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Abstract. Recent advances in quantum key distribution (QKD) have given rise
to systems that operate at transmission periods significantly shorter than the
dead times of their component single-photon detectors. As systems continue to
increase in transmission rate, security concerns associated with detector dead
times can limit the production rate of sifted bits. We present a model of high-
speed QKD in this limit that identifies an optimum transmission rate for a system
with given link loss and detector response characteristics.

Contents

1. Introduction 2
2. Problems encountered in the high-speed regime 2
3. Secure high-speed QKD 5
4. The sifted-bit rate in high-speed QKD 10
5. Hardware approaches to addressing dead-time effects 11
6. Conclusions 12
References 13

3 Author to whom any correspondence should be addressed.

New Journal of Physics 9 (2007) 319 PII: S1367-2630(07)52762-X
1367-2630/07/010319+13$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:protect �egingroup catcode ` active def  { }catcode `%active let %%let %%catcode `#active def 
mailto:drogers2@umd.edu
mailto:protect �egingroup catcode ` active def  { }catcode `%active let %%let %%catcode `#active def 
http://www.njp.org/


2

1. Introduction

Recently, there has been interest in developing single-photon quantum key distribution (QKD)
systems that can support one-time-pad encryption at bit rates consistent with broadband
telecommunications [1]–[6]. While the range over which secret cryptographic keys can be
produced by a QKD system is bounded by noise and losses in the quantum channel, below
this bound it is generally true that an increase in the quantum-channel transmission rate results
in an increase in the secret-key production rate [7]. For a given distance-bandwidth product,
it is therefore possible to increase the range of continuous one-time-pad encryption services
by increasing the quantum-channel transmission rate [8]. This approach has motivated the
development of QKD systems operating at the highest transmission rate supported by better
detector timing resolution. Improvements in detector timing jitter, particularly in silicon single-
photon avalanche photodiodes (SPADs) [9], have enabled the demonstration of systems with
transmission rates above 1 GHz.

Silicon SPADs have a finite recovery time,τ , that is typically of the order of 100 ns. This
interval, known as the dead time, is the period after each detection event during which the
device does not respond to another incident photon. The dead time occurs after a detection
event triggers an avalanche in the SPAD. The amplified avalanche current must be quenched
and free charge carriers must be removed from the SPAD before it can be reset to its active state.
This process limits the maximum count rate of such devices to less thanτ−1. It is worthwhile
to note that while superconducting single-photon detectors (SSPDs) can support significantly
higher count rates, they exhibit finite reset times due to kinetic inductance, albeit in the range
of 1–10 ns [10]. For most QKD systems, dead-time effects are reasonably assumed to have a
negligible impact on overall performance; typical transmission rates,ρTX, and link losses,L, are
such that most systems operate in a regime where the detection rate is low with respect to the
maximum count rate, i.e.ρRX � τ−1. As the rates of transmission and key production increase
however, QKD systems will move out of this regime. In this article, we present a model of QKD
in the BB84 protocol [11] that describes both the count-rate limitations and the security issues
that arise as key production rates increase withρTX. We find that for given values ofL andτ ,
there is a transmission rate that maximizes the sifted-bit rate. Contrary to naïve intuition, this
maximum sifted-bit rate can be significantly greater than(2τ)−1.

In section2, we describe how dead-time effects compromise secure QKD if transmission
speeds are increased inattentively. Section3 describes the secure operation of a high-speed
QKD system, and presents an analytic model that characterizes the sifted-bit rate in terms of
the link parameters. Section4 gives specific results of this model, which are confirmed by
Monte-Carlo simulations. Section5 describes additional hardware-based solutions to dead-time
related issues.

2. Problems encountered in the high-speed regime

The most common detector configuration for QKD in the BB84 protocol is one in which the
receiver, Bob, has a separate single-photon detector for each bit value in each basis. We restrict
our discussion to this configuration and further assume that the detectors are free-running
SPADs whose low noise allows them to be used without active gating. This is often the case
in free-space QKD systems and fiber QKD systems with up-conversion detectors [1]–[6].
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Figure 1. Bit-value transition probability versus the number of transmission
periods per dead time for two values of the link loss. The sifted bits used here
were produced by Monte-Carlo simulation and clearly demonstrate the onset of
dead-time effects at transmission ratesρTX > τ−1.

