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Quantum phases of bosons in double-well optical lattices
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We study the superfluid and insulating phases of bosons in double-well optical lattices, and focus on the
specific example of a two-legged ladder, which is currently accessible in experiments. We obtain the zero-
temperature phase diagram using both mean-field and time-evolving block decimation techniques. We find that
the mean-field approach describes the correct phase boundaries only when the intrachain hopping is sufficiently
small in comparison to the on-site repulsion. We show the dependence of the phase diagram on the interchain
hopping or tilt between double wells. We find that the Mott-insulator phase at unit filling exhibits a nonmono-
tonic behavior as a function of the tilt parameter, producing a reentrant phase transition between Mott insulator
and superfluid phases. Finally, we determine the critical point separating the insulating and superfluid phases at
commensurate fillings, where the Berezinskii-Kosterlitz-Thouless transition occurs.
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I. INTRODUCTION

Optical lattices loaded with ultracold atoms provide the
opportunity to study quantum phases of many-particle sys-
tems because of their unprecedented degree of controllability
[1]. At present, the lattice depth, dimensionality, geometry,
and filling factor can all be reasonably controlled. While one
of the first examples of this degree of control was the experi-
mental observation of the superfluid (SF)-to—Mott insulator
(MI) transition in three-dimensional cubic optical lattices as
a function of the lattice depth [2], tetragonal and orthorhom-
bic optical lattices can also be produced by deepening the
optical potential along desired directions [3,4].

More recently, possibilities for control have expanded
with the experimental realization of double-well optical lat-
tices. Control of the polarization of the laser beams allows
for the production of lattices with a base in two and three
dimensions [5] as illustrated in Fig. 1(a), where Bose atoms
(®Rb) have been successfully trapped. In particular, one can
create a one-dimensional double-well optical lattice corre-
sponding to the two-leg ladder structure shown in Fig. 1(b)
by increasing the long period of the double-well optical lat-
tice. In standard condensed-matter physics, a few com-
pounds, such as vanadyl pyrophosphate (VO),P,0- [6] and
some cuprates like SrCu,05 [7], have such two-leg ladders in
their crystalline structure, and they display much of the in-
teresting physics encountered in general ladder systems, as-
sociated with the interplay between spin-gapped and super-
conducting states [8]. However, conventional condensed-
matter systems come with fixed dynamical and structural
parameters, while the flexible variability of optical lattices
offers the prospect of exploring the full parameter space.
Moreover, the particles confined in the current double-well
optical lattices are bosonic atoms, in contrast to conventional
condensed-matter systems, where electrons (fermions) dic-
tate the quantum phases.

In this paper, we study the zero-temperature phase dia-
gram of bosons in double-well optical lattices and focus on
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the case of a two-legged ladder, where analytical and nu-
merical progress can be made. In particular, we apply the
time-evolving block decimation (TEBD) method [9,10] to
such ladder systems, which are experimentally accessible
[5], and discuss the SF-to-MI transition, which is expected to
be observed in future experiments.

Our main results are as follows. We show that the phase
diagram changes dramatically as a function of the chemical
potential w, the intrachain hopping ¢, the interchain hopping
t |, the on-site repulsion U, and the tilt N of the double well,
which are indicated in Figs. 1(b) and 1(c). For A=0 and
different ratios 7, /U, Mott phases with half-integer (in addi-
tion to integer) filling factors emerge in the phase diagram of
m! U versus ¢/ U for small ratios of #;/U. As t, /U increases,
the half-filling MI phase becomes larger and the unit-filling
one becomes smaller. For fixed ratio ¢, /U and different val-
ues of A/ U, we also obtain the u/U versus #,/U phase dia-
gram, which reveals a reentrant phase transition for the unit-
filling MI induced by the tilt . The reentrant phase transition
can be attributed to the development of coherence in each

X

FIG. 1. (Color online) (a) Schematic picture of a three-
dimensional (3D) configuration of a double-well lattice. Circles rep-
resent sites, and solid lines represent connections via the hopping
between sites. (b) Schematic picture of the two-leg ladder. (c)
Double-well potential corresponding to the cross section for the
dashed line in (b). Dotted lines represent the energy levels for each
well.
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double well in the vicinity of A=U, which drives the system
into the SF phase. Finally, for half and unit fillings, we cal-
culate the critical points corresponding to a Berezinskii-
Kosterlitz-Thouless (BKT) transition at the MI-to-SF phase
boundary.

The remainder of the paper is organized as follows. In
Sec. II, we introduce our model Hamiltonian describing
bosons in a two-legged optical lattice. In Sec. III, we restrict
ourselves to the limit where the intrachain hopping ¢ is zero,
and discuss the MI phases. In Sec. IV A, we calculate ana-
lytically the phase boundary of the SF-to-MI transition
within the perturbative mean-field approach (PMFA). In Sec.
IV B, we use the TEBD method to obtain numerically the
correct phase boundaries where the PMFA fails. In addition,
we compute the critical points separating the insulating and
superfluid phases at commensurate fillings, where the BKT
transition occurs. Last, in Sec. V, we summarize our results
and present our main conclusions.

II. MODEL

The basic physics of interacting bosons in an optical lat-
tice can be described by the Bose-Hubbard model [1,11]. We
introduce the Bose-Hubbard model for the double-well lad-
der

H=Y (H;*W—zH > (af+1,,,ai,,]+H.c.)), (1)

ne{L,R}

where H®™ represents the double-well Hamiltonian for a

given ladder index i and is given by

u, . N t
7

+ iy = i), @)
2
aZ” creates a boson at the lowest level localized on the left
(right) of the ith double well when n=L(R). A schematic
picture of the Bose-Hubbard model for the double-well lad-
der is shown in Figs. 1(b) and 1(c). We assume that all pa-
rameters are sufficiently small compared to the energy gap A
between the first and second levels of each site, and we do
not include the effect of the harmonic trapping potential.
Furthermore, all parameters of H are controllable in experi-
ments [5], and thus we begin our discussion by analyzing the
limit of Z‘H=0.

