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An investigation is made of a recently intro-
duced quantum interferometric method
capable of measuring polarization mode
dispersion (PMD) on sub-femtosecond
scales, without the usual interferometric
stability problems associated with such
small time scales. The technique makes use
of the extreme temporal correlation of
orthogonally polarized pairs of photons
produced via type-II phase-matched sponta-
neous parametric down-conversion. When
sent into a simple polarization interferome-
ter these photon pairs produce a sharp in-
terference feature seen in the coincidence
rate. The PMD of a given sample is deter-
mined from the shift of that interference
feature as the sample is inserted into the

system. The stability and resolution of this
technique is shown to be below 0.2 fs. We
explore how this precision is improved by
reducing the length of the down-conversion
crystal and increasing the spectral band
pass of the system.
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The method has a number of distinct differences with
respect to conventional PMD measurement methods
that may be exploited to advantage. A high stability is
seen without taking any of the special precautions usu-
ally required by conventional interferometric optical
measurement systems (such as white light interferome-
ter systems). This stability is due to the common path
design of this simple two-photon interferometer config-
uration. Another advantage of the method (relative to
some nonwhite light interferometric methods) is that it
determines the optical delay absolutely, as opposed to
simply measuring the delay modulo the wavelength.

2. Measurement Principle

Parametric down-conversion is a nonlinear process
that takes place in an optically nonlinear crystal that
allows an individual pump photon to, in effect, decay
into a pair of photons. Because this decay occurs under

1. Introduction

The highly correlated nature of photons produced two
at a time via parametric down-conversion has proved to
be an extremely useful tool in exploring the strange
nature of quantum mechanics. In particular, type-II
parametric down-conversion, which can produce photon
pairs entangled in both space-time and polarization, has
provided a wealth of interesting new interferometric
phenomena [1–8]. One outgrowth of these studies is an
application that allows the difference in propagation
times between two polarization modes (otherwise
known as polarization mode dispersion or PMD) to be
determined with sub-femtosecond resolution. It is the
extreme constraint on the simultaneity of the creation of
the two photons of a pair that allows for the high resolu-
tion of the method. We explore the operating parameters
of the method and their effect on the ultimate resolu-
tions achievable.

1 Current address: Universite´ de Neuchaˆtel, Institut de Physique,
1 rue A. L. Breguet, CH-2000, Neuchaˆtel, Switzerland.
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the constraints of energy and momentum conservation,
or phase matching, and because photons of a pair must
be created virtually simultaneously, they are highly
correlated. Our application uses a type-II phase match-
ing arrangement, where a pump photon with extraordi-
nary polarization is converted into a photon pair consist-
ing of one extraordinary (e) polarization and one
ordinary (o) polarization photon. Specifically, in the
application here the down-conversion process is
arranged so that the pair of output photons are emitted
collinearly. This collinear pair of correlated photons
enters a simple interferometer yielding an interference

feature whose position is sensitive to the delay of one
photon of a pair relative to the other.2 The PMD of a
sample is directly determined from the shift of the inter-
ference feature produced by the insertion of a sample
into the interferometer.

The interferometer consists of a single beamsplitter,
a pair of polarizers, and a pair of detectors (see Fig. 1).
The collinear photon pairs encounter a polarization-
insensitive 50-50 beamsplitter followed by one detector
to catch the transmitted photons and one detector to
catch the reflected photons. Down-converted pairs are
registered as coincidences between the two detectors.

Fig. 1. PMD measurement scheme.

2
It is important to note that while much of the descriptive language

here discusses the down-converted light as if it consists of pairs of two
individual photons, the entanglement of the wavefunction is such that
ultimately the down-converted light must be considered to inherently
consist of single two-photons rather than pairs of ordinary single
photons [9]. While this simplification is useful for an intuitive expla-
nation of the measurement, it should be remembered that it cannot be
carried too far without running into inconsistencies.
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This optical arrangement allows for two ways of produc-
ing a coincidence. The e-photon could be detected at
detector 1 and the o-photon detected by detector 2,
or vice versa. When these two ways of producing a
coincidence event are arranged so that they cannot be
distinguished (even in principle), quantum interference
may be seen.

