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The phase diagrams of low density Fermi-Fermi mixtures with equal or unequal masses and equal or
unequal populations are described at zero and finite temperatures in the strong attraction limit. In this limit, the
Fermi-Fermi mixture can be described by a weakly interacting Bose-Fermi mixture, where the bosons corre-
spond to Feshbach molecules and the fermions correspond to excess atoms. First, we discuss the three and four
fermion scattering processes, and use the exact boson-fermion and boson-boson scattering lengths to generate
the phase diagrams in terms of the underlying fermion-fermion scattering length. In three dimensions, in
addition to the normal and uniform superfluid phases, we find two stable nonuniform states corresponding to
(i) phase separation between pure unpaired (excess) and pure paired fermions (molecular bosons); and (ii)
phase separation between pure excess fermions and a mixture of excess fermions and molecular bosons. Lastly,
we also discuss the effects of the trapping potential in the density profiles of condensed and noncondensed
molecular bosons, and excess fermions at zero and finite temperatures, and discuss possible implications of our

findings to experiments involving mixtures of ultracold fermions.
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I. INTRODUCTION

The lack of precise control over standard condensed mat-
ter systems has hindered the development of experiments
that can probe systematically the effects of strong correla-
tions. However, the large degree of control in atomic systems
has made them powerful tools for studying many condensed
matter phenomena, and in particular superfluid phases [1-6].
For instance, a current research frontier is the study of fer-
mion mixtures with population imbalance [7-10]. Since the
population of each component as well as their interaction
strength are experimentally tunable, these knobs enabled the
study of the Bardeen-Cooper-Schrieffer (BCS) to Bose-
Einstein condensation (BEC) evolution in population imbal-
anced two-component fermion superfluids [7-10]. In contrast
with the crossover physics found in the population balanced
case [11-13], these experiments have demonstrated the exis-
tence of phase transitions between normal and superfluid
phases, as well as phase separation between superfluid
(paired) and normal (excess) fermions as a function of popu-
lation imbalance [14-20].

Motivated by these recent experiments, there has been
intense theoretical interest in understanding the phase dia-
gram of population imbalanced mixtures [21-29]. So far, an
accurate description of such mixtures is only available in the
weak fermion attraction limit, and it is yet to be developed
for intermediate fermion attraction around unitarity, or for
the strong attraction limit. Some progress has been made in
the strong attraction limit, where Fermi-Fermi mixtures were
described as a weakly interacting Bose-Fermi mixture
[22,26,30,31], however, except for Ref. [22], the effective
boson-fermion and boson-boson scattering parameters were
obtained only in the Born approximation. In Ref. [22], it was
discussed that a diagrammatic approach beyond the Born
approximation is necessary to calculate exact scattering
lengths and to obtain density profiles.
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Strictly speaking, the Bose-Fermi description is valid only
in the strong attraction limit, but may also provide semi-
quantitative understanding of the phase diagram close to uni-
tarity. Thus, the main goal of this manuscript is to analyze
the boson-fermion and boson-boson scattering parameters
beyond the Born approximation for arbitrary mass ratio of
fermions, and use the effective Bose-Fermi mixture descrip-
tion to generate improved phase diagrams and density pro-
files of Fermi-Fermi mixtures with equal or unequal masses
in the strong attraction limit beyond the Born and mean-field
approximations [26,30,32-34].

The main results of this manuscript are as follows. First,
we analyze three- and four-fermion scattering processes and
obtain the exact boson-fermion and boson-boson scattering
lengths as a function of mass anisotropy. Second, we use the
exact boson-fermion and boson-boson scattering parameters
to construct the phase diagram for Fermi-Fermi mixtures in
the strong attraction limit. In addition to the normal (N) and
uniform superfluid (U) phases, we find two different nonuni-
form phase-separated (PS) states: (i) PS(1) with phase sepa-
ration between pure unpaired (excess) and pure paired fermi-
ons (molecular bosons), and (ii) PS(2) with phase separation
between pure excess fermions and a mixture of excess fer-
mions and molecular bosons, depending on the fermion-
fermion scattering parameter. The phase boundaries are very
sensitive to the masses of the fermions, and also to the
boson-fermion and boson-boson interactions. For equal mass
mixtures, our results for the phase boundary between the
PS(2) and the uniform (U) phase improves on previous
saddle-point (mean-field) results, and the quantitative
changes are substantial, but not dramatic. However, there is a
dramatic increase in quantitative differences between mean-
field and the present results for unequal mass mixtures as the
mass ratio deviates from one. In particular, these differences
are more pronounced when heavier fermions are in excess
indicating the importance of taking into account scattering
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processes beyond the Born approximation. Furthermore, we
discuss the effects of the trapping potential on the density
profiles of condensed and noncondensed molecular bosons,
as well as excess fermions at zero and finite temperatures.
Lastly, we discuss the implications of our findings to possible
experiments involving Fermi-Fermi mixtures with equal or
unequal masses and equal or unequal populations.

The remainder of this manuscript is organized as follows.
In Sec. II, we discuss briefly the Hamiltonian for Fermi-
Fermi mixtures with equal or unequal masses and emphasize
that the system reduces effectively to a Bose-Fermi mixture
of molecular bosons and excess fermions in the strong attrac-
tion limit. In Sec. III, we analyze the exact boson-fermion
and boson-boson scattering lengths as a function of mass
anisotropy, which are used to calculate the resulting phase
diagram of Fermi-Fermi mixtures in the strong attraction
limit. In Sec. IV, we discuss the stability of the effective
Bose-Fermi mixture of molecular bosons and excess fermi-
ons in three, two, and one dimensions. We analyze the sta-
bility of population imbalanced Fermi-Fermi mixtures in the
strong attraction limit in Sec. IV B, and we construct the
phase diagrams of these systems in Sec. IV C. In Sec. V, we
discuss the effects of harmonic traps on the density profiles
of condensed and noncondensed molecular bosons, and ex-
cess fermions at zero and finite temperatures, and show their
experimental signatures. Lastly, we present a summary of our
conclusions in Sec. VL.