In this configuration, when the quantum-channel transmission rate satisfiesρTX > τ−1

photons can arrive and be detected at the receiver at a time when one or more of the SPADs is
recovering from a prior detection event. If two such detection events occur in the same basis they
necessarily correspond to opposite bit values and are completely correlated [12]. We address
this obviously critical operational concern in the next section. For the purpose of demonstrating
the influence of this effect, let us briefly consider an inappropriate implementation of high-
speed QKD in whichρTX is increased with complete disregard for the dead time, whileL and
τ remain constant, and measure the correlations induced in the resulting bit string. Although
it seriously underestimates the extent to which information is available to an eavesdropper,
a common statistical measure of correlations in the sifted-bit string is the probability that
two adjacent bits in the sifted-bit string will have different values. This transition probability,
Ptrans, is

Ptrans=
1

N − 1

N−1∑
i =1

[(bit[i ] + bit[ i + 1]) mod2], (1)

where bit[i] is the ith bit in the sifted-bit string,N is the total number of sifted bits and the
addition is performed modulo 2. From the description above, asρTX increases,Ptranswill tend to
increase from 0.5 for uncorrelated bits. These dead-time induced correlations are demonstrated
in figure 1, which shows results from a Monte-Carlo simulation of traditional BB84 QKD
without applying any techniques to mitigate the effects of the detector dead time. ClearlyPtrans

increases from 0.5 as the number of transmission periods per dead time, k≡ τρTX, increases
above 1, approaching a value of 0.622 for BB84 as configured above. Increasing the link loss,
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Table 1. Individual transition probabilities for each detection sequence. Boldface
indicates a detection event that corresponds to a ‘0’ bit value.

Detection sequence Transition probability
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thereby reducing the count rate at the receiver, reduces the value ofPtrans but does not insulate
the system from dead-time effects.

The asymptotic value of 0.622 is unique to BB84 with four detectors and can be understood
from the following calculation [13]. At high photon-arrival rates, detection events tend to occur
in fixed sequences; the detectors recover and then fire again in order. Without loss of generality,
we arbitrarily choose one detector to produce the first sifted bit. After this event there are six
possible detection sequences, which are listed in table1. Consider as an example the detection
sequence 1-3-4-2, with detectors 1 and 3 representing bit value ‘1’ in their respective bases and
detectors 2 and 4 representing ‘0’ in their respective bases. For this ordering, the probability,
P3, that the next detection event on detector 3 will produce the next sifted bit isP3 = (1/2)1.
Similarly, P4 = (1/2)2 P2 = (1/2)3, P1 = (1/2)4 and so on, are the probabilities that detectors
4, 2 and 1, respectively will produce the next sifted bitafter detector 1 produces the first sifted
bit (i.e. all detection events in between arenot included in the sifted key). Given the sifted-bit
value of ‘1’ from the first detection event and the subsequent infinite sequence of the 1-3-4-2
firing order, we calculate the probability that next sifted bit is a ‘0’ to be:

P1342(0) =

∞∑
n=0

[(
1

2

)2

+

(
1

2

)3
](

1

2

)4n

=
2

5
. (2)

Repeating this calculation for all six possible sequences gives us the individual transition
probabilities for each of the six detection sequences, shown in table1. Since each sequence is
equally likely to occur within a long sifted key, we average the resulting transition probabilities
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to obtain

P(0) =
1

6

(
2

3
+

4

5
+

2

5
+

2

5
+

4

5
+

2

3

)
= 0.622. (3)

3. Secure high-speed QKD

Since Eve, the iniquitous eavesdropper, has access to the classical channel, she knows when
bits are detected and in which basis they are sifted. As discussed above, when sequences of
two or more detection events occur in a single basis with spacing less than the dead time, the
detectors within a single basis fire alternately. This phenomenon provides Eve with nearly all
of the information about the sifted bit string except for one bit representing which detector fired
first within a given basis. Therefore, such detection sequences, regardless of their length, can
produce at most a single sifted bit. In other words, production of a sifted bit from a detection
sequence of any length requires that the detection sequence begin when both detectors in a
given basis are active. This requirement is necessary for the secure operation of a QKD system
at transmission ratesρTX > τ−1 and must be imposed on the receiver either by some means
of gating the detectors or by the sifting algorithm. We find the software solution to be both
more practical and more efficient; we discuss active-gating and other hardware-based schemes
in section5.

