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We present a method for calibrating a polarization state analyzer that uses a set of well-characterized
reference polarization states and makes no assumptions about the optics contained in the polarimeter
other than their linearity. The method requires that a matrix be constructed that contains the data
acquired for each of the reference polarization states and that this matrix be pseudoinverted. Since this
matrix is usually singular, we improve the method by performing the pseudoinversion by singular value
decomposition, keeping only the four largest singular values. We demonstrate the calibration technique
using an imaging polarimeter based upon liquid crystal variable retarders and with light emitting diode
(LED) illumination centered at 472 nm, 525 nm, and 630 nm. We generate the reference polarization
states by using an unpolarized source, a single polarizer, and a Fresnel rhomb. This method is particu-
larly useful when calibrations are performed on field-grade instruments at a centrally maintained facility
and when a traceability chain needs to be maintained. © 2007 Optical Society of America

OCIS codes: 120.2130, 120.5410, 260.5430.

1. Introduction

Mueller-matrix polarimeters (sample-measuring
polarimeters) or Stokes-vector polarimeters (light-
measuring polarimeters) have been widely used to
measure different polarization properties in optical
systems and samples [1,2]. Recently, there have been
numerous applications of polarized light including
the analysis of polarized light for determining the
thickness and refractive index of thin surface films
[3], solar astronomy [4], remote sensing (underwater
surveying, for example [5,6]), telecommunication sys-
tems [7,8], and biology and medicine [9,10]. Imaging
polarimetry has also emerged in the last few years to
enhance conventional imagery, by providing insight-
ful understanding of the elements that constitute the
object based on its polarimetric properties such as
birefringence, dichroism, and depolarizing properties
[11,12]. Imaging polarimetry is particularly useful to
probe the constituent element organization in biolog-
ical tissues [13]. Spectroscopic polarimeters com-
bine the information available to spectral sensing
techniques with polarization [14]. While the spectral

information distinguishes materials, polarization in-
formation tells us about surface or subsurface fea-
tures, shape, and roughness [15].

An issue that arises with polarimeters is their
proper calibration. Building a Stokes polarimeter
with optimal components is often costly, and that cost
can often be alleviated by reducing the performance
specifications on the components and improving the
method by which the polarimeter is calibrated. In
this paper, we describe a calibration procedure that
makes no assumptions about the components making
up the polarimeter other than that there is a linear
transformation between a set of measurements and
the Stokes vector. The procedure requires a set of
reference polarization states that can be traceable to
a centrally maintained reference. The method also
yields improved resistance to statistical sources of
noise during both the calibration procedure and the
subsequent measurement.

This paper is organized as follows. First, in Section
2, we review the principles of polarimetry using a
data reduction matrix. Next, in Sections 3 and 4, we
describe two methods for calibrating polarimeters,
the second one being more general. In Section 5, we
describe the polarimeter that we use to demonstrate
the calibration methods. We then describe a reference
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polarization state generator in Section 6. We present
the results for the calibration in Section 7. In Section 8,
we give a brief description of the main uncertainties
that arise during the improved calibration procedure.
Finally, we summarize our results in Section 9.

2. Principles of Measurements

A Stokes vector polarimeter completely or partially
measures the Stokes vector of light. The Stokes vec-
tor describes the time-averaged polarization proper-
ties of an electromagnetic field and is defined as

S ��
S0

S1

S2

S3

���
Ix � Iy

Ix � Iy

I45° � I�45°

Ircp � Ilcp

�, (1)

where Ij represents the intensity in polarization state
j. The subscript j indicates that only that part which
is polarized in a particular direction is considered,
with lcp and rcp standing for left- and right-circular
polarization, respectively. Because of the nature of S,
the Stokes parameters cannot be measured directly;
they must be computed from a set of measurements
through polarization analyzers. A straightforward
method is to measure four linearly polarized intensi-
ties through a linear analyzer at 0°, 45°, 90°, and 135°
and through a left- and a right-circular analyzer [15].
The Stokes elements could then be evaluated follow-
ing the definition of the Stokes vector in Eq. (1). In
matrix form, Eq. (1) may be written as