II. HAMILTONIAN

In order to calculate the correct phase diagrams of Fermi-
Fermi mixtures in the strong attraction limit, it is necessary
to obtain first the correct scattering parameters between two
Bose molecules (paired fermions), and also between a Bose
molecule and an unpaired fermion. To achieve this task, we
begin by describing the Hamiltonian density for a mixture of
fermions (in units of A=kz=1) as

2

_ \% -
H(x)=2, %(X)[— . MU} = g () (X)) () (x)
(1)

where ,(x) is the field corresponding to the creation of a
fermion with pseudospin index o, at position and time x
=(r, 7). Here, g>0 is the strength of the attractive fermion-
fermion interaction and o identifies two types of (T and |)
fermions. This notation allows the analysis of a mixture of
fermions with equal or unequal masses, as well as equal or
unequal chemical potentials. Throughout the manuscript, we
assume that the lighter fermions are always T and that the
heavier fermions are always |, as intuitively suggested by
the direction of the arrows, and that the chemical potentials
M, fix the population (density) n, of each type of fermion
independently.

The contact interaction Hamiltonian given in Eq. (1) gen-
eralizes the equal mass and equal chemical potential Hamil-
tonian that is used to study the BCS to BEC evolution within
the functional integral formalism [13]. The functional inte-
gral formulation [13,26,30,31] captures some essential fea-
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tures of the evolution from BCS to BEC superfluidity for
Fermi mixtures with equal or unequal masses as well as with
equal or unequal populations. However, truly quantitative re-
sults are currently possible only in the BCS limit, where the
theory is simple, but the temperatures required to reach the
BCS regime are very low and difficult to be achieved experi-
mentally. In the unitarity regime, experiments can be per-
formed and the phase diagram can be explored since the
critical temperature for superfluidity is attainable, but an ac-
curate theoretical description of this regime is still lacking.
While in the BEC limit, not only the temperature required to
reach the BEC regime is experimentally achievable, but also
the theory becomes simple since the Fermi-Fermi mixtures
can be described effectively by a weakly interacting mixture
of molecular bosons and excess fermions [22,26,30,31].
However, our initial proposals of such effective Bose-Fermi
mixtures [26] can provide only semiquantitative results for
comparison with experiments in the BEC regime since the
scattering parameters for two molecular bosons and a mo-
lecular boson and an excess fermion are obtained only in the
Born approximation. In order to overcome this deficiency,
we discuss next the boson-fermion and boson-boson scatter-
ing parameters beyond the Born approximation for arbitrary
mass ratio. The correct scattering parameters will be used in
Sec. IV C to construct phase diagrams and density profiles
for quantitative comparisons with experiments in the BEC
regime.

III. BOSON-FERMION AND BOSON-BOSON SCATTERING
LENGTHS

Mixtures of two types of fermions in the strong attraction
limit can be described by effective Bose-Fermi models
[22,26,30,31], where fermion pairs behave as molecular
bosons and interact weakly with each other and with excess
unpaired fermions. Scattering lengths between two molecular
bosons (agg), and between a molecular boson and an excess
fermion (agy) were calculated in the Born approximation us-
ing diagrammatic techniques for equal [13] and unequal
masses [26,30]. However, these results do not agree with
calculations using few body techniques [35,36], because it is
necessary to go beyond the Born approximation.

In the case of fermion mixtures with equal masses, while
the Born approximation in many body theory leads to agp
=2ay [13] and agp=8ay/3 [22,26], the results from few body
techniques are agp=0.60ay [35] and agzp=1.18a; [37].
However, a diagrammatic approach beyond the Born ap-
proximation [38,39] for equal mass fermions recovers the
few body results. In this section, we generalize these dia-
grammatic approaches and analyze the boson-fermion and
boson-boson scattering parameters for two types of fermions
with unequal masses in order to make quantitative predic-
tions for experiments involving Fermi-Fermi mixtures in the
strong attraction limit. Here, we show that the diagrammatic
approach for unequal mass fermions produce results consis-
tent with three and four body techniques that were recently
used to obtain apzr and agp as a function of mass ratio
[35,36].

We would like to emphasize that our diagrammatic calcu-
lation for the scattering parameters of the three and four body
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FIG. 1. Diagrammatic representation of the integral equation for
the boson-fermion scattering 7 matrix TﬁF (p,po). Here, we use the
notation (—1)= and vice versa.

problem is exact. These three and four body diagrammatic
results are sufficient to describe ultracold Fermi-Fermi mix-
tures in the strong attraction limit, since experiments are al-
ways performed at low densities. However, the calculation of
scattering parameters for three and four fermions in the pres-
ence of many others (arbitrary density) is much more diffi-
cult, and is not discussed here.

We analyze the technical aspects of the boson-fermion
scattering parameter for unequal mass fermions in some de-
tail, since they are much easier to present, while we do not
discuss in great detail the technical aspects of the boson-
boson scattering parameter for unequal masses, as they are
extremely cumbersome. Detailed descriptions of the boson-
fermion and boson-boson scattering parameters for equal
mass fermions can be found in the literature [38,39].

We begin our analysis by describing a zero temperature
(T=0) diagrammatic representation for the boson-fermion
scattering T matrix 7%’ (p,po) as shown in Fig. 1, where
wp=k*/(2my) and wp=k?/(2my) are the kinetic energies for
the excess fermions and molecular bosons, respectively, and
€,=—1/(m; la%)<0 is the binding energy of the molecular
bosons. Here,

mp=m;+m, (2)
2mwm

mNZ_u_ (3)
mT+mL

are masses of the molecular bosons and twice the reduced
mass of the T and | fermions, respectively. In this figure,
single lines represent retarded free fermion propagators

1

Gy, kw)=—"""—",
0(kow) W=wg,+ ,+i0*

4)
where w,=k?/(2m,) is the energy and wu, is the chemical
potential of the o-type fermions. Similarly double lines rep-
resent the retarded molecular boson propagators

32
47T/mTl

—(WB—W—M—M

Dy(k,w) = le,|!"2 —i0")1”? (5)
obtained from the expansion of the effective action [26,30],
and a corresponding random-phase approximation (RPA) re-
summation of the fermion polarization bubbles leading to

Dy(k,w)=-g/[1+gl'(k,w)] where the fermion polarization
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bubble is I'(k,w)=2,, Gy ,(k+q,w+q¢)Go o(-q.—¢o). In-
tegration over the internal momentum q and frequency ¢
leads to  T(k,w)=T(0,0)+[m]}/(4m)](wz—w—pm—p,
—i0")"2 which in combination with the definition of the
fermion-fermion scattering length az=m; T"%(0,0)/4, and
the fermion-fermion 7 matrix 777(0,0)=-g/[1+¢I'(0,0)]
lead to the final result described in Eq. (5).