In the low-count-rate regime the sifted-bit rate increases with the transmission rate. As the
count rate at the receiver increases, the likelihood of closely spaced detection events in a single
basis also increases. Continued increases in transmission rate eventually result in longer and
longer detection sequences, each of which can result in at most a single sifted bit. This effect
tends to reduce and eventually outweigh the potential improvement in sifted-bit rate gained
by increasing the transmission rate. The model we present below shows that, for a given link
loss and detector dead time, these competing effects create an optimum transmission rate above
which further increasing the transmission rate results in a decrease in the sifted-bit rate.

We can calculate the probability that both detectors in a given basis are active when a
photon is detected with the state-space model shown in figure2. In this two-dimensional model,
the state of one of the receiver’s bases, in this case the H–V basis, is quantified by how many
clock periods need to pass before each detector in the basis is active, e.g. the state (3, 7) would
denote that the H detector is three clock cycles away from being alive while the V detector is
seven. Assuming that the two detectors have the same dead time, the state space ranges from
0 to k= τρTX, as shown. On each transmission period, or clock cycle, a given detector either
moves one period closer to recovery, or, if already active, the detector remains so or undergoes
a detection event and movesk periods away from recovery. The probability that both detectors
are active is given by the probabilityP0,0 that the basis is in the state (0, 0).

To quantify the probability of having a detection event during a given clock cycle, we find
it useful to define a link loss parameterp ≡ L/8, whereL is the probability that a transmission
event at Alice is detected at Bob (the detectors are assumed to be identical). The factor of 8
accounts for Bob’s basis choice (1/2), and Alice’s state choice (1/4). Therefore, ignoring noise,
p represents the probability that a particular detector produces a sifted bit on a given clock cycle.
It should be noted that this particular definition incorporates all losses, including attenuation
along the optical path, detector inefficiencies and even empty pulses due to a mean photon
number less than unity. This overarching loss parameter then directly relates the transmission
rate at Alice with the detection rate at Bob. Note that this analysis is thus parameterized in
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Figure 2. The state of Bob’s H–V detection basis depicting a hypothetical
detection sequence and associated probabilities. The size of the space is
determined by the value ofk, in this case chosen to be 8. Note that, although
they are depicted, the diagonal states are not accessible in the absence of noise,
since they can only result from the simultaneous detection of the same photon
by both detectors.

the transmission rate rather than the mean photon number. While the mean photon number is
an important design parameter, the transmission rate is in fact more relevant to the analysis of
dead-time effects. In fact, one can imagine a QKD system that transmits atρTX < τ−1 with link
losses such that the photon arrival rate at Bob is equal to that of another system operating at a
transmission rateρTX > τ−1, but with higher link losses. Only the latter of these two systems
would exhibit the dead-time effects addressed by this analysis.

Given this definition ofp, the probability that a particular detector fires on a given clock
cycle is 2p. As an example, we calculate the likelihood of the hypothetical detection sequence
shown in figure2.

This sequence starts with a detection event on the ‘V’ detector with probability 2p, moving
the basis from the origin to the state (0,k). For the next four clock cycles the ‘H’; detector
does not fire with probability (1− 2p)4, followed by a detection event on the ‘H’ detector
with probability 2p. The basis is now in the state (k, 3) and both detectors are inactive. The
state evolves with unity probability for three clock cycles until the ‘V’ detector recovers, and
then returns to the origin as the ‘V’; detector does not fire for the next five clock cycles
with likelihood (1− 2p)5. The probability of this particular hypothetical detection sequence
is therefore(2p)2(1− 2p)9.

The state-space picture allows us to calculate the probabilityP0,0 that a given basis is in the
state (0, 0) as follows. We can write the probability that both detectors are active at the(n + 1)
clock cycle as

Pn+1
0,0 = (1− 4p) Pn

0,0 + (1− 2p) Pn
0,1 + (1− 2p) Pn

1,0, (4)

where the first term represents the probability of no detection events occurring and the next two
terms represent recovery from the (0, 1) and (1, 0) states, respectively. We ignore recovery from
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the state (1, 1) because such diagonal states require simultaneous detection events that will not
occur in the absence of noise. In steady state, we drop the superscript and note that with random
signals and identical detectors the steady-state behaviors of the H and V detectors are the same,
allowing us to writeP0,1 = P1,0 = P1. Thus, we find

P1 =

(
2p

1− 2p

)
P0,0. (5)

By the same argument one can write the probabilitiesPk,0 = P0,k = Pk as

Pk = (2p) P0,0 + (2p) P1, (6)

which, with substitution forP0,0 from (5), reveals thatPk = P1. In fact, similar calculations
forP1,0,P2,0, etc, show that all the states lying upon the axes, of which there are 2k, have the
same steady-state probabilityP1.