S � W · I, (2)

where

I � �Ix Iy I45° I�45° Ircp Ilcp�T (3)

is a vector containing the six measured intensi-
ties, and

W ��
1 1 0 0 0 0
1 �1 0 0 0 0
0 0 1 �1 0 0
0 0 0 0 1 �1

� (4)

is referred to as the data reduction matrix. Since

Ix � Iy � I45° � I�45° � Ircp � Ilcp, (5)

the matrix W is not unique. That is, specific combi-
nations of the measured intensities should be zero.
Consequently, by adding such a quantity, e.g., �

2
3 Ix

�
2
3 Iy �

1
3 I45° �

1
3 I�45° �

1
3 Ircp �

1
3 Ilcp � 0, to each

row of Eq. (1), we can generate another matrix

W ��
1�3 1�3 1�3 1�3 1�3 1�3
1�3 �5�3 1�3 1�3 1�3 1�3

�2�3 �2�3 4�3 �2�3 1�3 1�3
�2�3 �2�3 1�3 1�3 4�3 �2�3

� (6)

that will also yield the same result for intensity mea-
surements that satisfy Eq. (5). The difference be-
tween the matrices in Eqs. (4) and (6) is how they
weigh the different intensity measurements and thus
how uncertainties will propagate. If the uncertainty
in each of the measurements of intensity is s, then
propagation of uncertainties, which is achieved by
taking the square root of the sum of squares of each
row of each matrix, will yield an uncertainty in the
measured Stokes vector of

us � �1.414s, 1.414s, 1.414s, 1.414s�T (7)

for the first matrix and

us � �0.816s, 1.826s, 1.826s, 1.826s�T (8)

for the second matrix. Thus, the choice of using the
first row of the matrix in Eq. (6) and the second three
rows of the matrix in Eq. (4) provides a lower uncer-
tainty for all Stokes vector elements, yielding

W ��
1�3 1�3 1�3 1�3 1�3 1�3
1 �1 0 0 0 0
0 0 1 �1 0 0
0 0 0 0 1 �1

�. (9)

The matrix in Eq. (9) can be shown to be the opti-
mum matrix by evaluating its condition number [16].
The higher the condition number, the less linearly
independent are the columns or rows of W. Minimiz-
ing the condition number maximizes the relative im-
portance of each of the measurements, increasing
system stability and decreasing noise propagation.
Tyo demonstrated that the minimum condition num-
ber for W is �3 [17], which is that of the matrix in
Eq. (9).

3. Old Calibration Method

A Stokes vector polarimeter is typically composed of
a collection of retarders and polarizers that are cas-
caded to form a polarization state analyzer. The com-
ponents are modulated, either by rotating one or
more of them or by varying their retardance, and
signals are acquired for N configurations. The Stokes
vector Si of the light reaching the detector when the
analyzer is in configuration i is

Si � Mi · S, (10)

where Mi is the Mueller matrix of the respective an-
alyzer. The measured intensity Ii is the first term of
Si and can be expressed as a function of the four
unknown components,
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Ii � Ssense,i · S, (11)

where we define a Stokes sensitivity vector, consist-
ing of the first row of Mi,

Ssense,i � �Mi,00 Mi,01 Mi,02 Mi,03�. (12)

If we define a matrix A to contain the Stokes sensi-
tivities for each of the configurations of the polarim-
eter, then the intensity vector for an unknown Stokes
vector is

I � A · S, (13)

where

A ��M1,00 M1,01 M1,02 M1,03

É É É É

MN,00 MN,01 MN,02 MN,03
�. (14)

Finally, we can then find W by solving for S in Eq.
(13). That is, W is given by the left pseudoinverse
of A:

W � �AT · A��1 · AT. (15)

Unfortunately, this method requires each of the
Stokes sensitivities [Eq. (11)] to be known. A conven-
tional method to calibrate such a system is to assume
a parameterization for each optical element. For ex-
ample, for a retarder, one will assume it is fully char-
acterized by a retardance and an orientation. A
regression analysis is then performed on a set of cal-
ibration data. Optical devices and their physical ori-
entation, however, are never perfect. Some physical
effects, such as multiple reflections between or within
optical devices, incorrectly oriented crystals in re-
tarders, imperfect polarizers, and residual birefrin-
gence, will often cause the Mueller matrices of the
analyzer components to deviate from the ideal, and
moreover, will cause them to deviate from what has
been parameterized [18,19]. For field instruments,
obtaining high quality components to alleviate these
concerns adds to their price, substantially.