On the right hand side of Fig. 1, the first diagram repre-
sents a fermion exchange process, and all other (infinitely
many) possible processes are included in the second dia-
gram. In all diagrams, we choose T(]) to label lighter
(heavier) fermions such that lighter (heavier) fermions are in
excess when F=1(F=|). This choice spans all possible
mass ratios. In the following, we set u,=0 since all of the
calculations are performed for three fermions scattering in
vacuum. The T matrix T (p,p,) satisfies the following in-
tegral equation

Ty (p.po) == Go_p(K + P.wp — Wi+ €+ po)

~ 2 Do(q.wg+ €+ 90)Go r(—= 4, wp = qo)
q.9¢

X T (q,q0)Go (P + QW5 — Wr + €,+ Py + o),

(6)

where we used (—7)=| and vice versa, and E‘Mo
=ifdqdg,/(27)*. On the right hand side, we can sum over
frequency g, by closing the integration contour in the upper
half-plane, where T}’ (q,qo) and Dy(q,wg+€,+q,) are ana-
lytic functions of ¢, Since this integration sets ¢q
=k*/(2mp)—q*/ (2my), we set po=k*/ (2mg)—p*/ (2my) in or-
der to have the same frequency dependence for the 7" matrix
on both sides [39]. Since we are interested in the zero-range
low energy s-wave scattering, we average out the angular
dependences of k and p. When k— 0, the generalized inte-
gral equation defined in Eq. (7) can be expressed in terms of
the boson-fermion scattering function a,_q(p) as

mNagF(P)/mBF

-1 2 )
agp + (my p“Imgp+ay

)1/2

_ 1 m fo@
pPrap 2mmply qp

q2 + 2mpgp/mpg + p2 + a;z
X1n

z)aﬁF(q>. (7)

q2 - 2mpgp/mp + p2 +ar

Here, we used the definition of the boson-fermion scattering
length

2 52

BF Mmpr (P —k

a; (p)= 3/2|:|6b|1/ +< "
myy

172
- Eb) :| TlljF(p) > (8)

BF

with its full momentum dependence, where mp is twice the
reduced mass of an excess fermion and a molecular boson
given by
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FIG. 2. The boson-fermion scattering length a5’ (0)/ay versus
mass anisotropy n1;/m is shown in (a) when lighter -type (hollow
circles) or heavier (solid circles) |-type fermions are in excess. The
boson-boson scattering length a®8(0)/ay versus mass anisotropy
my/m is shown in (b). In addition, the scattering lengths in the
Born approximation are shown as solid lines.

Mpp="""". )

The integral equation shown in Eq. (7) as well as the scat-
tering length expression shown in Eq. (8) reduce to the re-
sults for the equal masses [38,39] when m;=m =m. Notice
that only the fermion exchange process is taken into account
in the Born approximation, and that neglecting the second
term on the right hand side of Eq. (7) leads to af"(0)
=2(mpp/my)ap which is consistent with our previous results
[26,30]. However, we need to include both terms in order to
find the exact boson-fermion scattering length.

Next, we solve numerically the integral equation given in
Eq. (7), and obtain agF (p) as a function of the mass aniso-
tropy m;/m,. The exact solutions and the Born approxima-
tion values of aj’ (0) are shown in Fig. 2(a). When my=m,,
we find ag (0)=1.179a, which is consistent with results
previously found for equal masses [31,35-39]. Notice that
aOBF (0) decreases (increases) from this value with increasing
mass anisotropy when the lighter (heavier) fermions are in
excess. In addition, in the limit of m/m— 0, while agF (0)
— ay when the lighter fermions are in excess, ag’ (0) grows
rapidly when the heavier fermions are in excess. Notice also
that the Born approximation values for agF (0) are not in
agreement with the exact values for any mass anisotropy, but
the general qualitative trends are captured by the Born ap-
proximation as can be seen from Fig. 2(a).

In addition, we present results for a?5(0) as a function of
mass anisotropy m,/m, in Fig. 2(b). The exact results of the
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TABLE 1. Exact boson-boson (agg) and boson-fermion (agr)
scattering lengths for a list of two-species Fermi-Fermi mixtures.
Here, ap; (ag|) corresponds to excess type of 1 () fermions.

T l my/m applar agi/ap ag|lagp
°Li °Li 1.000 0.593 1.179 1.179
°Li 40 0.150 0.695 1.010 1.984
°Li 873r 0.068 1.123 1.003 2512
°Li 7yp 0.035 — 1.001 3.023
40K g 1.000 0.593 1.179 1.179
40K 875r 0.460 0.597 1.064 1411
40K 7yp 0.234 0.629 1.022 1.723
87y 87y 1.000 0.593 1.179 1.179
87y yp 0.508 0.599 1.073 1.374
yp yp 1.000 0.593 1.179 1.179

boson-boson scattering parameters for unequal mass fermi-
ons can be obtained either by extending the diagrammatic
approach for equal mass fermions [38,39] or by using few
body techniques [35]. The Born approximation values
aP#(0)=(mp/m;)ar are found in Refs. [26,30]. Since the
technical details to calculate the boson-boson scattering pa-
rameters are quite cumbersome, and not particularly illumi-
nating, here we just mention that the results found in the
literature [35] can also be obtained diagrammatically for the
unequal mass case. As shown in Fig. 2(b), a®2(0) grows very
slowly as the mass ratio m;/m| decreases, in contrast with
the much more rapid growth of the Born approximation val-
ues of a®8(0). As expected, the Born approximation values of
aP(0) are not in agreement with the exact values for any
mass anisotropy.

Several atomic gases of fermions (°Li, *°K, ¥Sr [40], and
7'yb [41]) are currently being investigated, and experimen-
tal methods for studying mixtures of two types of fermions
are being developed in several groups. Thus, anticipating fu-
ture experiments involving mixtures of two types of fermi-
ons, we show in Table I the boson-fermion and boson-boson
scattering lengths for a few mixtures.

