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ABSTRACT 

We investigate the effects that variations in profile have on specular and diffuse reflectance from a grating 
consisting of parallel lines.  We investigate, as an example, a nominal grating consisting of photoresist or 
silicon lines on a silicon substrate, having a vertical sidewall angle, a width of 100 nm, a pitch of 200 nm, 
and a height of 200 nm. We model the effects of variations by calculating the reflectance of multiple 25-line 
superstructures, in which the positions of the line edges are randomly modulated about their nominal profile.  
We study line-edge variation, line-position variation, and random edge variation in order to test the 
hypothesis that the reflectance of a grating with variations in line profile can be approximated by the 
reflectance of a grating with uniform lines having the average line profile.  We find that the reflected field 
can be approximated by the mean field reflected by a distribution of periodic gratings and that the field does 
not represent the field from the average profile. When fitting results to more than one modeled parameter, the 
changes that are observed can be enough to shift the deduced parameter in some cases by more than the rms 
variation of that parameter. We also investigate the diffuse scattering by the grating by considering the 
diffraction orders of the 25-line period. The intensity distribution and the polarization of the diffuse 
scattering are found to be different for line-width variation and line-position variation. 
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1. INTRODUCTION 

The reflectance of a periodic array of lines on a surface can be very sensitive to the profile of that structure.  
The semiconductor industry has capitalized on this sensitivity to measure line widths and profiles of micro-
fabricated structures.1-8 Referred to as non-imaging optical critical dimension metrology (OCD), measurements 
generally consist of recording the reflectance or polarization as a function of incident angle or wavelength from a 
periodic test structure.  Comparison of the measurement with a library of simulated results for a variety of different 
possible profiles yields the one which matches the data best.  The technique has also been referred to as 
scatterometry in the industry, although rarely does it make use of the diffusely scattered light or anything but the 
specular reflectance. 

While extremely sensitive to details of the profile, OCD instruments have not yielded ideal agreement with 
other metrology methods.9  An assumption that is generally made in the interpretation of data is that the structure is 
indeed periodic, and that any deviation from periodicity gives the same result as some “average” profile.  For 
example, the reflectance data from a grating with variations in line width would be fit to a model that assumes a 
fixed line width, and the resulting best fit line width would be taken to be the average line width of that grating.  In 
this paper, we investigate the validity of this assumption by performing Monte Carlo (MC) simulations on extended 
gratings with randomized profiles.  We find that deviations from periodicity do not give the same result as the field 
from the average profile. Rather, the reflected field can be approximated by the mean field reflected by a distribution 
of periodic profiles.  Furthermore, the best fit simple profile to the MC simulated data can be shifted by a large 
amount from that predicted by the average profile. This study is an extension of another10 that studied a larger 
variety of profile variations, including sidewall profile, line height, and trench depth, but which did not include a 
photoresist grating or perform more than one spectral analysis. 

Metrology, Inspection, and Process Control for Microlithography XXI, edited by Chas N. Archie
Proc. of SPIE Vol. 6518, 65180Z, (2007) · 0277-786X/07/$18 · doi: 10.1117/12.704246

Proc. of SPIE Vol. 6518  65180Z-1



Random Edge Variation Line Width Variation Line Position Variation

ufflDffl fflfflDfflffl ififflififfi

UllllU

Inspection of patterned devices often uses dark field detection of scattered light.  Detecting foreign particles or 
pattern defects requires the signal from the defect to stand out above the background caused by the pattern itself.  It 
is therefore useful to understand the nature of the background signal.  Therefore, a second part of this research 
includes a study of the light diffusely scattered by the random profile.  

In Section 2, we outline the theoretical approach used to perform the MC simulations and describe a mean-field 
model used to approximate the results.  In Section 3, we present the results of those simulations.    Finally, in 
Section 4, we draw some conclusions from this work. 

2. THEORY 

2.1. Grating Simulations 

We use the rigorous coupled wave (RCW) analysis for surface relief gratings developed by Moharam, et al.,11,12 
with a modification suggested by Lalanne and Morris,13 Granet and Guizal,14 and Li15 to improve the convergence of 
the calculations for transverse-magnetic (TM) polarization.  This method solves the electromagnetic problem for a 
plane wave incident upon a medium having a dielectric function ( , , ) ( )jx y z xε ε= , which is periodic in x, 
independent of y, and independent of z within each of a finite number of layers, indicated by index j.  The solution 
requires Fourier series expansions of ( )j xε  and 1/ ( )j xε  for each layer.  In practice, the Fourier series is truncated 
at some maximum order N.  