4. New Calibration Method

In this section we describe a procedure that can be
used to calibrate any Stokes polarimeter, without
requiring knowledge of the details of the compo-
nents making up that polarimeter. We assume that
the polarimeter measures N intensities correspond-
ing to the N different configurations of the analyz-
ing elements. The matrix W is thus of dimension
4 � N. To calibrate the polarimeter, let us assume
we can generate M different reference polariza-
tion states, for which we know the Stokes vectors
Si�i � 1, . . . , M�. We thus know that

	S1 S1 · · · SM
 � W · 	I1 I2 · · · IM
 (16)

should hold, where Ii is the vector containing the N
measurements for the ith Stokes vector. We can re-
write Eq. (16) as

S � W · I, (17)

where S � 	S1 S2 . . . SM
 is a 4 � M matrix, and
I � 	I1 I2 . . . IM
 is a N � M matrix. The data
reduction matrix W can then be determined by the
right pseudoinverse of I:

W � S · I�1. (18)

The right pseudoinverse of I can be determined from

I� � IT · �I · IT��1. (19)

However, one must be careful when using Eq. (19)
because the matrix I · IT is not well conditioned, and
pseudoinversion can lead to large variations in the
resulting matrix W. That is, while I is an N � M
matrix, we will show below that theoretically (in the
limit of no measurement errors) it has only four non-
zero singular values. The variations that occur are a
manifestation of the nonuniqueness of W, seen above
in Eqs. (4) and (6). While the resulting matrix may
function as expected, it cannot be easily compared to
the ideal matrix, and the uncertainties in subsequent
measurements may not be optimized.

A solution to this problem consists of using the
singular value decomposition (SVD) to calculate the
pseudoinverse of I [20]. The SVD decomposes any
matrix I into the product of two real orthonormal
matrices, U (of dimension N � N) and V (of dimen-
sion M � M), and a diagonal real matrix D (of dimen-
sion N � M), such that

I � U · D · VT. (20)

By convention, the diagonal elements �i of D,
which are referred to as the singular values of I, are
nonnegative and sorted in decreasing order, i.e.,
�1 � �2 � . . . � �p � 0; this convention makes the
SVD unique except when one or more singular values
occur with multiplicity greater than one (in which
case the corresponding columns of U and V can be
replaced by linear combinations of themselves). An
important property of the SVD is that it explicitly
constructs orthonormal bases for the range and the
nullspace of I. Specifically, the columns of U whose
same-numbered elements �i are nonzero are an or-
thonormal set of basis vectors that span the range;
the columns of V whose same-numbered elements
are zero are an orthonormal basis for the nullspace
[21].

To determine the number of nonzero singular val-
ues of I, consider that it contains columns consisting
of the measured intensities for a set of Stokes vectors
having four degrees of freedom. It is thus obvious that
if the input Stokes vectors span all four dimensions,
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then the range of I should have four dimensions.
Thus, I should only have four nonzero singular val-
ues.

One advantage of the SVD is that the pseudoin-
verse of the matrix can be determined from

I� � V · diag�1��1, . . . , 1��N� · UT. (21)

If the matrix is singular, then the inverse of any zero
singular value is set to zero. In practice, with random
errors introduced into the measurement, the matrix I
has N nonzero singular values, yet all but four of
them are very small. We argue that these small sin-
gular values should be treated as zero, since other-
wise their effect on the pseudoinverse is very large,
yet their significance is negligible. They exist to re-
produce the noise in the calibration measurement
and to span the space of nonoptimal matrices. Thus,
we use the truncated pseudoinverse

Î� � V · diag�1��1, . . . , 1��4, 0, . . . , 0� · UT (22)

and let

W � S · Î�. (23)

As we will demonstrate later, the effect of using the
truncated pseudoinverse is that the data reduction
matrix is stable, optimized, and less susceptible to
measurement uncertainties.

5. Polarimeter

We have constructed and operated a spectroscopic
Stokes polarimeter using a pair of liquid-crystal (LC)
devices in combination with a polarizer [22], shown
schematically in the bottom frame of Fig. 1. The LC
devices act as uniaxial variable retarders, with their
retardance being controlled by an external applied

voltage. One of the main interests of using these de-
vices is that they can be switched at near-video frame
rates for imaging applications [23]. In addition, they
do not require any moving parts, have large accep-
tance angles, and have large clear apertures.