Here, we make two comments. First, it is quite remark-
able that the diagrammatic approach recovers the few body
results for boson-fermion and boson-boson scattering lengths
for arbitrary mass ratio m;/m,. The diagrammatic approach
is performed in momentum space, while the few body ap-
proach is performed in real space. The two methods are
equivalent because all of the possible scattering processes are
taken into account exactly in the diagrammatic approach at
T=0 for three or four fermions. However, the calculation of
the scattering parameters for three or four fermions in the
presence of many others (arbitrary number of particles) at
zero or finite temperatures requires a full many body ap-
proach, which is inevitably approximate and more difficult to
implement. Second, our analysis does not include the effects
related to Efimov (three body bound) states, which may be-
come important when analyzing the scattering parameters as
a function of mass ratio m/m [36]. In particular, the mix-
tures of °Li and ¥’Sr or °Li and '7'Yb have mass ratios of
my;/ mg,~0.068 and my;/my,=0.035, which are below the
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critical ratio m;/m;=~0.073 for the emergence of Efimov
states.

Having presented the boson-fermion and boson-boson
scattering lengths for arbitrary mass ratio m/m, we discuss
next the resulting phase diagrams for Fermi-Fermi mixtures
in the strong attraction limit, where the system can be effec-
tively described by a Bose-Fermi mixture [22,26,30,31] of
molecular bosons and excess unpaired fermions.

IV. BOSE-FERMI MIXTURES AT ZERO TEMPERATURE

In this section we use the effective Bose-Fermi mixture
description [22,26,31] to analyze the phase diagram of popu-
lation imbalanced Fermi-Fermi mixtures in the strong attrac-
tion limit. We describe first the general stability conditions
for Bose-Fermi mixtures at zero temperature, and use this
connection to discuss the stability and phase diagrams of
Fermi-Fermi mixtures in the strong attraction limit.

A. Weakly interacting atomic Bose-Fermi mixtures

The ground state of Bose-Fermi mixtures can be de-
scribed by the free energy density [30,42]

Upgpn’
g=geptept % + Upphpng — ppnp — ppnp,  (10)
which characterizes the center-of-mass degrees of freedom
for a mixture of single-hyperfine-state bosons and fermions.
Here wy and np (up and ng) are the density and chemical
potential of fermions (bosons), € is the Fermi energy of the
fermions, and Ugp and Upgp are the repulsive boson-boson
and boson-fermion interaction strengths, which have dimen-
sions of energy times volume in 3D. The density of single-
hyperfine-state fermions in three dimensions is given by np
=(1/V)Sk=kr1=k3/ (6%), where kp is the Fermi momen-
tum and V is the volume. The first term in Eq. (10) is the
total kinetic energy of bosons, which is assumed to be much
smaller than all other energies, and is neglected. This as-
sumption is very good since essentially all bosons are con-
densed in the k=0 state, when the boson-boson and boson-
fermion interactions are weak. The second term in Eq. (10) is
the total kinetic energy of fermions, which in three dimen-
sions is given by ep=(1/V)ZK*rg =3emp/5, where
fk,F=|k|2/(2mF)-

From the free energy given in Eq. (10), we obtain the
fermion and boson chemical potentials using the condition
de/dn;=0 with i ={F, B}, leading to

r=€p+ Uppng, (11)

mp=Uppng+ Uppng. (12)
Then, we use the positive definiteness of the Bose-Fermi
compressibility matrix «; j=du;/ dn;,
g d I o,
ORroBE _ THRETHB (13)
&nF (7”13 5’13 (?nF

and find that bosons and fermions phase separate when the
condition
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4773
np= 4—72% (3D) (14)
3my Upp
is satisfied in three-dimensional systems [30,42]. Therefore,
the stability of uniform superfluidity puts an upper limit on
the density of fermions in three-dimensions.

Following a similar approach in lower dimensions, where
npzk?:/ (47r) and ep=€mp/2 in two dimensions, and np
=kp/m and ep=€pny/3 in one dimension, we find that the
bosons and the fermions phase separate when the conditions

my U>
1< L= (2D) (15)
2’7TUBB
mFUlziF
np=——, (1D 16
. (1D) (16)

are satisfied, respectively, for two- and one-dimensional sys-
tems. Notice that the stability of uniform superfluidity puts a
lower limit in one dimension, which is in sharp contrast with
the three-dimensional result. Furthermore, the stability con-
dition in two dimensions does not depend explicitly on the
density of fermions (see also Ref. [43]). However, the results
in lower dimensions have to be used with caution, since
quantum fluctuations are more pronounced, and may affect
these stability conditions.

For an atomic Bose-Fermi mixture, we can also describe
analytically a finer structure of phases. There are four pos-
sible phases [42]: (i) PS(1) where there is phase separation
between pure fermions and pure bosons; (ii) PS(2) where
there is phase separation between pure fermions, and a mix-
ture of fermions and bosons; (iii) PS(3) where there is phase
separation between pure bosons, and a mixture of fermions
and bosons; and (iv) PS(4) where there is phase separation
between two different mixtures of fermions and bosons.

For a three-dimensional weakly interacting Bose-Fermi
mixture, we follow Ref. [42] and find that there are only two
stable phases within the phase separation region: (i) PS(1)
where there is phase separation between pure fermions and
pure bosons, and (ii) PS(2) where there is phase separation
between pure fermions, and a mixture of fermions and
bosons. We obtain analytically the condition

11257 Uy 5 Upg

- ——n S
128m) US4 Ugp ©

np= (3D) (17)

for the transition from the PS(2) to the PS(1) phase [30].

In lower dimensions, we find that the structure of the
phase diagram is quite different. In two dimensions, the
phase separated region consists only of PS(1) where there is
phase separation between pure fermions and pure bosons.
While, for a one-dimensional weakly interacting Bose-Fermi
mixture, the phase-separated region consists also of two re-
gions: (i) PS(1) where there is phase separation between pure
fermions and pure bosons, and (iii) PS(3) where there is
phase separation between pure bosons, and a mixture of fer-
mions and bosons. We obtain analytically the condition
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_3mpUpe  Upp
27w Upy  Upgp

for the transition from the PS(3) to the PS(1) phase. Notice
that the structure of the PS(3) phase in one dimension is very
different from the structure of the PS(2) phase in three di-
mensions. Again, the results in lower dimensions have to be
used with caution, since the quantum fluctuations are more
pronounced, and may affect these stability conditions.

