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Abstract

The Fourier transform microwave spectrum of dimethyl methylphosphonate studied by us previously is reanalyzed here to obtain
more physically reasonable parameters describing the various Coriolis-like couplings between overall rotation and internal rotation
of the two methoxy methyl tops. In particular, we use exactly the same frequencies and spectral assignments as in our previous study,
but the least squares fit is started from a rather different set of initial molecular parameters and is carried out with a slightly smaller set of
adjustable parameters. The standard deviation of the fit is not significantly changed, but convergence to a rather different minimum in
parameter space is obtained. This new minimum does not change the three rotational constants significantly, but values for the 12
Coriolis coupling constants are dramatically rearranged, so that parameters arising from coupling between the two internal rotation
motions are greatly reduced in magnitude. These new Coriolis constants bring the derived direction cosines for the methoxy methyl
groups in the principal axis system into much better agreement with ab initio predictions. We have used our new parameters to derive
internal rotation barrier heights for the two methyl groups of 280 and 188 cm�1.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Dimethylmethylphosphonate; False minimum; Group-theoretical; Tunneling Hamiltonian; Internal rotation; Least-squares fit; Microwave
spectrum; Torsional barriers

1. Introduction

A few years ago we used a group-theoretical formalism [1]
to carry out an apparently satisfactory global fit of the micro-
wave spectrum of dimethyl methylphosphonate (DMMP)
[2]. At that time we also gave an interpretation of the physical
meaning of various parameters obtained from the analysis.
Recently, however, we found that our reported values [2]
for the Coriolis-like parameters are physically unreasonable,
since they require a coupling between the two methoxy
methyl groups that seems unacceptably large.

In the present work, we reanalyze the same spectral data
treated in our previous study [2], using the same spectral

assignments, but using a different set of initial molecular
parameters to start the least-squares fit. Using our newly
obtained Coriolis-like parameters, we derive direction
cosines for the methyl tops in much better agreement with
ab initio predictions, and thus go on to make estimates for
the internal rotation barrier heights.

2. Spectral data, line assignments, effective Hamiltonian and

tunneling matrix elements

The spectral data and line assignments in the present
study are the same as those given in Table 4 of Ref. [2].
The form of the effective Hamiltonian and expressions for
the tunneling matrix elements used in the global fit are the
same as those given in Eqs. (1)–(21) of Ref. [2]. The set of
adjustable parameters used in the present fit, however, is
somewhat different from that given in Table 3 of Ref. [2].
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3. Least squares global analysis

The essential difference between the previous and the
present global analysis consists of starting the fit with a
quite different set of initial values for the tunneling matrix
elements related to the Coriolis-like coefficients q, s, and t
in Eq. (1) of Ref. [2]. In the present analysis large initial
values were given only to the 1 fi 4 and 1 fi 6 tunneling
matrix elements (q4, q6, s4, s6, t4 and t6) of the coefficients
q, s, and t, which correspond (see Table 1 of Ref. [1]) to
individual one-top internal-rotation tunnelings (i.e., to
motions where one top is stationary while the other
rotates). In the previous analysis large initial values were
given to the individual one-top internal-rotation parame-
ters mentioned above, but were also given to the 1 fi 2
and 1 fi 5 tunneling matrix elements of q, s, and t, which
correspond (see Table 1 of Ref. [1]) to simultaneous inter-
nal-rotation tunnelings of both methyl groups (i.e., to
geared and antigeared motions). Such a set of large initial
values is less natural, since it implies that coupling between
the two rather distant methyl groups is strong enough to
make concerted internal rotations as probable as individual
internal rotations.

Molecular parameters from the present reanalysis,
which was carried out for 609 transitions and 45 adjustable
parameters and resulted in a root-mean-square (rms) devi-
ation of 0.0065 MHz, are given in Table 1. This table also
shows for comparison the molecular parameters obtained
from the previous fit [2] of the same 609 transitions to 54
adjustable parameters, which gave an rms deviation of
0.0080 MHz. It is seen from Table 1 that the present Cori-
olis-like parameters corresponding to simultaneous inter-
nal-rotation tunnelings of the two methyl groups are
negligibly small, which is very different from the previous
result. On the other hand, many parameters other than
the Coriolis-like parameters are nearly the same as those
obtained in the previous study.