In our measurements the fast axes of the LC re-
tarders were nominally oriented at the fixed angles
�1 � 0° and �2 � �45° with respect to the polarizer,
and the nominal retardance combinations were var-
ied according to ��1, �2� � ��1

a, �2
a�, ��1

a, �2
c�, ��1

b, �2
d�,

��1
b, �2

b�, ��1
a, �2

b�, and ��1
a, �2

d�, where �1
a � 0, �1

b �
�90°, �2

a � 0, �2
b � �90°, �2

c � �180°, and �2
d �

�270°. The voltages applied to the LC retarders to
get the desired retardance were calculated using cal-
ibration data provided by the manufacturer. Since
the manufacturer only provided data for a single
wavelength �	 � 633 nm�, data for other wavelengths
were determined by assuming that the devices had no
dispersion.

Ideally, the Mueller matrix for the analyzer is

M � Mpol��3� · Mret��2, �2� · Mret��1, �1�, (24)

where Mpol��� is the Mueller matrix for a linear po-
larizer at angle �, and Mret��, �� is the Mueller matrix
for a linear retarder with retardance � oriented with
its fast axis at angle �. Using the nominal values of
the retardances and their orientations, the nominal
analysis matrix is

A �





 1 1 0 0
1 �1 0 0
1 0 1 0
1 0 �1 0
1 0 0 1
1 0 0 �1






. (25)

The detector consisted of a 12-bit digital charge-
coupled device (CCD) camera with a zoom lens. For
the calibration of this instrument, a diffuser was
placed between the polarizer and the front of the
zoom lens, so that the camera was effectively being
used as an integrating, nonimaging detector. The sig-
nals that were obtained from the camera were aver-
aged over the active area of the detector array. The
use of the diffuser did not appreciably change the
conclusions, but improved the results, presumably by
averaging out the polarization inhomogeneities in the
source and optical elements. Since the LC retarders
do not alter the beam path as their retardance is
varied, the use of the diffuser should not introduce
any artifacts for this type of polarimeter.

6. Calibration Procedure

The procedures described in Sections 3 and 4 require
that a set of well-defined polarization states be gen-
erated to calibrate the polarimeter. These states
should span all of the dimensions of the Poincaré
sphere. Furthermore, it is required that the relative
intensities for each state be known. It is advanta-

Fig. 1. Reference polarization state generator (bottom) and the
imaging polarimeter (top). The polarizer (POL) in the reference
polarization state generator is placed in positions 1 and 2 for the
two configurations.
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geous if the intensities for all of the states are the
same, or at least calculable a priori, so that a separate
measurement of intensity is not required. In the fol-
lowing we describe a configuration, shown in the top
frame of Fig. 1, that is relatively easy to configure in
a laboratory and satisfies these requirements.

We begin by generating a source of unpolarized
light. We then use a polarizer and a quarter-wave
retarder. The polarizer is placed in a rotation stage
that in turn can be placed before [(2) in Fig. 1] or after
[(1) in Fig. 1] the quarter-wave retarder. The retarder
is aligned so that its fast axis is horizontal or vertical,
and the polarizer is initially aligned to this direction.
The signals measured by the polarimeter are then
measured for a number of orientations of the polar-
izer placed both before and after the retarder. When
the polarizer is before and after the retarder, the
polarization states are given by

Sbefore��� � 	1 cos 2� 0 sin 2�
T, (26)

Safter��� � 	1 cos 2� sin 2� 0
T, (27)

respectively. Because the light incident upon the po-
larizer is unpolarized in both configurations, and the
number of interfaces is constant (so as to have an
equal amount of net reflection loss), and if the re-
tarder has no diattenuation, the intensities for all of
the reference states remain constant. These states
also span the Poincaré sphere. Of course, one needs to
obtain a sufficiently good source of unpolarized light,
a sufficiently good polarizer, and a sufficiently accu-
rate quarter-wave retarder. On the other hand, once
one calibrates a well-characterized polarimeter, the
polarimetric scale can be transferred to any other
polarimeter, using a polarization state generator that
may deviate substantially from the behavior given in
Eqs. (26) and (27).

In our implementation, we used a tricolor light
emitting diode (LED) as a source. The tricolor LED
emits in three bands: red (centered on 	 � 630 nm),
green (centered on 	 � 525 nm), or blue (centered on
	 � 472 nm). The widths of the three bands were all
about 25 nm, measured full width at half-maximum.
By noting that there was no measureable change in
the signal as the LCs were modulated, the light emit-
ted by the LEDs was found to have no residual po-
larization.