Next, we concentrate only on the three-dimensional case,
and use the stability conditions found above as well as the
interaction (scattering) parameters obtained in Sec. III to
analyze the phase diagrams of Fermi-Fermi mixtures in the
strong attraction limit.

ng, (1D) (18)

np

B. Fermi-Fermi mixtures in the strong attraction limit

To make an analogy between Bose-Fermi mixtures and
population imbalanced Fermi-Fermi mixtures in the strong
attraction limit, we identify F={] or |} as the excess fermi-
ons. This identification leads to the density of excess fermi-
ons (ng) and molecular bosons (ng) given by

; (19)

nE=nF—n_F=|nT—nl

n—ng

2 =n_r, (20)

np=
respectively, where n=n;+n| is the total density of T- and
|-type fermions. Here, we use (—7)= and vice versa. For
instance, if F=7 fermions are in excess, the density of ex-
cess fermions and molecular bosons are np=n;—n and ng
=(n—-ng)/2=n, respectively, such that all |-type fermions
are paired with some of the T-type fermions to form molecu-
lar bosons, but there are T-type fermions left unpaired. It is
important to emphasize that the internal degrees of freedom
(electronic, vibrational, and rotational) of molecular bosons
are not explicitly considered here, in the same spirit of the
description of atomic bosons presented in Sec. IV A, where
the electronic degrees of freedom were also not explicitly
considered.
For three dimensions, we define the boson-boson and
boson-fermion interaction strengths

dmaggy 4Typ
—a

BB = = F> (21)
mpg mpg
4a 4mB

UBF = BE = Fap, (22)
mpp mpp

where ap, agp=7ypap, and agp=Brap are the fermion-
fermion, boson-boson, and boson-fermion scattering lengths.
Here, yg=agp/ar and Bp=agp/ayp are constants, which are
found in Sec. III as shown in Fig. 2 and Table I. In addition,
we define the population imbalance parameter

Ny =N,

TN +N,

i’lT - l’ll
=——, 23
such that |P|=ng/n, and n=K;/(377), where N, is the num-
ber of o-type fermions and K is the Fermi momentum cor-
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responding to the total density of fermions defined by K;
=(kp, +kp. 1) /2.

Using these definitions, the phase separation condition
Eq. (14) becomes

™ ymS
|H>—%%%M, (24)
16pmpmy:
where N=1/(Kpay) is the scattering parameter. Similarly, the
condition given in Eq. (17) becomes

|P|<1 _ SVBmBF) - 337577'37?3’"?;1? 3 5ygmpr
8Bpimy 81928%mym;. 8 Bpimy

for the transition from the PS(2) to the PS(1) phase.

We emphasize that these analytic expressions given in
Eqgs. (24) and (25) are valid only in the strong attraction limit
when 1/(Kpap)> 1, but they may still give semiquantitative
results for 1/(Kpar)=1. Close to the unitarity, the Bose-
Fermi description of Fermi-Fermi mixtures in terms of mo-
lecular bosons and excess fermions is not reliable, since the
binding energy of molecular bosons is small and the interac-
tions between molecular bosons and excess fermions or be-
tween two molecular bosons may be sufficient to cause dis-
sociation of the molecules into directly scattering fermions.
However, there may be an intermediate regime between uni-
tarity and the strict BEC limit where we can describe Fermi-
Fermi mixtures in terms of a mixture of molecular bosons
and excess fermions such that the molecular bosons can dis-
sociate due to boson-boson or boson-fermion interactions,
but be in chemical equilibrium with excess fermions. When
dissociation of molecular bosons is included, the system is
no longer a binary mixture of molecular bosons and excess
fermions, but a ternary mixture of molecular bosons, disso-
ciated bosons (7] =1+ ]), and excess fermions, or effec-
tively a ternary mixture of molecular bosons, and T- and
|-type fermions. In the case of ternary mixtures, there can be
a large number of phase separated regimes. If we confine our
discussion to the equilibrium of a maximum of two phases of
this ternary mixture then several other situations can be en-
countered. For example, when |-type fermions are in excess,
a possible sequence of phases for fixed population imbalance
P and increasing scattering parameter 1/(Kpap) is (1) Nor-
mal phase (N) of partially polarized fermions — (2) mixture
of molecular bosons and T-type fermions phase separated
from partially polarized normal fermions — (3) molecular
bosons phase separated from excess |-type fermions — (4)
mixture of molecular bosons and |-type excess fermions
phase separated from |-type excess fermions — (5) coexist-
ence of molecular bosons and |-type excess fermions.

Therefore, as long as Fermi-Fermi mixtures can be re-
garded as a binary mixture of nondissociated molecular
bosons and excess fermions, the expressions given in Egs.
(24) and (25) may be used as a guide for the boundaries
between phase separated (nonuniform) and the mixed (uni-
form) phases for any mixture of fermions. In particular, Egs.
(24) and (25) may serve as estimators for the phase bound-
aries of equal or unequal mass Fermi-Fermi mixtures with
population imbalance, as discussed next.

. (25)
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FIG. 3. Phase diagram of population imbalance P=(n;
—n|)/(n;+n|) versus scattering parameter 1/(Kgap) for (a) equal
masses when m;=m, and (b) unequal masses when n;=0.15m, in
the BEC side. We show normal (N), uniform superfluid (U), and
phase-separated nonuniform superfluid phases PS(1) and PS(2).

C. Phase diagrams of Fermi-Fermi mixtures in the strong
attraction limit

Among many possibilities of Fermi-Fermi mixtures (see
Table I), we focus our analysis on population imbalanced
mixtures of °Li or “°K atoms where my=m,, and °Li and K
atoms where m;=0.15m,.

In Fig. 3, we show phase diagrams of population imbal-
ance P and scattering parameter 1/(Kpay) for equal mass
mixtures when m;=m,, and for unequal mass mixtures when
m;=0.15m|. In these diagrams, we choose T (]) to label
lighter (heavier) fermions such that lighter (heavier) fermi-
ons are in excess when P>0 (P<0). Although these dia-
grams are strictly valid in the strong attraction limit when
1/(Kpap)>1, they are qualitatively correct when 1/(Kpay)
=1 or as long as the molecular bosons are not dissociated. In
the later case, the system may be approximately described as
a ternary mixture of molecular bosons, - and |-type fermi-
ons and many other phases are possible, as discussed in Sec.
IV B.