4. Estimate of barrier heights to internal rotation

The estimation of barrier heights from a multidimen-
sional tunneling formalism is not straightforward, because
in general neither the exact path length nor the exact amount
of mass involved is known for motion along the tunneling
paths chosen by the molecule. For methyl-top internal rota-
tions the situation is in principle simpler, since one can
assume to a reasonable approximation that: (i) the tunneling
path consists of a rotation around a fixed axis of the methyl
top against the rest of the molecule, and (ii) the moment of
inertia of the methyl group about its threefold axis as well
as the moments of inertia of the rest of the molecule do not
vary during the internal rotation motion. With these
assumptions, we combine the present tunneling parameters
with the ab initio structural data given in Ref. [3] to derive
internal rotation barrier heights as shown below.

The first step is to transform the Coriolis-like parame-
ters along the x, y, z axes in the present global fit to those

Table 1
Molecular parameters (MHz) of dimethyl methylphosphonate obtained
from the present reanalysis

Para This workb Ref. [2]b

h10 �0.1558(30) �0.1548(39)
h12 �0.0825(29) �0.0845(38)
h16 �1.64515(77) �1.64873(93)

A1 2816.794(74) 2818.968(88)
A4 0.87530(18)
A5 �0.000601(73)
A6 0.110738(79) 0.110430(93)
A16 �0.001429(98)

B1 1976.91(51) 1978.049(36)
B2 �0.000367(22)
B4 0.24038(31) 0.22371(14)
B6 0.11645(20) 0.115959(45)
B12 �0.001701(70)
B16 �0.00259(24) 0.00265(23)

C1 1618.83(51) 1615.513(81)
C2 �0.000235(23)
C4 0.07758(29) 0.96834(36)
C6 0.00622(20) 0.006810(39)
C10 �0.00252(26)
C12 0.00210(26)
C16 0.00087(19)

Dab1 �77.87(78) �73.90(20)
Dbc1 �20.5(45)
Dac1 �60.7(12) 37.3(15)
Dac4 12.16(38)

DJ1 0.0009692(20) 0.0009697(24)
DJ4 0.0000112(13) 0.0000119(16)
DJK1 �0.004033(12) �0.003994(15)
DJK4 0.0000551(68) 0.0000483(90)
DJK10 0.0000253(79)
DK1 0.007862(39) 0.007789(50)
DK4 �0.000087(31)
DK10 �0.000076(19)
DK16 0.000138(12)
dJ1 0.0004179(19) 0.0004161(16)

q2 0.00274(18) 39.9923(47)
q4 69.416(11) 29.508(28)
q5 0.01432(32) �1.3695(42)
q6 9.5955(14) 50.1265(46)
q10

c 0.00623(16) 0.00430(19)
qJ2 �0.003597(28)
qJ4 �0.007361(29) �0.002866(25)
qJ6 �0.001139(20) �0.00283(15)
qK4 0.002453(87)
qK6 �0.00315(28)

s2 11.832(11)
s4 15.34(29) �10.1034(96)
s5 �0.0222(33) �15.2159(53)
s6 �11.926(41) 6.993(14)
sJ6 �0.00158(25)
sK6 �0.0218(13)

t2 0.00488(20) 2.715(72)
t4 �23.01(19) �17.497(44)
t5 1.7210(29)
t6 3.23(15) 2.210(78)
t10 �0.00193(11) �0.00279(14)
tJ4 0.000661(13) 0.000215(15)
tJ6 0.000076(13)

(continued on next page)
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along the a, b, c principal axes. This step is required
because, as discussed in Section 3 of Ref. [2], an axis system
was chosen for the fits which allowed maximum use of
group-theoretical symmetry arguments to eliminate many
symmetry-forbidden operators from the fitting Hamilto-
nian. As one consequence of this axis choice, however,
the present global fit Hamiltonian contains nonzero contri-
butions to all three off-diagonal terms in the quadratic
angular momentum expression, i.e., contains terms like
Dzx(JzJx + JxJz), whose coefficients are treated as adjust-
able parameters in the least squares fits. It can be shown
that vectors in the two axis systems are related by the
transformation

q0i
s0i
t0i

2
64

3
75 ¼ T�1

qi

si

ti

2
64

3
75; ð1Þ

where the subscript i = 2, 4, 5, and 6 indicates one of the
four internal rotation tunneling paths, and T is a 3 · 3 rota-
tion matrix defined by

T�1

A1 Dab1 Dac1

Dab1 B1 Dbc1

Dac1 Dbc1 C1

2
64

3
75 T ¼

A01 0 0

0 B01 0

0 0 C01

2
64

3
75; ð2Þ

where primed quantities in Eqs. (1) and (2) represent param-
eters expressed in the principal axis system, while unprimed
quantities represent parameters taken directly from the fit
(i.e., from Table 1). The transformed Coriolis-like parame-
ters obtained from this procedure are given in Table 2.