For the polarizer, a dichroic polarizer was used,
because these devices can be readily obtained, and
many have a very good extinction coefficient (around
104 in the visible spectrum [24]). They also have a
large open aperture and a large angular acceptance.
We also have used Glan-style polarizers; the results
were comparable but are not presented here. The
polarizer was mounted in a manually actuated rota-
tion stage, having a precision of about 1°.

For the retarder, we used a BK7 Fresnel rhomb.
These devices are based on the phase shift of total
internal reflection between the s- and p-polarized
waves and are used as quasi-achromatic quarter-
wave retarders [25]. The residual reflections from the

faces of the rhomb are not polarization dependent,
since the light is incident at normal incidence and the
material is not birefringent. These devices exhibit a
variation in the maximum of the relative phase of 2%
in the visible spectral band. However, this phase shift
can be easily determined using the Fresnel equations
and knowing the Fresnel rhomb’s parameters (refrac-
tive index and incident angle). Another advantage of
Fresnel rhombs is that they do not rely upon accurate
crystal orientation for their performance. A disadvan-
tage of the Fresnel rhomb is that it translates the
beam by a large amount. This problem is alleviated
by the arrangement of the polarizer and the rhomb,
whereby it is the polarizer that is rotated during the
procedure rather than the rhomb, and the beam path
is fixed.

The polarizer is initially aligned with respect to an
auxiliary polarizer by finding the angle of maximum
extinction. The retarder is then placed between the
two polarizers and aligned to reattain maximum ex-
tinction. The axis of the system is thus defined by this
auxiliary polarizer. In our measurements, we used
the polarizer in the polarimeter (with the LC retard-
ers removed) to set this axis. We measured the in-
tensity for 18 different orientations (10° apart) for
each of the two configurations (polarizer–rhomb and
rhomb–polarizer), yielding a total of M � 36 refer-
ence Stokes vectors.

7. Calibration Results

Two different methods were used to calibrate the
system. In the first method, it was assumed that Eq.
(25) was valid, and a nonlinear least squares fit of the
measured 36 � 6 intensities was performed allowing
the six retardance values (�1 � �1

a and �1
b, and �2

� �2
a, �2

b, �2
c, and �2

d), the three orientations of the
elements (�1, �2, and �3), and an overall intensity to be
free parameters. The other method used the algo-
rithm described in Section 4, making no assumptions
about the Mueller matrices of the polarimeter. These
methods were performed for data taken for each of
the three different wavelengths.

Figure 2 shows the resulting best fit to the data for
the red LED �	 � 630 nm� using the first method,
while Table 1 shows the best fit parameters for all
three wavelengths. The data show small deviations
from the theory that could not be described by the
simplified description of the polarimeter. The orien-
tation angles shown in Table 1 are all consistent with
one another (the polarization optics were not moved
between the measurements), but have a systematic
offset of a couple degrees, presumably due to the
misalignment of the polarizer and the LC modulators
with respect to the reference polarization generator.
The retardances also show systematic variation from
their optimum values. These retardances differ from
their nominal values partly due to misalignments
and nonideal behavior of the elements, but mostly
from the calibration data for the LC modulators being
given by the manufacturer at only a single wave-
length of 633 nm. Figure 3 shows the residuals of the
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calibration Stokes vectors calculated by applying the
data reduction matrix obtained for 	 � 630 nm to the
calibration data. The root mean square (rms) residu-
als between the reference values and the measured
values for all the wavelengths are given in Table 2.

A data reduction matrix was then calculated using
the second method, as described in Section 4. Figure 3
shows the calibration Stokes vectors calculated by ap-
plying the new data reduction matrix obtained for

	 � 630 nm to the calibration data. Comparing the
results shown in Fig. 3, we see that the resulting
Stokes vectors are much closer to their reference val-
ues when we use the second method. Again, the rms
residuals are given in Table 2. One can see that the
second method yields rms residuals lower by at least a
factor of 3. Furthermore, there is less systematic vari-
ation in the residual for the second calibration method.
Note that there is one datum point in Fig. 3 that ap-
pears to be in error; this point was probably due to an

Fig. 2. Calibration data (symbols) obtained for 	 � 630 nm and
the best fit (curves) to the first calibration method. The top frame
is for the rhomb–polarizer configuration, and the bottom frame is
for the polarizer–rhomb configuration. Each of the curves corre-
sponds to one of the six LC retardance combinations ��1, �2�:
(squares and solid curves) �0°, 0°�, (circles and long dashed curves)
�0°, �180°�, (up-triangles and dotted curve) ��90°, 90°�, (down-
triangles and dash-dot curves) ��90°, �90°�, (diamonds and dash-
dot-dot curves) �0°, �90°�, and (left-triangles and short-dotted
curves) �0°, 90°�.