In these figures, we show the following phases: (i) the
normal (N) phase corresponding to balanced (P=0) or im-
balanced (P # 0) mixture of unpaired 1- or |-type fermions;
(ii) uniform superfluid (U) phase where paired (molecular
bosons) and unpaired fermions coexist; and (iii) PS nonuni-
form superfluid phases. The PS(1) region labels phase sepa-
ration between pure excess fermions and superfluid molecu-
lar bosons, while the PS(2) region labels phase separation
between pure excess fermions, and a mixture of excess fer-
mions and superfluid molecular bosons. The phase boundary
between U and PS(2) phases is determined from Eq. (24),
and the phase boundary between PS(2) and PS(1) phases is
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FIG. 4. Phase diagram of population imbalance P=(n;
—n))/(ny+n|) versus scattering parameter 1/(Kpar) in the Born
approximation for (a) equal masses when m;=m,, and (b) unequal
masses when m;=0.15m in the BEC side. We show normal (N),
uniform superfluid (U), and phase-separated nonuniform superfluid
phases PS(1) and PS(2).

determined from Eq. (25). For a fixed mass anisotropy, when
|P| is large, we find phase transitions from PS(1)— PS(2)
— U as the interaction strength 1/(Kpay) increases. How-
ever, when |P| is very small, we find a phase transition di-
rectly from the PS(1) to the U phase as 1/(Kpap) increases.

We remark in 8];assing that the ;)hase diagrams for mix-
tures of °Li and *’Sr or °Li and '"'Yb with mass ratios of
my;/ mg,~0.068 and my;/my,=~0.035, which are below the
critical ratio my/m;=~0.073 for the emergence of Efimov
(three body bound) states are much richer, since phase sepa-
ration and coexistence phases involving Efimov states (trim-
ers), molecular bosons and excess fermions are also present.

It is also important to emphasize that since we use the
exact boson-boson and boson-fermion scattering lengths, our
phase diagrams in the strong attraction limit already include
fluctuation corrections beyond the Born approximation. For
comparison, the corresponding phase diagrams within the
Born approximation are described in Fig. 4, where the phase
boundaries in the population imbalance P versus scattering
parameter 1/(Kpay) plane are shown for equal (m;=m ) and
unequal (m,=0.15m ) mass mixtures. A direct comparison of
Figs. 3 and 4 shows that the results beyond the Born approxi-
mation are quantitatively different from the saddle-point re-
sults [19,20] in the equal mass case. These quantitative dif-
ferences become significantly large for unequal mass
mixtures when heavier fermions are in excess [26,30,32,34]
due to the large sensitivity of the exact scattering parameters
on the mass ratio m;/m| as shown in Fig. 2 and Table 1.
However, the same phases are present in both cases, indicat-
ing that the Born approximation captures the basic qualita-
tive features, but fails to produce the phase boundaries quan-
titatively.
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Lastly, we point out the presence of several triple points in
the phase diagrams shown in Figs. 3 and 4. Along the |P|
=1 lines, we find several triple points as 1/(Kpay) increases
where the fully polarized normal phases (P==*1) merge
with (i) the partially polarized normal (N) and the PS(1)
phase; or with (ii) the PS(1) and PS(2) phases; or with (iii)
the PS(2) and U phases. Furthermore, there is also an addi-
tional triple point that occurs for small |P| (iv) where the
phases PS(1), PS(2), and U meet. The precise locations of
these triple points can be obtained for any mass ratio and
scattering parameter from Eqgs. (24) and (25) using the equal
sign (=) condition. The triple point for case (ii) can be ob-
tained by setting |P|=1 in Eq. (25), and the triple point for
case (iii) can be obtained by setting |P|=1 in Eq. (24). Fi-
nally, the triple point for case (iv) can be obtained by using
the equal sign (=) condition of Egs. (24) and (25) and by
solving the two equations simultaneously.

Having analyzed the phase diagrams for nontrapped con-
tinuous systems, we discuss next the effects of the trapping
potential which are necessary to understand experiments in-
volving ultracold Fermi-Fermi mixtures.

V. TRAPPED BOSE-FERMI MIXTURES AT ZERO AND
FINITE TEMPERATURES

In this section, we use again the simpler description of the
effective Bose-Fermi mixture to describe trapped Fermi-
Fermi mixtures in the strong attraction limit. For this pur-
pose, we present first the theory of trapped Bose-Fermi mix-
tures at zero and finite temperatures, and then discuss the
density profiles of trapped Fermi-Fermi mixtures in the
strong attraction limit using the relation between the two
systems described in Sec. IV.

A. Weakly interacting atomic Bose-Fermi mixtures

The Hamiltonian density for a Bose-Fermi mixture in an
external potential can be written as

H(r) = Kp(r) + Vi(r)iip(r) + Kp(r) + Vp(r)iip(r)
+ Upprip(r)iip(r) + (Upp/2)iip(r)iip(r),  (26)

where K,‘(r)zwz(r)[—Vz/ (2m;)— w;]i(r) represents the ki-
netic and chemical potential terms for fermions (i=F) or
bosons (i=B) in a single hyperfine state. Here, 7i;(r)
=1,//,T(r)1,//[(r) represent the local density operators, and Ugp
and Upp represent the boson-fermion and boson-boson inter-
action. The single-hyperfine-state fermions are noninteract-
ing, but obey the Pauli exclusion principle.

For simplicity, we approximate the trapping potential by
an isotropic harmonic function where the potential energy is

Vi(r) = %aiﬂ. (27)
Here, a,:m,wi2 is proportional to the trapping frequency of
bosons (i=B) or fermions (i=F), which is typically differ-
ent for each kind of atom. Since the potential and the inter-
actions are isotropic, the effective potentials and densities
depend only on r=|r
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In the presence of such trapping potentials, the bosons and
fermions feel the effective potentials

Vpei(r) = V(1) + 2Uggnp(r) + Ugpng(r), (28)

Vi et(r) = Vi(r) + Ugpng(r), (29)

respectively, where ng(r) is the local density of fermions, and
ng(r) =ne(r) + nyc(r) (30)

is the total local density of bosons. Here, no(r) and ny(r)
are the density of condensed and noncondensed bosons, re-
spectively.