It is useful to describe here how coincidences are
actually observed. Coincidence measurement systems
typically use one detector to start a clock and a second
detector to stop it. A fixed delay is added to the second
detection channel to ensure that the stop pulse occurs
after the start. A histogram of these start-stop time inter-
vals is recorded. Correlated photon pairs are seen as a
peak in pair detections at some specific delay between
start and stop (see Fig. 1 inset). This is seen on top of
a flat background due to uncorrelated single-detection
firings of the two detectors.

There are two requirements for achieving indistin-
guishability and observing the quantum interference.
First, polarizers must be placed before each of the
detectors and oriented at 458 to the polarization of the e
and o down-converted photons. These polarizers
destroy the information as to whether each individual
detected photon was an e-ray or o-ray, a requirement for
indistinguishability. The second constraint arises
because the e-ray and o-ray photons travel at different
speeds through the optical system components (specifi-
cally, the down-conversion crystal and the sample
under test). This results in an arrival time difference that
also could, in principle, be used to determine which
polarization photon was registered at each detector, thus
destroying the indistinguishability of the two types of
coincidence events. This time difference would be seen
in the coincidence system as two separate coincidence
peaks (at different time delays between start and stop
detections), one due to each coincidence type which we
refer to as 1e2o and 1o2e. (Note that the width of these
correlated peaks is ultimately limited by the correlation
time of the down-converted photons, assuming no elec-
tronic limit to the timing circuits.) Indistinguishability
can be restored by adjusting the delay of the two pho-
tons in the common optical path so that the peaks due
to both types of coincidence overlap. In this way, one
can no longer tell (even in principle) whether a particu-
lar coincidence is an 1e2o or 1o2e type, allowing the
two to interfere. In the present configuration, this indis-
tinguishability condition is met when the two photons
reach the beamsplitter simultaneously to within their
coherence times. (This should not be interpreted to
suggest that any interaction occurs between the photons
on the beamsplitter, as it is possible to use other
arrangements to achieve indistinguishability without

having the two photons at the beamsplitter at the
same time; see Ref. 9).

A differential delay line is used to delay one polariza-
tion relative to the other. The coincidence rate is
recorded as this delay line is varied. When the two
photons are separated at the beamsplitter by more than
their coherence time, the two coincidence events can be
distinguished, so no interference is possible and the
total coincidence rate is just the sum of the two individ-
ual rates. When the two photons reach the beamsplitter
to within their coherence time, then destructive or
constructive interference can occur, depending on
whether the detector polarizers are oriented at 458–458
or 458–1358. The inset of Fig. 1 shows the destructive
interference signature in the coincidence signal as the
delay between the two photons is varied.

The following is an intuitive explanation of the inter-
ference profile (for a more rigorous derivation, see the
appendices). The width of this interference dip is
mainly due to birefringence of the down-conversion
crystal itself and any bandwidth limiting elements. The
dip has a finite width because, although the two photons
of a pair are created simultaneously (or nearly so), the
relative delays encountered after creation are not neces-
sarily identical for all pairs. First, photon pairs created
at different points within the crystal traverse different
lengths of the crystal before exiting, which, because the
crystal is birefringent, leads to a range of relative delays
for the emitted photon pairs. From this it is easy to see
that shorter crystals yield a narrower interference fea-
ture, the width being on the order of (ne–no)L /c, where
L is the crystal length,ne andno are the e and o indices
of refraction, andc is the speed of light. A spectrum
limiting element can add to the spread of relative delays
by adding random delays to individual photons. (This
occurs in an interference filter because it operates as a
resonant cavity where photons “rattle back and forth”
with some probability for exiting on each bounce.)
Thus, reducing the spectral bandpass of the system be-
yond a certain point broadens the observed dip.

The shape of the interference dip is a convolution of
the temporal correlation or coherence functions of the
down-converted light. When temporal correlations are
limited by the length of the down-conversion crystal, a
triangular shaped interference feature is seen. This oc-
curs because the two wavefunctions convolved are
rectangular in shape. At the other extreme, when the
coherence time of a spectral filter dominates the system,
the shape approaches a Gaussian because the temporal
coherence of a spectral filter is typically Gaussian [8].
In general, the final shape will be intermediate between
a triangular shape and a Gaussian shape. A derivation of
these shapes is given in the appendices.
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The PMD of a sample is found by scanning the differ-
ential delay to find the center of the interference dip,
both with the sample inserted into and removed from the
optical path. The shift of the center of the interference
feature is the PMD of the sample. The uncertainty limit
of the method is determined by how well the center of
that feature can be found. The main thrust of this paper
is to explore how crystal length and spectral passband
affect the measurement uncertainty.