Table 1. Best-Fit Parameters Obtained from a Nonlinear Least Squares Fit to the Calibration Data

Fitted
Parameter

Nominal
Value

Wavelength

630 nm 525 nm 472 nm

�1 0° 2.60° 2.13° �0.02°
�2 �45° �43.75° �43.42° �42.12
�3 0° �0.92° �1.39° 0.61°
�1

a 0° �0.44° �0.38° �0.26°
�1

b �90° �91.89° �96.67° �100.56°
�2

a 0° �1.50° �0.37° 0.04°
�2

b �90° �89.81° �93.82° �100.87°
�2

c �180° �177.44° �189.46° �202.62°
�2

d �270° �266.79° �282.19° �300.02°

Fig. 3. Residual normalized Stokes parameters for 	 � 630 nm as
a function of polarizer angle. The open symbols are (squares) S0,
(circles) S1, (up triangles) S2, and (down triangles) S3, for the first
calibration method, and the solid symbols are respective values for
the second calibration method. The top frame is for the rhomb–
polarizer configuration, and the bottom frame is for the polarizer–
rhomb configuration.
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incorrect orientation of the polarizer during the cali-
bration.

The calibration procedure was repeated five times
to demonstrate the consistency in the matrix W ob-
tained by the second procedure, using the nontrun-
cated SVD inversion in Eq. (20) and the truncated
SVD inversion in Eq. (21). The resulting matrices W
were compared to the average of the five matrices
computed using the truncated SVD inversion. The
rms deviation between the matrices computed by
nontruncated SVD inversion was 3.6, much larger
than the mean matrix element, while that between
the matrices computed by the truncated SVD inver-
sion was 0.06. Thus, while the matrices W appeared
unrelated to one another when the nontruncated
SVD inversion was used, those calculated using the
truncated SVD inversion were relatively stable and
closer to the nominal matrix given in Eq. (9).

Some of the improvements in the results between
the first and second methods may be a result of in-
accuracy in the reference Stokes vectors. That is, the
second method will force the calibration to match the
reference Stokes vectors, even if the reference Stokes
vectors are far from ideal. Thus, the method de-
scribed is expected to yield substantially improved
results when a good reference Stokes generator is
available, and especially when the polarimeter itself
has components that are far from ideal. Such condi-
tions are expected in field instruments that are cali-
brated at a single facility.

8. Uncertainties

There are basically three types of uncertainties asso-
ciated with this calibration procedure and the subse-
quent measurements: (a) those which are associated
with uncertainties in the reference Stokes vectors, (b)
those which are associated with errors in the polar-
imeter, and (c) those associated with the subsequent
measurements. The method described in Section 3
will yield systematic uncertainties from both the ref-
erence Stokes vectors and the polarimeter. In con-
trast, the new method, described in Section 4, places
most of the systematic uncertainties on the reference
polarizations, since it makes no assumptions, other
than linearity, about the elements making up the
polarimeter. In this section, we discuss some of the
main sources of errors and their consequences on
subsequent measurements.

Errors in the reference polarizations have the
effect of distorting the Poincaré sphere during sub-
sequent measurements. As an example, Fig. 4 illus-
trates the effect that a retarder error has on the

calibration. In the top frame, Fig. 4 shows paths in
Poincaré space taken during calibration and during a
subsequent measurement. Path 12 is the nominal
path taken when the polarizer follows the retarder
[Eq. (27)], while path 13 is that taken when the po-
larizer precedes the retarder [Eq. (26)]. When the
actual retardance differs from ��2 by �, the plane
containing the actual path (path 13�) is tilted by the
same angle �. This error will cause an apparent lin-
ear distortion of the Poincaré space. The bottom
frame of Fig. 4 shows the error in subsequent mea-
surements for polarizations along a third path, path

Table 2. Root-Mean-Square Error of the Stokes Vector Elements
based upon the Two Calibration Methods Described in the Text