The number of condensed bosons is determined from the
Gross-Pitaevskii equation leading to

= Vp(r) - 2UBB”NC(V) — Uppnp(r)
Ugg

ne(r) = (31)
within the Thomas-Fermi approximation (TFA), where the
kinetic energy of the bosons is neglected. This relation is
valid when the condition  ug—Vyg(r)=2Uggnyc(r)
—Upgmp(r)=0 is satisfied, otherwise, nq(r)=0.

For a weakly interacting mixture of bosons and fermions,
we may use the Hartree-Fock approximation [44] and treat
both the noncondensed bosons and fermions as moving in
their effective potentials given by Egs. (28) and (29), respec-
tively. Notice that the exact boson-boson and boson-fermion
interactions appear through the effective (renormalized)
chemical potentials in this approximation, which works well
for the weakly interacting and low density systems consid-
ered here. In addition, we assume that noncondensed bosons
are in thermal equilibrium with condensed bosons at the
same chemical potential up. Within these approximations,
the density of noncondensed bosons and fermions are given
by

1
nyc(r) = ‘_/2 b[fk,B — Mgt VB,eff(r)]a (32)
Kk

1
np(r) = ‘_/E fecr—mp+ Veer(r)], (33)
k

where b(x)=1/[exp(x/T)—1] is the Bose, and f(x)
=1/[exp(x/T)+1] is the Fermi distribution. Here, ¢;
=|k|?/(2m;) is the kinetic energy of bosons (i=B) or fermi-
ons (i=F).
Notice that, at zero temperature, all bosons condense such
that ny-(r)=0, and ng(r)=nc(r), leading to
g = Vp(r) = Ugpng(r)

np(r) = Uns , (34)

np(r) = {2mplpp = Vie(r) = Ugpnp(r)]Y?
F - 67T2 >

for the densities of bosons and fermions, respectively [30].
The first expression is valid when the condition ug—Vj(r)
—Ugpnp(r)=0 is satisfied, otherwise, ng(r)=0. The second
expression is valid when the condition up—Vi(r)

(35)
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—Upgnp(r)=0 is satisfied, otherwise, ny(r)=0.

The chemical potentials of bosons and fermions are deter-
mined from fixing the number of bosons and fermions, inde-
pendently, as follows:

N3=fd3rn3(r), (36)

NF:Jd3rnF(r), (37)

where the integration is over all space. Therefore, in order to
find the density profiles for condensed and noncondensed
bosons, as wells as for fermions, we need to solve Egs. (36)
and (37) for up and up self-consistently. Next, we discuss
the density profiles of Fermi-Fermi mixtures in the strong
attraction limit using the effective Bose-Fermi description
presented.

B. Fermi-Fermi mixtures in the strong attraction limit

To make the connection between Bose-Fermi mixtures
and population imbalanced Fermi-Fermi mixtures in the
strong attraction limit, we identify F={] or |} as the excess
fermions. This identification leads to the density of excess
fermions (n;) and molecular bosons (nz) given by

; (38)

ng(r) =np(r) = n_p(r) = [n;(r) = n (r)

r)— r
) =" . (39)
respectively, where n(r)=n(r)+n(r) is the total density of
1- and |-type fermions. Here, we use (—7)=] and vice
versa. For instance, if =1 fermions are in excess, the den-
sity of excess fermions and molecular bosons are ng(r)
=ny(r)-n|(r) and ng(r)=[n(r)=ng(r)]/2=n(r), respec-
tively, such that all |-type fermions are paired with some of
the T-type fermions to form molecular bosons, but there are
T-type fermions left unpaired. In addition, we identify ap
=a;+a|, where a(,=mgwi is different for different atoms.
As an example, we look at the equal mass case mp=m;
=m;=m and mg=m+m;=2m, and solve the self-consistent
relations Egs. (36) and (37) for a two-hyperfine-state mixture
of ®Li only or “°K only. In our numerical analysis, we choose
ap=a;=a =a and az=2a, scattering parameter 1/(Kpar)
=2 and population imbalance parameter P=0.5 such that
ny=3n,. We define a characteristic energy E r=K3/(2m) in
terms of the wave vector Ky and the fermion mass m and
assume it to be the known Fermi energy of a gas of nonin-
teracting fermions in the trapping potential V(r). We scale
the radial distance with the effective Thomas-Fermi (TF) ra-
dius Ry defined by Ep= aRZTF/ 2. With this identification, the
total number of trapped fermions N=(Ez/ wp)’/3, with wp
=\@/m, can be rewritten as N =K13VR3TF/ 24 in terms of K and
Ryp.
Since we are interested also in the temperature depen-
dence of the density profiles, we recall that the critical tem-
perature for Bose-Einstein condensation of a noninteracting
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harmonically trapped Bose gas is Tgpe=wp[Ng/(3)]"7,
where wg=\ag/mg. In our Fermi-Fermi mixture the number
of bosons is Ng=N(1-|P|)/2 expressed in terms of the total
number of fermions N=N;+N, and population imbalance
P=(N;=N|)/N. Using the expression for Np, the expression
of N in terms of Ey and wp, and that wz=w; for equal
masses, we find

el 13
Tyec= 70 Ep=~0518(1-|P)'"Er,  (40)

for the critical BEC temperature, which is valid when
1/(Kpap)— . Here, {(x) is the zeta function and (3)
~1.202. Therefore, for P=0.5, we obtain Tpp-=~041E.
Notice that Tgg- for population imbalance P given in Eq.
(40) is a generalization of the results for equal populations
[45,46].