 
FIGURE 1. Realizations of 25-line gratings with (left) random edge variation, (middle) line width variation, 
and (right) line position variation.  The diagrams show an unperturbed grating on the topand bottom.  The 
lines are shown in black. 

 

2.2. Monte Carlo Simulations 

We begin by considering an unperturbed grating having a period Λ0.  To simulate variations in the profile, we 
create random profiles having a total period 0M MΛ = Λ  (M an integer) and solve for the scattering amplitude 
using the RCW method on this larger period.  Generally, the unperturbed grating gives rise to diffraction at discrete 
directions, which when the light is incident perpendicular to the lines is given by 

 0sin sin /i iθ θ λ= + Λ , (1) 
where θ is the incident angle, iθ  is the diffracted angle, and λ is the wavelength of the light. The simulated profiles 
having the longer period give rise to diffraction at additional directions, such that i takes on fractional values (i.e., 
iM is an integer).  We will denote these fractional orders as diffuse orders, since they do not exist for the primary 
period, and as M increases, the number of these orders expands into a diffuse continuum as would be expected from 
a non-periodic structure. 
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In this study, we considered variations in the line edge position. We let L
jx∆  and R

jx∆  be deviations of the left 
and right edges of the j-th line.  We create realizations of the random profile, using a pseudo-random number 
generator having a normal distribution with standard deviation σ.  We further consider three different sub-cases of 
line edge variation.  For line position variation, we let L R

j jx x∆ = ∆ ; for line width variation, we let L R
j jx x∆ = −∆ ; and, 

for random edge variation, we let L
jx∆  and R

jx∆  be independent.  Figure 1 shows examples of realizations of each 
of these three cases. In all calculations for the simulation of line edge variation, since the side walls are vertical, only 
one z-level is required in the RCW calculation.  

For each case, simulations were performed for 40 realizations of the surface profile. The mean and the standard 
error for each measurable parameter were found.  We used M = 25 lines for each realization.  The nominal pitch Λ0 
was 200 nm, the height was 200 nm, and the nominal width was 100 nm. The simulations had a Fourier truncation 
order of N = 200.  The optical constants of the substrate were those appropriate for silicon.  The optical constants for 
the lines were either those appropriate for silicon or for a photoresist.  For spectroscopic reflectance simulations, the 
wavelength was varied from 250 nm to 600 nm.  For the diffuse scattering calculations, the wavelength was fixed at 
532 nm. 

Simulations were performed for two incident orthogonal polarizations at normal incidence and 70° incidence 
perpendicular to the lines.  The Stokes parameters for incident light linearly polarized at an angle of 45°, 

 

2 21 1
0 TE TM2 2

2 21 1
1 TE TM2 2

2 TE TM

3 TE TM

Re( )

Im( )

R r r

R r r

R r r

R r r

∗

∗

= +

= −

=

=

 (2) 

are presented, where TEr  and TMr  are the reflectance coefficients for light polarized with the electric field and 
magnetic fields along the lines, respectively.   

2.3. Mean-Field Model 

We compared the MC simulation results to those of an approximate model to answer the question of whether or 
not the field reflected by a random pattern is the average of the field reflected by a distribution of periodic patterns.  
If the scattering by the lines is dominated by the structure of each individual line, rather than by line-line 
interactions, then we would expect this condition to be true.  