3. Experiment

As shown in Fig. 1, a 351 nm, 0.5 W laser was used
to pump ab -BaB2O4 (BBO) crystal oriented to produce
orthogonally polarized, but collinearly propagating,
down-conversion photons at a center frequency of
702 nm. A polarization insensitive 50-50 beam splitter
directed the down-converted photons to two polarizers
oriented at 458 to the e- and o-ray photons and at 08 to
each other. A prism before the BBO crystal was used to
reject laser light other than the 351 nm beam. A high
efficiency 351 nm mirror after the BBO blocked the
pump light from the system, while passing the longer
wavelength down-converted light. The polarization
delay line, essentially a continuously variable thickness
birefringent plate, was made from a pair of identical
15 mm by 15 mm by 30 mm quartz wedges (with their
optic axes oriented out of the page in the perspective of
Fig. 1). One wedge was fixed while the other could be
translated along its hypotenuse. The differential delay
produced by this variable thickness quartz plate of
30 fs/mm was determined from published index of
refraction data [10]. Bandpass filters of various widths
centered at 702 nm were placed in the common path just
before the beamsplitter. (The wavelengths, 351 nm and
702 nm, used in this experiment were chosen simply for
ease of laser light generation and optical detection. It is
certainly of interest to move these measurements to the
communication wavelengths, as photon counting detec-
tors become more readily available.) For a PMD
measurement, a sample would be placed after the
wedges, although the tests described here only deter-
mine how well the center of the interference feature can
be determined, which is crucial to find the ultimate limit
of PMD measurements that could be made using this
arrangement.

4. Results

Several data series were taken. The interference dip
was mapped as a function of both spectral band limiting

and BBO crystal length. In addition, a time series of
repeated scans over a dip was taken for each crystal
length to determine the resolution and stability of the
measurement system. This last set of data gives a feel for
the ultimate PMD measurement capability of this
technique.

Figure 2a shows how the interference profile made
using a 0.5 mm BBO varies as different spectral filters
are installed. The dip width is seen to narrow as the
spectral passband is increased. As the dip
width decreases, its shape changes from Gaussian to
triangular, indicating that the coherence time of the
two-photons changes from being limited by the spectral
filter to being limited by the crystal length. Figure 2b
shows the full width half at maximum (FWHM) of the
dip approaching a constant as the bandpass is increased.
The points were fit to a function of the form

FHWM = Îa2 + S b
DlD2

, which assumes that the total

width is the quadrature sum of two components, one a
constant (a) due to the crystal length and the other
inversely proportional to the spectral filter. The fitted
value for a was 63.3 fs. The parameterb, giving the
proportionality between the inverse bandpass and the
coherence time, can be calculated for various passband
shapes. Typically the value can be expected to fall
between 1 and 0.32, the calculated values for rectangu-
lar and Lorentzian passbands respectively (a Gaussian
shape yields 0.66 [11]). In this case (Fig. 2b), the fitted
value ofb was 0.62, which is within the expected range,
especially considering that only three data points were
taken. For this data set, it is clear that we are able to
reach the regime where the dip profile is limited by the
crystal length.

Figure 2c shows the dip profile made using a 0.1 mm
BBO crystal, again with a range of spectral filters. As
before, the profile width narrows as the spectral band is
increased, although even at the largest bandpass of
174 nm we cannot say that we have definitively made the
transition to the triangular profile shape indicative of a
crystal length limited coherence time. While Fig. 2c is
not as definitive as the 0.5 mm BBO measurements,
Fig. 2d is, showing that further increase of the bandpass
will not significantly reduce the dip width. (The fitted
value for b here is 0.76, again within the expected
range.) The fact that a triangular shape was not reached
here is likely due in part to the subtle transition between
the two shapes (see the 80 nm and 40 nm shapes in
Fig. 2a). In fact, the 174 nm scan can be fit about as well
with a Gaussian shape or triangular shape.
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Fig. 2. a) Interference profile of 0.5 mm long BBO crystal for three spectral filters. b) Full width at half maximum (FWHM) of the interference
dip versus spectral filter bandpass. c) Interference profile of 0.1 mm long BBO crystal for four spectral filters. d) FWHM of the interference dip
versus spectral filter bandpass.