In Fig. 5, we show the density (in units of K;) of con-
densed (n.) and noncondensed (n,) molecular bosons, and
excess (ng) fermions as a function trap radius r/ Ry for four
temperatures: (a) 7=0, (b) T=0.2E, (c) T=0.35E, and (d)
T=0.41Eg. At zero temperature (7=0), as shown in Fig. 5(a),
we find that all of the molecular bosons are condensed, and
that they are concentrated close to the center of the trap. In
contrast, the majority of excess fermions are pushed away
from the center towards the edges of the trap due to the
repulsive boson-fermion interaction and the high concentra-
tion of condensed molecular bosons. Therefore, there is a
clear indication of phase separation between molecular
bosons and excess fermions. When the temperature is in-
creased to T=0.2E, shown in Fig. 5(b), some of the molecu-
lar bosons are not condensed. These noncondensed molecu-
lar bosons are also pushed away from the center towards the
edges of the trap just like the excess fermions. Further in-
crease in temperature increases (decreases) the number of
noncondensed (condensed) molecular bosons as can be seen
in Fig. 5(c). For temperatures close to Tggc and above, all of
the molecular bosons become noncondensed, as shown in
Fig. 5(d), having a Gaussian-like density distribution. Simi-
larly, the excess fermions also have Gaussian-like density
distribution for temperatures at Tgp- and above due to the
absence of the condensate.

Therefore, at zero temperature, we find that the trapping
potential tends to favor phase separation into a PS(1)-rich
phase where regions of almost pure fermions and almost
pure bosons are separated. However, at finite temperatures,
the system develops a PS(2)-rich phase where regions of
almost pure fermions and of almost fully mixed bosons and
fermions are separated. The region of coexistence of bosons
and fermions can be further broken down into a domain of
coexisting excess fermions with condensed and noncon-
densed bosons, and into a domain of coexisting excess fer-
mions and noncondensed bosons as can be seen in Fig. 5(d).
Again, if the molecular bosons are allowed to dissociate, the
system can be described by a ternary mixture as discussed in
Sec. IV B and the phase diagram can be even richer, espe-
cially closer to the unitarity.

In Fig. 6, we show the density (in units of Kfp) of 1- (ny)
and |-type (n|) fermions as a function of radius r/Ryy for
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FIG. 5. Density (in units of K3) of condensed () and noncon-
densed (nyc) molecular bosons, and excess (ng) fermions versus
trap radius r/Ryp is shown for (a) 7=0, (b) T=02Eg, (c) T
=0.35Ep, and (d) T=0.41Ey. Here, m;=m,, the population imbal-
ance parameter is P=0.5 and the scattering length parameter is
1/(Kpap)=2.

four temperatures: (a) T7=0, (b) T=0.2E, (c) T=0.35E, and
(d) T=0.41E. At zero temperature, as shown in Fig. 6(a), we
find that the density of - and |-type fermions are similar
close to the center of the trapping potential, while some of
the excess-type fermions are close to the edges. When the
temperature increases to T=0.2E; shown in Fig. 6(b) or to
T=0.35E, shown in Fig. 6(c), the density of 7T- and |-type
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FIG. 6. Density (in units of K3F) of 1- (n;) and |-type (n))
fermions versus trap radius r/Rgpp is shown for (a) T=0, (b) T
=0.2EF, (c) T=0.35Ep, and (d) T=0.41E. Here, m;=m,, popula-
tion imbalance parameter is P=0.5 and scattering length parameter
is 1/(Kpap)=2.

fermions become different at the center of the trap. In addi-
tion, both T- and |-type fermions exist towards the edges. At
temperatures close to Tgzc and above, the density profiles of
T- and |-type fermions have the standard shapes of weakly
interacting trapped Fermi gases.

In this section, we have shown that the effective Bose-
Fermi description of Fermi-Fermi mixtures is applicable in
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the strong attraction limit, and thus can provide good quan-
titative comparisons to experiments in the same regime,
since the exact boson-fermion and boson-boson scattering
parameters were used to obtain the phase diagrams and den-
sity profiles. Thus, we think that it is particularly important
to perform experiments for different population imbalances
in the strong attraction limit, where the theory is simple. The
situation is somewhat more complicated near unitarity where
quantitative comparisons between theory and experiment are
more difficult. Furthermore, there are also some differences
between the experimental studies that the Massachusetts In-
stitute of Technology (MIT) [7,9] and Rice University [8,10]
groups performed near unitarity, since the shapes of their
traps and the number of trapped atoms are quite different.

Having concluded the analysis of the effects of trapping
potentials on Fermi-Fermi mixtures in the strong attraction
limit, next we give a summary of our conclusions.

VI. CONCLUSIONS

In summary, we used the effective Bose-Fermi mixture
description to obtain the phase diagrams of Fermi-Fermi
mixtures with equal or unequal masses and equal or unequal
populations in the strong attraction limit. For this purpose,
we analyzed first the exact boson-fermion and boson-boson
scattering lengths as a function of mass anisotropy, and then
we constructed the phase diagrams of Fermi-Fermi mixtures
in the BEC regime.

We showed that three-dimensional nontrapped fermion
mixtures with population imbalance exhibit phase separation
in addition to the normal polarized mixture of fermions and
uniform mixture of superfluid and excess fermions. In the
BEC regime, we found two different nonuniform phase-
separated states: PS(1), where there is phase separation be-
tween pure unpaired (excess) and pure paired fermions (mo-
lecular bosons); and PS(2), where there is phase separation
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between pure excess fermions and a mixture of excess fer-
mions and molecular bosons. For equal mass mixtures, our
results for the phase boundaries are quantitatively different
from previous saddle-point results, and these quantitative
differences become more pronounced for unequal mass mix-
tures when heavier fermions are in excess, indicating the
importance of taking into account scattering processes be-
yond the Born approximation.

We also discussed the effects of trapping potentials on the
density profiles of condensed and noncondensed molecular
bosons, and excess fermions at zero and finite temperatures.
At zero temperature, we found that almost all of the con-
densed bosons are at the center of the trap, while the excess
fermions are pushed to the edges due to the repulsive boson-
fermion interactions. At finite temperatures, we found that
noncondensed pairs and excess fermions are created at the
center of the trap at the expense of an overall reduction of
condensed bosons. Finally, at temperatures above the BEC
temperature, the number of condensed bosons vanish, and
the system becomes a mixture of weakly interacting noncon-
densed bosons and excess fermions. Finally, we discussed
that our findings can provide good quantitative comparisons
to experiments performed in the same regime of validity of
the theory (BEC regime), since the boson-fermion and
boson-boson scattering parameters that enter our calculations
are exact in the dilute limit.

Lastly, we think that it is important to perform experi-
ments with Fermi-Fermi mixtures in the strong attraction
limit (BEC regime) where the theoretical description is
simple. In this limit, additional superfluid and normal phases
and richer density profiles proposed here can be observed,
and directly compared with the theory.
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