If we consider the field scattered by a periodic array of lines having width w to be ( )wE , then the field averaged 
over a normal distribution of the width is given by 

 22
0

1 d ( ) exp[ ( ) / 2 ]
2 ww

w

w w w w σ
σ π

= − −∫E E  (3) 

where w0  and wσ  are the mean and standard deviation of w, respectively. We refer to this model as the mean-field 
model. For variations in line width, since the parameter σ  is the rms variation of a single edge, it must be borne in 
mind that comparisons between the Monte Carlo models must be performed such that 2wσ σ=  for random edge 
variation, and 2wσ σ=  for line width variation.  Eq. (3) is evaluated by 4-point Gaussian-Hermite integration.  The 
mean field model is attractive, if it proves to be accurate, because simulations required to evaluate Eq. (3) are 
performed anyway during construction of a scatterometry library.  A similar model can be generated by considering 
the mean intensity.  We do not show results for the mean-intensity model, because they were substantially poorer 
than those for the mean-field model. 
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FIGURE 2. Simulated Stokes parameters for zero-order diffraction (specular reflection) from 

random resist gratings as a function of wavelength: (symbols) the Monte-Carlo simulations for gratings 
having random edge variation with σ = 10 nm, (solid curves) simulated using the unperturbed profile, and 
(dashed curves) simulated using the mean field model.  The light was incident at (left) 0° and (right) 70°.  
The incident light was polarized at 45°. 
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FIGURE 3. Simulated Stokes parameters for zero-order diffraction (specular reflection) from 

random silicon gratings as a function of wavelength: (symbols) the Monte-Carlo simulations for gratings 
having random edge variation with σ = 10 nm, (solid curves) simulated using the unperturbed profile, and 
(dashed curves) simulated using the mean field model.  The light was incident at (left) 0° and (right) 70°.  
The incident light was polarized at 45°. 

Proc. of SPIE Vol. 6518  65180Z-4



3. RESULTS AND DISCUSSION 

3.1. Specular Reflection 

Figures 2 and 3 show the MC-simulated spectral dependence of the Stokes parameters for the zero-order 
diffraction (specular direction) for random edge variation with 10 nmσ =  for the photoresist silicon gratings, 
respectively, each at 0° and 70° illumination. This degree of variation was chosen to be very large, about five times 
that typically acceptable on a production line. Shown with the MC results are the predictions of RCW for the 
nominal profile and the mean-field model.    The results show striking differences between the MC-simulated results 
for the random grating and the results for the nominal grating.  Sharp features associated with the nominal grating 
are often not observed in the random grating, and even slowly varying features show large shifts.  These results 
clearly demonstrate that modeling a grating with random edge variation with a nominal profile with no edge 
variation can lead to large discrepancies in the Stokes parameters. 

Non-linear least-square fits of the MC-simulated spectra to simple gratings and to the mean-field model were 
performed using a Levenberg-Marquardt algorithm.16 Local mean-square minimization works well when good 
estimates of the fitting parameters are known (in this case, the nominal profile) and allows for greater precision than 
that which can be obtained by a fixed-grid library search. We chose four different simple gratings and the mean field 
model to fit to: 

1. Binary grating (vertical sidewall), varying only the width. 
2. Binary grating (vertical sidewall), varying the width and height. 
3. Trapezoidal grating, varying the top and bottom widths. 
4. Trapezoidal grating, varying the top and bottom widths and the height. 
5. Mean field model, varying line width and variation parameter (σw) 

We also considered three different data sets for each grating: 

1. The Stokes parameters: R0, R1, R2, and R3. 
2. The ellipsometry parameters: α = R1/R0 and β = R2/R0. 
3. The s- and p- reflectances: Rs = R0+R1 and Rp = R0−R1 

The data within each data set were equally weighted. The results of the fits are not shown in Figs. 2 and 3 because 
they tended to be very close to their respective nominal curves and the resulting figures would have been too 
crowded.  The best fit model parameters, however, and the root-mean-squares (rms) of the residuals are given in 
Table 1.   

We point out several observations of the results outlined in Table 1.  In a number of cases, the deviation of the 
extracted width from the mean width of the lines is large compared to the variation parameter σ = 10 nm. For 
example, when the width and height were varied during a fit to data for s- and p- reflectances for the photoresist 
grating illuminated at normal incidence, the best fit width deviated from the nominal value by over four times the 
variation parameter.  If we allow the profile sidewall to deviate from vertical, the sidewall angle can show 
significant deviation from the nominal value.  For example, when top and bottom widths and the height were varied 
during a fit to the Stokes parameters for a photo resist grating illuminated at normal incidence, the best fit sidewall 
deviated from vertical by nearly 19°.  In nearly all cases, the rms residual is very large.  The deviations that are 
observed are consistent with many of the parameters being highly coupled; that is, the rms residual is a long, narrow 
valley in two or more parameters, and a small change in the curve can shift the location of the minimum by a 
relatively large amount.  The fact that the modeled curves are not particularly good fits to the data (in this case 
represented by the MC results) makes the valleys flatter and seriously degrades the sensitivity of the results. 