Interference dips were measured for four different
thickness BBO crystals with broad spectral filters so as
not to limit the width of the interference dip (see
Fig. 3a). Table 1 lists, for each of these measurements,
the spectral bandwidths of the filters used and their
associated coherence times, as well as the correlation
time of the down-converted light due solely to crystal
length. As shown in the table, the crystal correlation
time exceeds the filter coherence time for all the mea-
surements except the one made with the 0.05 mm BBO.
In that instance there may have been some broadening
of the dip due to a too-narrow spectral filter, although as
mentioned in the table caption the actual filter coher-
ence time is somewhat smaller than the 9.4 fs value in
the table calculated for a rectangular shape. (A wider
filter was not used here because of excessive detector
count rates. Also, the fact that the longest crystals did
not provide sharp triangular interference dips may be
due to optical misalignments and will be investigated
further, although this deviation from the ideal situation
did not significantly affect the final results here.) The
linearity of the FWHM data shown in Fig. 3b provides

further support that each of these measurements is
mainly limited by the crystal length rather than the
spectral filter width.

Measurements of temporal variations of the interfer-
ence dip centers were used as an indicator of the
ultimate stability and resolution of the PMD method.
Figure 4a shows the variation over successive scans of
the center of the interference dip. The error bars are the
uncertainty of the fit parameter determination. The se-
ries for each of the four BBO crystal lengths exhibits a
linear drift that decreases as the length decreases, which
seems to indicate that the drift is associated with the
crystal rather than any other component of the system.
This may be due to temperature drift of the crystal,
which was not thermally stabilized for these measure-
ments. Figure 4b shows the residual scattersr, of the
data after removing the linear drift. This is an indication
of the resolution and noise of the PMD measurement
technique. This level of scatter is consistent with the
uncertainty of the individual points. The resulting un-
certainty limit of this method appears to be about
0.15 fs.
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Fig. 3. a) Interference profile for four BBO crystal lengths. b) Dip FWHm versus BBO length.

Table 1. Correlation times for system components

BBO length (mm) 1.5 0.5 0.1 0.05

Filter bandpass (nm) 40 80 174 174
Filter coherence timea (fs) (Dt~1/Dv) 41 20 9.4 9.4
BBO correlation time (fs) (L (ne–no)/2c) 185 62 12 6.2
Observed FWHM (fs) 193.8 66.0 14.7 8.0

a The relation between bandpass and coherence time assumes a rectangular spectral bandpass shape. For the actual shape the correlation
time would likely be reduced by about 10 % to 25 % [11].

Fig. 4. a) Drift of the interference dip center with successive scans for four BBO crystal lengths. An arbitrary shift was introduced between the
data sets for clarity of the figure. The data were fit to a line for each crystal and a residual scatter about that line determined (sr is the rms of the
residuals, that iss = Ï(xi – fi)

2/N, wherexi is the center of an individual scan i,fi is the fit value of that scan, andN is the number of scans).
b) The residual scatter versus crystal length.
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Exceeding this limit using the current measurement
system may be difficult for several reasons. First, it is
impractical to use a crystal much thinner than 0.05 mm,
because the two-photon signal decreases linearly with
crystal length, while ordinary one-photon surface scat-
ter remains constant. In addition, it is difficult to fabri-
cate crystals much smaller that this. The use of thinner
crystals also requires wider spectral passbands. Because
the 0.05 mm BBO crystal measurement already required
a passband of 174 nm, it is hard to imagine that more
than a factor of two improvement could be gained here.
Wider spectral passbands introduce an additional practi-
cal problem: they allow more stray light to be seen by
the detectors, increasing the background of accidental
coincidences. Finally, Fig. 4b shows an intercept of
about 0.15 fs, indicating no improvement even at zero
crystal length. The origin of this nonzero intercept is not
understood at this point and warrants further investiga-
tion.

An additional analysis of measurement uncertainty
was made using the data series of Fig. 2c, where the
effect of bandwidth on the uncertainty of the dip center
was explored. For a range of spectral widths (from
(Dl = 10 toDl = 174 nm), it was observed that restrict-
ing the spectral range also increased the uncertainty of
optical delay determination (see Fig. 5). This agrees
with the intuitive expectation that a dip broadened for
whatever reason increases the uncertainty of its center
location.