The states not lying on one of the axes represent instances when both detectors are dead.
Omitting the states along the diagonal, the internal states are only accessible from one of the
on-axis states. Since the on-axis states are all of equal probability one can show that the internal
states, of which there are(k2

− k), are also of equal probability, in this case(2p)P1.
The expressions above represent the steady-state probabilities of the basis being in each of

the states in the entire state space. We normalize the sum of these probabilities, giving

P0,0 + (2k) P1 +
(
k2

− k
)
(2p) P1 = 1. (7)

Substituting forP1 from (5) and solving forP0,0, we obtain the steady-state probability that both
detectors are alive for a given transmission event, as a function ofp andk:

P0,0 (p, k) =

[
1 +(2k)

(
2p

1− 2p

)
+
(
k2

− k
) ( (2p)2

1− 2p

)]−1

. (8)

As stated above, a detection sequence can only produce a sifted bit from events that occur
when both detectors are alive. Therefore,P0,0(p, k) should be used as an additional factor in
the calculation of a system’s sifted-bit rate.P0,0(p, k) is shown in figure3 as a function of the
normalized transmission ratek, for three values of the link lossL = 8p. It can be seen that as
the transmission rate is increasedP0,0(p, k) begins to roll off, approaching zero ask−2 at high
count rates. The roll-off ofP0,0(p, k) marks the onset of dead-time effects and the departure
from the low-count-rate regime.

The behavior ofP0,0(p, k) in the high-count-rate regime illuminates a characteristic unique
to operation of QKD systems at transmission ratesρTX > τ−1. From the standpoint of producing
sifted bits, when the pair of SPADs in a given basis is considered as a whole, the QKD
receiver becomes what is known as a paralyzable counter [13]–[15]. Signals that arrive at
a paralyzable counter during recovery, though not counted, extend the necessary recovery
time [15]. In contrast, non-paralyzable counting systems recover from each counting event
regardless of signals that arrive during the dead time. Taken individually, SPADs are non-
paralyzable detectors; with the exception of counts that occur just as the detector comes
alive (referred to as ‘twilight counts’ in [16]), when the bias voltage is below the breakdown
voltage, photons that arrive during the dead time have no significant effect on the detector.
It is worthwhile to note that the response of paralyzable and non-paralyzable systems exhibit
significant differences only in the regime of high count rates [15], and paralyzability has become
relevant to QKD systems as researchers seek to increase key-production rates.
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Figure 3. The likelihoodP0,0 that both detectors in a given basis are active when
a photon arrives versus the number of transmission periods per dead time,k, for
three values of the link lossL. The fact thatP0,0 tends to zero at high transmission
rates demonstrates the paralyzability of the QKD receiver.

Although each closely-spaced detection sequence can produce at most a single sifted bit,
it is also true that as the length of the detection sequence grows the likelihood that a bit will
be sifted from the sequence also grows. In the low-count-rate regime the average length of a
detection sequence is 1 and the likelihood of sifting a bit from a sequence is 0.5. For a detection
sequence of length 3, however, the likelihood that at least one of the detection events occurred
in the correct basis is 7/8. This fact offsets some of the deleterious dead-time effects and must
be included in the calculation of the sifted-bit rate.

At any count rate, we can write the probability of sifting a bit from a detection sequence
that begins with both detectors active as

S(p, k) =

∞∑
N=1

(
1−

(
1

2

)N
)

TN (p, k), (9)

whereTN(p, k) is the probability that the detection sequence consists ofN detection events. To
calculateTN(p, k), we can use the state-space model from figure2. For a detection sequence of
length 1 (i.e. a single detection event) there is only one path through the state space. For longer
sequences, we must sum the possible paths for a given number of detection events.

