction ba
by 2%, and the direct band gap is moved to 14.2 e
bringing LDA bands into accord with quasiparticle ca
culations [14]. The dielectric constant (used in the d
termination of the screened interaction) ise` ­ 1.92. A
k-point mesh of6 3 6 3 6 and anx-point mesh of3 3

3 3 3 are sufficient to converge the calculation to com
4516
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pare with experiment. A broadening parameter ofh ­
0.2 eV is used, and 100 iterations (actions ofHTDA) are
performed. The calculatede2svd is presented in Fig. 1(a),
together with results deduced from a reflectance expe
ment [15]. Note that the calculation shows significan
features below the 14.2 eV band gap, the most signifi
cant of which is the huge peak at 12.4 eV. This is th
G exciton, which is at 12.6 eV in the reflectance data
Analysis reveals that the peak is comprised of three state
each consisting primarily of a hole in the three nearly
degenerate F2p bands, and an electron in the first con-
duction band. The general agreement between theory a
experiment is quite good, although there is a large discre
ancy in the height of the peak at 22 eV. Note that negle
of the electron-hole interaction [where we use only th
first term in Eq. (8)] yields ane2svd which is drastically
different at all energies. These one-electron results ar
shown in Fig. 1(b). Thus, excitonic effects are importan
even far above the absorption edge [4].

For MgO, we use the O2s and2p valence bands, and
the first four conduction bands. Valence and conductio
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FIG. 1. (a) e2svd vs h̄v for LiF. Solid line: calculation;
dashed line: experimental data of Ref. [12]. (b) Solid line
e2svd for LiF calculated with no electron-hole interaction;
dashed line: experiment.
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FIG. 2. (a) e2svd vs h̄v for MgO. Solid line: calculation;
dashed line: experimental data of Ref. [12]. (b) Solid line
e2svd for MgO calculated with no electron-hole interaction
dashed line: experiment.

bands are stretched by 14% and 2%. The quasiparti
direct band gap is 7.8 eV [16], ande` is 3.03. A 10 3

10 3 10 k-point mesh and a3 3 3 3 3 x-point mesh
are used. Again, 100 iterations are performed, andh is
chosen to be 0.2 eV. The calculatede2svd is presented
in Fig. 2(a), together with the results deduced from a r
flectance measurement [15]. The agreement is very go
with peak positions well reproduced. Note that there
no significant absorption at energies well below the ban
gap; unlike for LiF, the exciton binding energy is small
This is due to both the smaller band gap and the larg
bandwidths of conduction and valence bands. Neverth
less, there is a sharp onset at,7.8 eV which is not present
in the one-electron result, shown in Fig. 2(b). As for LiF
the electron-hole interaction plays an important role at a
energies. Features in the MgO spectrum at high energ
(,17 and,20.5 eV) are reproduced well in the calcula-
tion, even though these energies aregreater than twice
the band gap. Thus, we suggest that multielectron exci
tations are not crucially important in understandinge2svd
for MgO.

We have presented a computationally efficient schem
for calculating e2svd for insulators, including the
electron-hole interaction. The only input is the material
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crystal structure and dielectric constant. The mod
was applied to two materials where the electron-ho
interaction is very strong. With this first-principles
computational scheme, accurate absorption spec
can now be calculated for a wide range of mater
als, and optical properties of new materials can b
predicted.
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