5. Conclusions

In conclusion, we have demonstrated a technique for
measuring PMD with uncertainties as low as 0.15 fs.
These results show that a simple two-photon interferom-
eter with a common path geometry can be extremely
stable, even without the usual engineering required for
interferometric stability. It will be interesting to see
what uncertainties can be achieved with proper attention
to mechanical and thermal stability. We have shown that
the best uncertainty is achieved with short crystal length
and wide spectral bandpass and that practical systems
can be made using crystals as thin as 0.05 mm.

Finally, new entirely solid state systems to produce
entangled pairs of photons have already been con-
structed [12]. These convenient compact sources greatly
advance the potential to turn this demonstration into a
practical system for PMD measurement.

6. Appendix A. Two-Photon Wavefunc-
tion (Without Spectral Limiting)

In our experiment, a laser-pumped optically nonlin-
ear crystal produces, through phase-matched type-II
spontaneous parametric down-conversion, collinear
frequency-degenerate photon pairs of orthogonal polar-
ization. All pairs have a photon in each of the two
polarization basis states, |ol and |el, corresponding to
the ordinary and extraordinary rays of the (birefringent)

Fig. 5. Uncertainty in locating the interference dip center for 0.1 mm long BBO as the spectral
width was varied.
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down-converting crystal, respectively. These pairs are
produced in a superposition of two polarization anti-
correlated states, |ol|el and |el|ol.

The state vector of the collinear pair of photons as
they leave the nonlinear crystal is

|C l = E dv1 dv2 d(v1 – v2 – vp)

3 C (k1 + k2 – kp) ao
†(v1(k1)) ae

†(v2(k2))|0l , (A1)

wherevi andki (i = 1,2,p) represent the frequency and
wave number (for the signal, idler and pump photons),
respectively, and theai

† are photon creation operators
[8]. In Eq. (A1), the delta function enforces the
frequency phase-matching condition of parametric
down-convers ion and the funct ionC (Dk ) =
[1 – exp(– iDkL)]/(iDkL) is the natural spectral distri-
bution of the two-photon, whereL is the crystal length
and Dk = k1 + k2 – kp. The wave-number phase-match-
ing condition is k1 + k2 = kp (or Dk = 0). State (1)
describes the doubly entangled two-photons of type-II
down-conversion: for each pairv1, v2 of possible
frequencies there is a two-photon superposition of the
form

[ao
†(v1) ae

†(v2) + ae
†(v1) ao

†(v2)]|0l . (A2)

The down-converting crystal introduces a discrete opti-
cal delay (=DL /2) between e-polarized and o-polarized
photons, and the beamsplitter is carefully aligned to
match the polarization planes of the down-converting

crystal, whereD =
1

Vo(BBO)
–

1
Ve(BBO)

with Vo(BBO)

and Ve(BBO) being the ordinary and extraordinary
group velocities. A birefringent sample (of lengthl ) to
be measured is positioned after the down-converting
crystal. This introduces another discrete contribution to
the opt ical delayd , where d = [no(sample)–
ne(sample)]l /c, with ne(sample) andno(sample) refer-
ring to the extraordinary and ordinary indices of refrac-
tion of the sample.

For positive uniaxial crystals like quartz,d is oppo-
site in sign to the delay (DL /2) within a negative uniax-
ial crystal like BBO; the two discrete contributions
work against one another when similarly oriented, i.e.,
there is optical delay compensation. Without the sample
placed in the apparatus the profiles of the initial wave-
function and count rate are as shown in Fig. A1 (see
Appendix B).

Fig. A1. Two-photon wavefunction and coincidence profiles.

After the sample is in place, instead of the initial
wavefunction [cf. Eq. (B4)], one has

C (t1, t2) = atarv(t1 + t2 + f ) [u(t1 – t2 + d )

– u(– t1 + t2 + d )] , (A3)

wheref is a phase constant related to the sum of the
two path lengths. The two terms in Eq. (A3) (each
including a rectangular factor shown in Fig. A1a) can
overlap and will cancel each other whenud u = uDL /2u.
The counting rateRc [see Eq. (B3) and Fig. A1b]
becomes

Rc = R0[1 – r (d )] , (A4)

wherer (d ) is a L-shaped function with a half-base of
DL /2. Rc is thus a constant with a V-shaped dip:

r =

0 –` < d < 0
kd 0 < d < DL/2

1 – k (d–DL /2) DL /2 # d < DL
0 D L < d < ` , (A5)

where in turnk ≡ 2/DL . It is the shift in the interference
dip that is used to measure the optical delay of the
sample.