In most of the cases, the mean-field model significantly improves the fit, as measured by the rms residual.  
However, given typical repeatability statistics for measurements (on the order of 0.001 for any of the measurands), 
the mean-field model rarely yielded an rms residual that would be dominated by the repeatability of the 
measurement.  For most of the data sets, the best fit values for the width and σw were close to the nominal values, 
100 nm and 14.1 nm (10 nm × 2 ), respectively. However, in the case of each of the photoresist data sets with an 
incident angle of 70°, both of these values differed by quite a bit.  It is not clear what the cause of that discrepancy 
is, but these fits were at most only marginally better than the fits to the simple profiles. 
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TABLE 1. Results of least-square fits to the Monte-Carlo results for random edge variation with σ = 10 
nm.  Each block of results represents a set of different fits to a single set of data, showing the parameters 
that were adjusted during each fit. The line had a nominal width of 100 nm and a height of 200 nm.  The 
expected value of σw is 14.1 nm. 

top bottom height σw top bottom height σw

(nm) (nm) (nm) (nm) (nm) (nm) (nm) (nm)
102.34 --- --- --- 0.0295 103.07 --- --- --- 0.0348
102.45 --- 199.66 --- 0.0295 107.34 --- 193.15 --- 0.0262
85.31 116.80 --- --- 0.0252 98.51 109.20 --- --- 0.0335
83.50 117.38 202.04 --- 0.0249 101.71 116.02 192.63 --- 0.0228
99.06 --- --- 14.05 0.0041 101.83 --- --- 8.56 0.0191

100.01 --- --- --- 0.0216 100.82 --- --- --- 0.0823
100.02 --- 200.23 --- 0.0216 105.96 --- 193.46 --- 0.0681
92.47 107.53 --- --- 0.0206 103.28 97.15 --- --- 0.0811
84.67 115.15 203.38 --- 0.0191 105.78 106.24 193.44 --- 0.0681
99.99 --- --- 13.03 0.0079 102.06 --- --- 6.48 0.0629

104.81 --- --- --- 0.0410 105.14 --- --- --- 0.0399
143.31 --- 181.14 --- 0.0312 107.26 --- 195.03 --- 0.0352
84.25 118.51 --- --- 0.0348 93.02 122.45 --- --- 0.0208
134.90 146.71 183.07 --- 0.0314 95.49 122.46 196.94 --- 0.0176
98.02 --- --- 13.97 0.0051 103.45 --- --- 6.66 0.0251

top bottom height σw top bottom height σw

(nm) (nm) (nm) (nm) (nm) (nm) (nm) (nm)
98.37 --- --- --- 0.0424 100.95 --- --- --- 0.0339
98.95 --- 198.46 --- 0.0420 101.32 --- 199.19 --- 0.0338
94.55 104.48 --- --- 0.0392 98.27 104.60 --- --- 0.0330
94.59 104.49 199.95 --- 0.0391 98.66 105.11 199.15 --- 0.0329
99.11 --- --- 13.26 0.0099 100.42 --- --- 13.66 0.0045

97.84 --- --- --- 0.1760 100.22 --- --- --- 0.0809
98.29 --- 198.51 --- 0.1747 100.26 --- 199.81 --- 0.0809
95.18 100.36 --- --- 0.1735 99.97 100.47 --- --- 0.0809
95.94 100.30 199.07 --- 0.1730 100.03 100.47 199.83 --- 0.0809
98.39 --- --- 12.30 0.0481 100.30 --- --- 13.72 0.0123

98.54 --- --- --- 0.0474 101.31 --- --- --- 0.0285
98.87 --- 197.16 --- 0.0465 100.65 --- 204.37 --- 0.0274
84.07 108.70 --- --- 0.0263 100.62 101.93 --- --- 0.0284
84.35 108.83 199.22 --- 0.0262 99.20 101.81 204.64 --- 0.0272
98.65 --- --- 12.82 0.0009 100.13 --- --- 12.58 0.0037
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3.2. Diffuse Reflection 