For example, there are a total of(k − 1) ways to arrange two detection events before the
basis returns to the state (0, 0); only one of these ways is depicted in figure2. The probabilities
of a detection sequence having length up toN = 4 are

T1 (p, k) = (1− 2p)k , (10)
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Figure 4. The probabilitiesTN(p, k) of a detection sequence havingN detection
events versus the normalized transmission ratek, for link lossesL = −20 dB.
There is a characteristic difference in even and odd numbers of detection events
in the high-count rate regime.

T2 (p, k) =

k−1∑
σ=0

2p (1− 2p)2σ+1, (11)

T3 (p, k) =

k−1∑
σ1=0

σ1∑
σ2=0

(2p)2 (1− 2p)2σ2+k, (12)

T4 (p, k) =

k−1∑
σ1=0

σ1∑
σ2=0

k−(σ1−σ3)−1∑
σ3=0

(2p)3 (1− 2p)2(σ1+σ3)+1. (13)

The truncated geometric series inTN(p, k) can be evaluated with standard techniques to
yield analytic expressions for allN. While the sum overN in (9) is theoretically infinite, it is
worthwhile to note that in practice, one needs to computeTN(p, k) only up to N = 6, as the
probability of sifting a bit from a detection sequence longer than six events approaches unity.

One interesting feature ofTN(p, k) is the difference between even and odd values ofN,
as illustrated in figure4 While all N > 1 sequences have low probability in the low count-rate
regime, at high count rates theN:odd sequences fall asymptotically to zero, but theN:even
sequences have constant finite probabilities. This behavior can be understood from the fact that
anN:even sequence can minimize the number of clock cycles during which a detector is active
but does not fire. For anN:odd sequence, the unlikely situation occurs where a live detector
must not fire for at leastk clock cycles before the basis returns to (0, 0).

New Journal of Physics 9 (2007) 319 (http://www.njp.org/)

http://www.njp.org/


10

Noise sources such as background counts and detector dark counts can also be included in
the model in a straightforward manner. We defineε as the probability that a detector experiences
a noise event during one clock cycle. The probability that a detector fires during a clock cycle,
therefore changes from(2p) to (2p + ε), which can be substituted intoP0,0(p, k) andTN(p, k)

accordingly. As mentioned above, a noise event on one detector can occur on the same clock
cycle as a signal (or noise) event on the other detector. These simultaneous events put the basis
in the state (k, k), after which the basis recovers with unity probability along the diagonal back
to (0, 0). Thus, we find that when noise counts are included, the probability that both detectors
are alive on the(n + 1) clock cycle becomes

Pn+1
0,0 = (1− 2(2p + ε)) Pn

0.0 + 2(1− (2p + ε)) Pn
1 +

(
2pε + ε2

)
Pn−k

0,0 , (14)

where the third term accounts for simultaneous detection events. The steady state calculation of
P0,0(p, k) proceeds in the same manner as described above. It should be noted that while noise
can cause simultaneous detection events, no secure bits can be sifted from such events.

4. The sifted-bit rate in high-speed QKD

We have described all the factors necessary to incorporate dead-time effects into the sifted-bit
production rate. Returning to the noiseless picture, we write the sifted-bit rate as

SBR= ρTX8pP0,0 (p, k) S(p, k) , (15)

whereρTX is the transmission rate, 8p is the link loss,P0,0(p, k) is the probability that both
detectors are active, given by (8), andS(p,k)is the likelihood of sifting a bit from a detection
sequence, given by (9). The sifted-bit rate is shown in figure5 as a function of the transmission
rate for various detector dead times (a) and link losses (b). The lines indicate the results from
the analytic state-space model presented above. The symbols indicate results from a BB84
Monte-Carlo simulation that incorporates the modified sifting algorithm described above—
sifting at most a single bit from sequences of closely-spaced detection events. The simulation
generated 1 MB of sifted bits at each point using an ANSI C standard random-number generator
running on a Linux computing cluster. As illustrated in figure5, dead-time effects induce a
maximum value on the sifted-bit rate, above which further increases in transmission rate reduce
the sifted-bit rate. The maximum value of the sifted-bit rate is a complicated function of the
link parameters. However, we find this maximum is not strongly dependent on the link losses.
As demonstrated in figure5(b), it may be accurately approximated as a function of dead time
alone by

SBR|Max ≈
1.433

(2τ)
, (16)

where the constant of proportionality was found by a least-squares fit. The factor(2τ)−1

represents the maximum sifted-bit rate for the case of an actively gated receiver in which all
the detectors are disabled when any one of them fires [12].