To estimate internal rotation barrier heights, we relate the
rotated Coriolis tunneling parameters in Table 2 to proper-
ties of a hypothetical two-top internal-rotation problem,
using the following arguments: (i) DMMP actually tunnels
between pairs of 18 distinct frameworks (see Table 1 of
Ref. [1]), but half of these tunnelings involve intramolecular
motions that result in an exchange of roles for the two
inequivalent methoxy groups. We are interested here in

interpreting only parameters that involve purely torsional
tunneling, i.e., only parameters that involve tunneling
between 9 distinct frameworks. (ii) Tunneling from frame-
work 1 to each of the other frameworks in DMMP is treated
as an independent motion in the present formalism, in the
sense that each tunneling parameter has only one path sub-
script, and the parameters do not occur as products in the
Hamiltonian matrix. (iii) It thus seems reasonable to com-
pare our 1 fi 2, 4, 5, and 6 tunneling parameters with results
from a traditional two-top internal-rotation problem, where
the other large-amplitude motions of DMMP, i.e., the
1 fi 10, 11, 12, 16, 17, and 18 tunneling motions, are totally
absent. Since the 9 frameworks accessed by internal rotation
in DMMP do not involve any group-theoretical exchange of
the two methyl tops, these tops must be taken as inequivalent
in the traditional problem. Also, in agreement with our
chemical intuition, we further simplify the two-top Hamilto-
nian by removing all top–top interactions from the potential
energy expression.

A derivation of the torsion–rotation Hamiltonian for
two equivalent methyl tops (i = 1,2) is given in Wollrab
[5]. For the present problem, we modify the torsion-rota-
tion Hamiltonian given in Eq. (7) of Ref. [6] for the two
inequivalent methyl tops in N-methylacetamide,

H ¼ AJ 2
a þ BJ 2

b þ CJ 2
c

þ F 1ðp1 � p1Þ2 þ F 2ðp2 � p2Þ2 þ F 12½ðp1 � p1Þðp2 � p2Þ
þ ðp2 � p2Þðp1 � p1Þ� þ ð1=2ÞV 1ð1� cos 3s1Þ
þ ð1=2ÞV 2ð1� cos 3s2Þ; ð3Þ

as follows: (i) top–top potential-energy interactions are re-
moved, (ii) the zeros of s1 and s2 are chosen to eliminate
sin3s1 and sin3s2 terms (though higher-order sine terms
cannot be eliminated without postulating more symmetry
than DMMP actually has), and (iii) the c-axis components
of the Coriolis interaction (which are symmetry-allowed in
DMMP) are added, so that the analogs of Eqs. (8) of Ref.
[6] become here

p1 ¼ q1aJ a þ q1bJ b þ q1cJ c

p2 ¼ q2aJ a þ q2bJ b þ q2cJ c ð4Þ

with

q1b ¼ k1bI1=Ib

q2b ¼ k2bI2=Ib: ð5Þ

The notation in Eqs. (3)–(5) is relatively standard [5]: A,
B, and C are asymmetric-top rotational constants; Ja, Jb,
and Jc are components of the total angular momentum
along the principal axes; F1, F2, and F12 are the torsional
kinetic energy coefficients; p1 and p2 are the torsional
angular momentum operators conjugate to the torsional
angles s1 and s2; V1 and V2 are the two different tor-
sional barrier heights; p1 and p2 are torsion–rotation
Coriolis coupling terms; the kib (for i = 1, 2; b = a, b, c) are
direction cosines between the symmetry axis of top i and

Table 1 (continued)

Para This workb Ref. [2]b

tK2 �0.00216(39)
tK4 0.01539(16) 0.01589(19)
tK5 �0.00152(38)
tK6 �0.00312(17) �0.00257(38)

a See Ref. [2] for the parameter notation and meaning.
b Numbers in parentheses are one standard uncertainty (1r) in units of

the least significant digit, as obtained from the least squares fitting (type A
uncertainty [4]).

c q10 here actually represents q10 + q12.