Method

Wavelength

630 nm 525 nm 472 nm

First 0.020 0.024 0.044
Second 0.006 0.011 0.011

Fig. 4. Illustration of how errors in the reference polarizations
affect subsequent measurements. The Poincaré space (top) shows
nominal paths traced out by the reference polarizations (12 and
13). Due to an error in the retardance, nominal path 13 is actually
path 13�, lying along a tilted plane. Errors in subsequent measure-
ments for polarizations along path 23 are shown (bottom).
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23. Other errors, such as those caused by a nonzero
polarizer extinction coefficient or misalignment of the
polarizer or retarder, will cause respective distortions
of the Poincaré space and errors in one or more of the
Stokes parameters. It is worth noting that points on
the Poincaré sphere in the second and fourth quad-
rant, as shown in the bottom frame of Fig. 4, will have
errors that cause them to exhibit degrees of polariza-
tion greater than one.

Another source of uncertainty results from the
spectral bandwidth of the sources. Such an error oc-
curs in the subsequent measurements and is not a
result of the calibration. This uncertainty vanishes if
the spectrum of the light used for calibration is the
same as that arriving at the polarimeter during sub-
sequent measurements. However, if the same light
source is used to illuminate a sample, but the sample
has a wavelength-dependent reflectance, errors in
measured Stokes parameters will be observed. That
is, the wavelengths incident on the polarimeter dur-
ing calibration can differ from those incident on it
during subsequent measurement. As an extreme
case, we consider errors that arise when the material
being studied has a large reflectance change in the
middle of the spectrum of the light source. We assume
that the variations in the polarimeter retardance val-
ues are inversely proportional to wavelength and that
the spectrum of the source is Gaussian with a full
width at half-maximum 	FWHM � 25 nm,

I�	� � A exp	�2.773�	 � 	0�2�	FWHM
2
, (28)

where 	0 is the center wavelength, and A is a con-
stant. The reflectance is then approximated by

R�	� � �erf	�	 � 	0��
	� � 1��2, (29)

where �	 is the width of the transition. That is, R�	�
changes from 0 to 1 over a characteristic wavelength
range �	. We then simulated its effect on the calibra-
tion and subsequent measurement. First, 36 refer-
ence Stokes vectors were created. The intensities for
the calibration were simulated using the LC param-
eters given in Table 2 and integrating the response
over the source spectrum, I�	�. The data reduction
matrix was then calculated using the truncated SVD
method described in Section 4. Finally, the intensities
for a large number of test Stokes vectors equally
spaced over the surface of the Poincaré sphere were
simulated. The test Stokes vectors were obtained by
integrating over the reflected spectrum, i.e., the prod-
uct I�	�R�	�. The test Stokes vectors and those deter-
mined by applying the data reduction matrix to the
simulated intensities were then compared. Figure 5
shows the results for the 525 nm illumination. For
this specific error, the effect is largest on S3 and least
for S1. In an extreme case, the errors in the normal-
ized Stokes parameters from the wavelength distri-
bution may be as large as a few percent, but in more
reasonable conditions should be less than 1%.

The last sources of errors that we consider are
those which are random. The reference polarization

states may have errors that randomly distributed
about their nominal states, and the measurements of
the reference intensities and subsequent intensities
will be subject to electronic and detector noise. It was
found that normally distributed errors in the polar-
ization angle with a standard deviation of 1° (an up-
per bound on what we expect from our manually
positioned rotation stage) yield a standard error in
the Stokes vector elements of about 0.5%. Presum-
ably, if we were to use a motorized and encoded stage,
this error would be insignificant (Fig. 3 exhibits a
single datum, at 70° in the polarizer–rhomb configu-
ration, that probably deviated in this manner).

9. Conclusion

An imaging Stokes polarimeter using of a pair of LC
variable retarders and a dichroic polarizer has been
described. The reference polarization states for the
polarimeter calibration were generated by an unpo-
larized source, a polarizer, and a Fresnel rhomb, with
the order of the polarizer and rhomb being inter-
changed. Two calibration analysis procedures were
described. In the first case, assumptions were made
about the optical elements in the polarimeter, and a
regression analysis was used to optimize the param-
eters. In the second case, no assumptions about the
polarimeter were made, but the data reduction ma-
trix was obtained by a truncated SVD, keeping only
the four largest singular values. The second method
improved the results substantially. This method has
advantages, because it can reduce the fabrication re-
quirements of polarimeters and thus reduce their
cost.
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