7. Appendix B. Coincidence Rate

The electric fields after the polarizers,E1
(+) andE2

(+),
are given by

E1
(+) (t ) = atEdv g(v )[exp(– ivt1

o)ê1 ? êo ao(v )

+ exp(–vt1
e) ê1 ? êe ae(v )] (B1)

5
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E2
(+) (t ) = arE dv g(v )[exp(– ivt2

o) ê2 ? êo ao(v )

+ exp(– ivt2
e) ê2 ? êe ae(v )], (B2)

where êi is in the direction of thei th linear polarizer
axis (i = 1, 2) or photon polarization direction (i = o, e),
ao(v ) andae(v ) are annihilation operators for the o- and
e-polarization photons,at andar are the complex trans-
mission and reflection coefficients of the beamsplitter
and g(v ) is the spectral transmission function of the
bandpass filter. For large bandpasses,g(v ) is effec-
tively one; for restricted bandpasses it is Gaussian. The
times associated with the quantum amplitudes are given
by ti

j ≡ t – si
j/c (i = 1, 2; j = o, e), wheresi

j is the total
optical path for the photons.

A coincidence anticorrelation arises from destructive
quantum interference between two of the resulting
quantum states: one state with an o-polarization photon
going to detector 1 and an e-polarization photon going
to detector 2, and another state with a e-polarization
photon going to detector 1 and a o-polarization photon
going to detector 2. Coincidences of two photons at a
single detector also occur but are not monitored. The
coincidence counting rate between the two detectors is
given by

Rc = (1/T)ET

0
ET

0

dT1 dT2 kC uE1
(–) E2

(–) E2
(+) E1

(+)uC l

= (1/T)ET

0
ET

0

dT1 dT2uC (t1, t2)u2 B3)

whereTi (i = 1, 2) is the detection time of thei th detec-
tor, T is the time window of the coincidence circuit and

C (t1, t2) = k0uE1
(+)E2

(+)uC l =

at arv(t1 + t2) [u(t1 – t2) – u(–t1 + t2)] , (B4)

where
v(t ) = vo exp(– ivpt /2) ,

u(t ) = uoexp(– ivdt /2) 3

HE`

–`

dv[1–exp(–vDL)]/(ivDL)J exp(–ivt)

= exp(–ivdt /2)P(t ) , (B5)

with

P(t ) =
uo DL > t > 0
0 otherwise,

where u0 and v0 are normalization constants and
vd ≡ Vo – Ve, with Vo, Ve being the frequencies of the
ordinary and extraordinary rays for perfect phase
matching. The first term of Eq. (B4) describes the case
of the o-polarization photon going to detector 1 and the
e-polarization photon going to detector 2; the second
term describes the opposite. The sign difference be-
tween terms occurs due to reflection at the beamsplitter.

8. Appendix C. Two-Photon Wave-
function (With Spectral Limiting)

The form of the two-photon wavefunction incorpo-
rating a limited spectral bandwidth is determined by the
factor

Pf(t ) = f0{erf(s0t /2) –erf[(s0t – DL )/2]}/2DL . (C1)

This function peaks att = DL /2 and has a width on the
order ofDL + 8/s0, wheres0 is the bandwidth in angu-
lar frequency [8]. Profiles for this function were calcu-
lated numerically for different crystal lengths and pass-
bands (see Fig. C1).

The profile ofpf (t ) varies from the rectangular shape
of p(t ) for large bandpass ranges to a nearly Gaussian
shape for small bandpass ranges. Accordingly,
Rc[cf. Eq. (B3)] has a V-shaped dip in the former range
and a Gaussian dip in the latter.

H
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Fig. C1. Two-photon wavefunction factorspf(t ) for L = 0.5 mm (a) and 0.1 mm (b) BBO crystals restricted by filter passbands of 10 nm,
40 nm, 80 nm, and 174 nm.
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