Table 2
Coriolis-like parameters transformed to the principal axis system (MHz)
using Eqs. (1) and (2)

q02 0.00249 s02 �0.00012 t02 0.00501
q04 68.788 s04 22.91 t04 �18.08
q05 0.01625 s05 �0.0208 t05 �0.00073
q06 10.4616 s06 �11.256 t06 2.93
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the principal axes of the molecule; Ii is the moment of iner-
tia of top i about its symmetry axis; and Ib (for b = a, b, c)
is one of the principal moments of inertia of the whole
molecule.

The permutation-inversion (PI) group of DMMP is one
of the G18 groups, and in particular is one with a rather
complicated set of separably and nonseparably degenerate
symmetry species [1,2]. The PI group for the Hamiltonian
in Eq. (3) is G9 (note that s1, s2 fi �s1, �s2 is not a symme-
try operation), which also involves separably degenerate
species. Fortunately, it is not necessary to deal with most
of the subtleties of these PI groups, because tunneling
parameters in the present formalism are defined by expres-
sions like Eq. (13) of [2], and it is only necessary to relate
frameworks 1 and n in such expressions to their analogs
in the formalism associated with Eq. (3).

We can now take expectation values of appropriate oper-
ators in Eq. (3) to derive the following twelve equations relat-
ing quantities in Table 2 with those in Eqs. (3) and (4):

where the axis choice is z = a, x = b, and y = c. In agree-
ment with the form of the tunneling basis functions,
which are products of a purely (large and small ampli-
tude) vibrational framework function jnæ and a symmetric
top rotational function jJ,Kæ (see Eqs. (9) of Ref. [2]), the
jE1,2,3,4æ functions appearing in the matrix elements on the
right of Eqs. (6) must be taken to be torsional eigenfunc-
tions calculated using the pure torsional Hamiltonian
obtained from Eqs. (3) and (4) by setting Ja = Jb = Jc = 0.
The symmetry species E1, E2, E3, and E4 labeling these
eigenfunctions represent the four separably doubly degen-
erate symmetry species in the two-top internal-rotation
problem described by the PI group G9. They can be
defined by noting that: (i) the E1, E2, E3, and E4 functions
are invariant to (456), (123), (123)(456), and (123)(465),
respectively (see Table 1 of Ref. [6]), (ii) the E1, E2, E3,
and E4 functions correspond to framework basis functions

with coefficients in the n = 1–9 positions as given for the
species Gsep(1)�a, Gsep(2)+b, E1sep+ or E2sep+, and
�(1/
p

2)E(1)b�(i/
p

2)E(1)a or (1/
p

2)E(2)a�(i/
p

2)E(2)b,
respectively, in Tables 1 and 2 of [2] (note that the E3 and
E4 coefficients generated in this way must be renormalized
by multiplying by

p
2), and (iii) correct signs can be

obtained in the matrix elements on the right of Eqs. (6) by
using free-rotor basis functions characterized by the m1,
m2 modulo 3 values specified for E1, E2, E3, and E4 on p.
33 of [6] in a calculation using the pure torsional Hamilto-
nian obtained from Eq. (3).

Eqs. (6) represent 12 equations, with 12 numerical val-
ues from Table 2 on the left and 14 unknowns on the
right, i.e., the 3F’s, 2V’s, 5I’s, and two unit vectors k

from Eqs. (3)–(5). To solve these equations, some of
the unknowns must obviously be fixed. We chose to fix
the following structural parameters to values obtained
from the ab initio molecular structure shown in Table
5 of Ref. [3]:

F 1¼ 5:4178 cm�1; F 2¼ 5:4424 cm�1; F 12¼�0:01673 cm�1

I1¼ 3:1546 uÅ
2
; I2¼ 3:1474 uÅ

2
: ð7Þ

For consistency with our other labeling conventions, we
define top 1 to contain hydrogens 14, 15, 16, and top 2
to contain hydrogens 8, 9, 10 in Table 5 of [3]. For compu-
tational simplicity we define each top axis to be the perpen-
dicular to the plane of the three hydrogens at their center of
mass. Imposition of the conditions in Eqs. (7) is in fact
equivalent to fixing the three F’s and two of the five I’s.
The other three I’s, i.e., Ia, Ib, and Ic, were fixed to values
obtained from the observed rotational constants A01, B01,
and C01 of Eq. (2). Using the quantities on the left of Eqs.
(6) as ‘‘observed values’’ and using the pure torsional Ham-
iltonian from Eq. (3) to calculate the expectation values of
p1 and p2 appearing on the right in Eqs. (6), we obtained
the following values for the unknown parameters V1, V2,