We restrict our results of diffuse scattering to that of line width variation and line position variation having a 
small amount of variation (σ = 1 nm) and illuminated with 532 nm at 70° incidence.  Figure 4 shows the diffraction 
efficiency of the different orders associated with the 5 µm superstructure period for both the photoresist and silicon 
gratings.  Because the period of the grating, 200 nm, is less than half the wavelength, there are no diffracted orders 
arising from the fundamental period of the grating.  For that reason, there is a large zero-order peak, and because the 
variation is small, the efficiency of the other orders are all orders of magnitude less intense.  

With the exception of the zero-order efficiency, the variation from one diffraction order to another in Fig. 4 is 
smooth, suggesting that the results are indicative of a random grating of infinite extent.  That is, if the period were 
doubled, the new orders would lie along the same curve, except shifted vertically by a factor of two to keep the total 
integrated non-specular efficiency constant.  One could also estimate the angular distribution of scattered light for an 
infinite grating from these curves. It is interesting to note the difference between the angular distribution of the light 
scattered by line-width variation and that scattered by line-position variation.   Line-position variation contributes 
almost no scattered light in the near-specular direction, while scattering by line-width variation has much weaker 
angle dependence.  If we were to introduce inter-line correlations, we would expect to find that the angular 
dependence of the scatter would be affected. 

Previous work on diffuse scatter by smooth surfaces has shown that the polarization of the scattered light can be 
used to distinguish amongst different scattering sources.17-21  For example, roughness of each of the two interfaces of 
a dielectric film scatter with different polarization states, allowing their scatter to be distinguished and the roughness 
of each interface quantified.  In Fig. 5, we show a similar effect for the scatter by a random grating.  The normalized 
Stokes parameters are shown for line-width variation and line-position variation. The results shown in Fig. 5 do not 
depend upon the amplitude of the variation, provided the variation is small (less than a few nanometers). The two 
types of variation show a clear and measurable difference in their polarization states.  Like the case of roughness of 
a thin film, one needs to know the details of the unperturbed system in order to analyze the scattered light.  
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FIGURE 4. Diffraction efficiency as a function of diffraction order calculated for (solid symbols) 
random width variation and (open symbols) random position variation and for (left) the resist grating and 
(right) the silicon grating.  The variation magnitude is σ = 1 nm, the incident angle is 70°, and the 
incident light is polarized at 45°. 
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Furthermore, perturbations which are too large become difficult to analyze because the polarization states are no 
longer independent. The finding that the scattered light has well-defined polarization states may also help to improve 
the signal-to-noise ratio during dark-field detection of defects and particles on these gratings.  

3.3. Relationship to line-edge and line-width roughness 

This study only investigated the effects of line profile shape and did not consider variations in that profile along 
the y direction.  The latter variations are commonly referred to as line-edge roughness (LER) and line-width 
roughness (LWR) when the position and width vary along the line, respectively.  LER and LWR are considered 
important to microfabrication because they may have an effect on device performance and limit the precision of 
critical-dimension scanning electron microscopy (CD-SEM).  The effects of LER and LWR on specular diffraction 
might be expected to follow those of line position variation and line width variation, respectively, provided the 
correlation length of the roughness in the y direction is significantly larger than the period.  It waits to be seen, until 
full three-dimensional simulations are performed, what the effects are of short correlation length roughness. 

4. CONCLUSIONS 

This article described some Monte Carlo simulations of reflection and scattering by randomized gratings.  The 
results indicate that non-imaging optical critical dimension measurements do not necessarily yield information about 
the average profile of the grating.  A mean-field model is proposed that yields improved comparisons, but is in itself 
imperfect and needs refinement.  Measurements of diffuse scatter by randomized gratings may yield information 
about the type of variation (line width versus line position) that exists in a grating. 
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FIGURE 5. The normalized Stokes parameters as a function of diffraction order calculated for 

(solid symbols) random width variation and (open symbols) random position variation and for (left) the 
resist grating and (right) the silicon grating.  The variation magnitude is σ = 1 nm, the incident angle is 
70°, and the incident light is polarized at 45°. 
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