The transmission rate at which the sifted-bit rate is maximized is also a complicated
function of the dead time and link losses. However, for typical link losses and detector dead
times we find that it may be approximated to an accuracy better than 1% by

ρmax
TX ≈

5.92

8pτ
. (17)
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Figure 5. The sifted-bit rate including dead-time effects, showing excellent
agreement between the model (lines) and the simulation (symbols). The effect of
varying the dead time with fixed link loss is shown in (a). The effect of varying
the link loss with fixed dead time is shown in (b).

For most QKD links the loss and dead time are such that detector timing resolution plays
a dominant role in determining the optimum transmission rate [1]–[3], [5]. However, as the
disparity between the detector timing resolution and recovery time grows with improved
timing resolution, transmission-rate limitations imposed by dead-time effects will become more
significant.

5. Hardware approaches to addressing dead-time effects

There are a variety of methods that may be employed to address the security issue that arises
in the ρTX > τ−1 regime. The algorithmic solution modeled above is, to our knowledge, the
most efficient with respect to the production of sifted bits. The communications overhead
associated with implementing are comparable to traditional implementations of QKD, which
can be anywhere from 17 to 100 times the quantum channel data load. However, in the event that
some implementation would preclude the software scheme implementation proposed above, a
hardware solution would be required. An active hold-off scheme has been previously proposed,
in which all the detectors are disabled when any one of them fires [12]. Actively disabling the
detectors by some electronic means can be technically challenging, particularly as transmission
rates exceed 1GHz. As an alternative, we propose the self-disabling receiver shown in figure6.
In this system, the states in each of Bob’s bases are sent to the same detector, though with
different propagation delays depending on the state. The states of the photons incident on each
detector are distinguished by their arrival times, much in the same manner that time-division-
multiplexed (TDM) communications links distinguish various channels. Detection schemes
similar to this have also been implemented for basis discrimination in QKD links [17]. The
receiver proposed in figure6, however, would go further than basis discrimination and shut
down a basis entirely after a detection event. With only one detector in each basis, the entire
basis is disabled for the duration of the dead time and sequences of closely-spaced detection
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Figure 6. A BB84 receiver with self-disabling bases. In this configuration the
individual states in each measurement basis are distinguished by their arrival
times at the SPADs. (N)PBSC is a (non) polarizing beam-splitting cube.

events are eliminated. This QKD receiver is a non-paralyzable counter capable of producing
sifted bits at rates up toτ−1 in the high-count-rate regime.

As a consequence of operating the receiver bases in the self-disabling format shown in
figure6, each transmission event from Alice is analyzed in two time bins at Bob’s receiver. If
these time bins are limited by the SPAD’s ability to distinguish photon-arrival times, i.e., by the
SPAD timing resolution, then Alice’s transmission period must be at least twice as long. Thus
the maximum transmission rate as determined by the detector timing resolution is reduced by
one half. The reduction in transmission rate makes this type of receiver useful only in cases in
which the algorithmic implementation described above is somehow impractical.

6. Conclusions

We have presented a model for the sifted-bit production rate of BB84-type QKD systems
operating at transmission ratesρTX that are higher than the maximum count rate of the
component single-photon detectors. This model addresses critical security concerns that must be
considered when operating in this regime and quantifies the onset of dead-time effects. We have
established that, with free-running SPADs, high-speed QKD systems are paralyzable counting
systems. This phenomenon emerges from the collective behavior of the pair of detectors in a
given basis, as SPADs are non-paralyzable counting systems when considered individually. We
have shown with both analytic modeling and Monte-Carlo simulation that dead-time effects
cause there to be an optimum transmission rate that maximizes the sifted-bit production rate.
The functional dependence of the maximum sifted-bit rate on the link parameters has been
presented, and these relations will be useful in the design of QKD systems and single-photon
detection systems.

This paper has focused on polarization-encoded BB84 QKD. A useful extension of the
analysis presented here would be the application of the state-space model to other protocols
and encoding schemes. In particular, the differential-phase-shift encoding scheme used in [3]
readily lends itself to extremely high transmission rates. Detector dead times are likely to have
significant influence on the performance of such systems and the analysis of such influence in
the context of the current understanding would be useful.
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