p
3ðþq02 þ q05 � q06Þ ¼ �ð2F 1q1z þ 2F 12q2zÞhE1jp1jE1i � ð2F 2q2z þ 2F 12q1zÞhE1jp2jE1ip
3ðþq02 þ q04 � q05Þ ¼ �ð2F 1q1z þ 2F 12q2zÞhE2jp1jE2i � ð2F 2q2z þ 2F 12q1zÞhE2jp2jE2ip
3ð�q04 � q05 � q06Þ ¼ �ð2F 1q1z þ 2F 12q2zÞhE3jp1jE3i � ð2F 2q2z þ 2F 12q1zÞhE3jp2jE3ip
3ð�q02 þ q04 � q06Þ ¼ �ð2F 1q1z þ 2F 12q2zÞhE4jp1jE4i � ð2F 2q2z þ 2F 12q1zÞhE4jp2jE4ip
3ðþs02 þ s05 � s06Þ ¼ �ð2F 1q1x þ 2F 12q2xÞhE1jp1jE1i � ð2F 2q2x þ 2F 12q1xÞhE1jp2jE1ip
3ðþs02 þ s04 � s05Þ ¼ �ð2F 1q1x þ 2F 12q2xÞhE2jp1jE2i � ð2F 2q2x þ 2F 12q1xÞhE2jp2jE2ip
3ð�s04 � s05 � s06Þ ¼ �ð2F 1q1x þ 2F 12q2xÞhE3jp1jE3i � ð2F 2q2x þ 2F 12q1xÞhE3jp2jE3ip
3ð�s02 þ s04 � s06Þ ¼ �ð2F 1q1x þ 2F 12q2xÞhE4jp1jE4i � ð2F 2q2x þ 2F 12q1xÞhE4jp2jE4ip
3ðþt02 þ t05 � t06Þ ¼ �ð2F 1q1y þ 2F 12q2yÞhE1jp1jE1i � ð2F 2q2y þ 2F 12q1yÞhE1jp2jE1i
p

3ðþt02 þ t04 � t05Þ ¼ �ð2F 1q1y þ 2F 12q2yÞhE2jp1jE2i � ð2F 2q2y þ 2F 12q1yÞhE2jp2jE2i
p

3ð�t04 � t05 � t06Þ ¼ �ð2F 1q1y þ 2F 12q2yÞhE3jp1jE3i � ð2F 2q2y þ 2F 12q1yÞhE3jp2jE3i
p

3ð�t02 þ t04 � t06Þ ¼ �ð2F 1q1y þ 2F 12q2yÞhE4jp1jE4i � ð2F 2q2y þ 2F 12q1yÞhE4jp2jE4i;
ð6Þ
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and kia (i = 1, 2; a = a, b, c) from a least squares analysis
with 12 observed values and six parameters (since
jk1j = jk2j = 1):

V 1 ¼ 279:82ð6Þ cm�1; V 2 ¼ 188:11ð1Þ cm�1

½k1a; k1b; k1c� ¼ ½0:5255ð6Þ;�0:8107ð4Þ; 0:2582�
½k2a; k2b; k2c� ¼ ½�0:8334ð1Þ;�0:3979ð2Þ; 0:3836�: ð8Þ

Numbers in parentheses are one standard uncertainty
(k = 1, type A [4]), as obtained from the least squares anal-
ysis, and apply to the last digit of the parameters. (The kc

components were calculated from the two fitted compo-
nents after the fit was completed.) The reproducibility of
the ‘‘observed values’’ in the least squares analysis carried
out above is shown in Table 3.

Support for the present results in Eqs. (8) is given by a
comparison with ab initio barriers taken from Table 1
and ab initio direction cosines calculated from Table 5 of
Ref. [3]

V 1 ¼ 426 cm�1; V 2 ¼ 281 cm�1

½k1a; k1b; k1c�ab initio ¼ ½0:5205; 0:8206;�0:2361�
½k2a; k2b; k2c�ab initio ¼ ½�0:8506; 0:3894;�0:3533�; ð9Þ

where the difference in sign for the b and c components in
Eqs. (8) and (9) arises from the fact that our (implicit) axis
choice and the explicit choice of Ref. [3] differ by a C2

about the a axis.
We note in passing, that almost the same results as in

Eqs. (8) are obtained when we treat the two one-top prob-
lems independently, i.e., when we neglect (i.e., set to zero in
the fit) the small quantities F12, q2, q5, s2, s5, t2, and t5 rep-
resenting coupling between the two methyl groups. This
independent-top approximation also gives torsional wave-
functions for the right of Eqs. (6) which are the products
of one-top functions of the form E1 = E+A, E2 = AE+,
E3 = E+E�, and E4 = E+E+. These products can be used
to show that there is only one independent matrix element
for each of the operators p1 and p2, a result which leads in
turn to a qualitative explanation for some of the sum and
difference regularities that can be found in Table 3, and

to greatly simplified logic in relating the top 1 and top 2
labels in the ab initio and fitting procedures.

5. Discussion

We reanalyzed the DMMP FTMW spectrum for
essentially two reasons: (i) from an intuitive point of
view, the Coriolis-like parameters obtained previously
seemed physically unreasonable, since parameters corre-
sponding to the coupled geared and antigeared tunnel-
ings of the two methyl groups were abnormally large
in magnitude, and (ii) making the quite reasonable
assumptions necessary to convert these Coriolis parame-
ters into structural information yielded directions for the
methyl top symmetry axes at variance with the ab initio
predictions [3]. Both of these difficulties disappeared after
the present reanalysis.

The question arises, however, of what went wrong ini-
tially. We believe that our first fit converged to a ‘‘false min-
imum’’ in parameter space, but that the existence of this
false minimum is not a random event, but is instead con-
nected somehow to a number of sign ambiguities present
in the fit. Evidence for this conclusion came initially from
the observations that: (i) the magnitudes of the linear com-
binations of quantities on the left hand side of Eqs. (6), after
they are rotated into the principal axis system, differ by only
a few percent between the previous fit and the present fit
(these two fits use slightly different sets of fitting parame-
ters), but (ii) the signs of the fourth, sixth, and ninth linear
combinations in Eqs. (6) and the sign of Dac1 in Table 1 are
opposite in the two fits. (The sign change of Dbc1 is ambig-
uous, because its value is zero in the fit of Ref. [2].) Further
experimentation then showed that one can arbitrarily
change the sign of some other sets of linear combinations
on the left of Eqs. (6) (keeping, for simplicity, the signs of
Dab1, Dbc1, and Dac1 constant) and still get a fit of exactly
the same quality as the present fit, even though such a
change in sign leads to very different values for the indivi-
dual parameters in the linear combinations of Eqs. (6).

We have not examined this matter in detail, but one can
try to imagine an explanation for the existence of multiple
sign possibilities by considering the simple case where only
the internal rotations of the methyl groups occur (i.e., no
methyl-group exchange tunneling occurs), and where the
PAM axis system is used. For this case, the dominant con-
tributions to the torsion–rotation Coriolis splittings of
states with E1, E2, E3, and E4 symmetry in a near symmet-
ric top will come from the linear combinations of q1,2,3,4

terms shown in Eqs. (6). Experimentally, the magnitudes
of these splittings are measurable quantities, but their signs
are not (in the sense of whether positive or negative K cor-
responds to the lower component, for example). The anal-
ogous linear combinations of s and t terms in Eqs. (6) also
affect these observed splittings, but their contributions have
essentially the form of a second-order perturbation correc-
tion, which again allows magnitudes, but not signs, to be
determined. If this thinking is correct, then it will always

Table 3
Reproducibility of input data in the least squares analysis deriving internal
rotation barrier heights from Eqs. (6)

Obs (MHz) o–c (MHz)

31=2ðþq02 þ q05 � q06Þ �18.088 0.038
31=2ðþq02 þ q04 � q05Þ 119.120 �0.027
31=2ð�q04 � q05 � q06Þ �137.292 �0.032
31=2ð�q02 þ q04 � q06Þ 101.019 �0.005
31=2ðþs02 þ s05 � s06Þ 19.460 �0.035
31=2ðþs02 þ s04 � s05Þ 39.715 0.039
31=2ð�s04 � s05 � s06Þ �20.147 0.037
31=2ð�s02 þ s04 � s06Þ 59.175 �0.002
31=2ðþt02 þ t05 � t06Þ �5.076 0.006
31=2ðþt02 þ t04 � t05Þ �31.301 0.009
31=2ð�t04 � t05 � t06Þ 26.229 0.001
31=2ð�t02 þ t04 � t06Þ �36.402 �0.008
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be necessary in tunneling treatments of multi-top problems
to use structural information from ab initio calculations (or
from chemical intuition) to fix approximate magnitudes
and signs for the initial guesses of quantities on the left
of Eqs. (6) before beginning the least squares procedure.
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