III. INTEGER AND HALF-INTEGER MOTT PHASES

When £,=0, several MI phases emerge. In this case, the
Hamiltonian Eq. (1) reduces to H :E,H?W. One can obtain
the eigenenergy E”)(n,j) and eigenstate

|q)n,j>= E C1

1L(n,j)|nL,n - nL>
ny=0

of H™, where 7 is the number of atoms in each double well
and the quantum number j is a non-negative integer less than
n+1 (j=0,1,...,n). |n,,ng) is the Fock state with n; (ng)
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atoms on the left (right) of each double well. The state [P, ;)
is the ground state of H™" with energy E”(n,0), when the
following conditions are satisfied: E©(n+1,0)>E(n,0)
and EQ(n—1,0)>E9(n,0). When n is even (odd), the fill-
ing factor v of the MI phases is integer (half integer). The
existence of half-integer-filling MI phases has also been no-
ticed in Monte Carlo simulations and in cell strong-coupling
perturbative techniques [12] for two-legged ladders with zero
tilt and fixed ratio #,/¢,. Here, however, we use different
methods and consider also the cases of finite tilt and inde-
pendent hopping parameters. Although there exists a MI
phase for each value of n, we focus here only on the half-
and unit-filling MI phases (v=1/2,1).

We consider first the case of symmetric double wells (A
=0) and discuss two limiting situations corresponding to (a)
t,<Uand (b) 1, >U.

(a) For ¢, <U, the ground state is |®; o) (v=1/2) when
the chemical potential satisfies the condition

2
t
—ti<,u<ti+0<vj'>, (3)

and the width of the half-filling MI phase on the w line is
~2t,. In the strict limit of 7, =0, the half-filling MI phase
vanishes and the system is always a superfluid since there is
a low-energy path for the bosons to move along the chains.
The ground state switches to |®, o) (v=1) when the chemical
potential satisfies the condition

i i
M+OE <M<U—2H+OU , 4)

and the width of the unit-filling MI phase becomes ~U. As
the interchain hopping 7, vanishes, the unit-filling MI phase
approaches that of a 1D lattice (two independent filling-1
chains).

(b) For 7, > U, the antibonding single-particle state of the
double well is pushed to energies much higher than U, and
only the bonding single-particle state and the lowest-energy
two-particle state are important. Therefore, the v=1/2 (v
=1) MI phase can be mapped into the unit- (double)-filling
MI phase for a 1D lattice with an effective hopping #; and an
on-site repulsive interaction U/2. The ground state is [P, ()
(v=1/2) when the chemical potential satisfies the condition

U U?
-t <u<-t, +—+0|—]. (5)
The ground state switches to |®, ) (v=1) when the chemical
potential satisfies the condition
U U? U?
-t +—+0|—|<u<-t,+U+0|—]. (6)
2 tL tL
From Egs. (5) and (6), we can see that the width of both MI
phases along the w line is ~U/2.
Next, we consider the case of tilted double wells, where
A #0. The insulating states present in the double-well lad-
ders discussed here are quite different from those encoun-
tered in strictly 1D superlattices [13-15]. When A\
>max(f, ,U), the MI with filling v in the double-well ladder
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reduces to the MI with 2v in a single 1D lattice. Even in this
regime, a transition to a SF phase occurs at a certain critical
value of the intrachain hopping #, in contrast to the case of
the 1D superlattice, where all the occupied wells are com-
pletely isolated from each other and the system remains al-
ways in the insulating phase.

We discuss two special cases, (a) A=U with 7, <U and
(b) A>max(r,,U).

(a) For A\=U and t, <U, where the states |1,1) and |0,2)
are nearly degenerate, the ground state is | o) (v=1/2)
when the chemical potential satisfies the condition

U l%_ ) U — ( [i )
——+0| = | <u<——-\2t, +0(=|. 7
2 ( u) HET TRy @)
The width of the half-filling MI phase on the w line is ~U.
On the other hand, the ground state is |®, ) (v=1) when the
chemical potential satisfies the condition

u - ti u - ti
E_VZU-'-O E <M<E+VZH+0 E . (3

Thus, the width of the unit-filling MI phase is reduced to
~242t,.

(b) For A>max(r,,U), the ground state is |®; o) (v
=1/2) when the chemical potential satisfies the condition

A 7 A 7
——+0<—L><M<——+U+O(—l>. 9)
2 A 2 A

The ground state is [, o) (v=1) when the chemical potential
satisfies the condition

s roof ) <ue-Seavrol])
-—+U+0| = | <u<-—-+2U0+0|=|. (10
2 N 2 A
From Egs. (9) and (10), we can see that the width of both MI
phases along the w line is ~U. This happens because the
half- and unit-filling MI phases in a double-well ladder re-
duce to the unit- and double-filling MI phases of a single 1D
lattice, as all bosons prefer to be in the lower-energy side of
the greatly tilted double well.

These special cases reflect the more general trend that, as
\ increases, the width of the unit-filling MI phase on the u
line changes nonmonotonically. Such nonmonotonic behav-
ior for the unit-filling MI phase is also found in (u,#;) plane
for varying values of A, and is discussed next by taking into
account finite # to study the insulator-to-superfluid transition.

IV. INSULATOR TO SUPERFLUID TRANSITION
A. PMFA

In order to include the effects of the intrachain hopping ¢
and study the MI-SF transition, we use first a perturbative
mean-field approach [16]. Although the PMFA fails to de-
scribe 1D systems quantitatively [17], it provides qualitative
understanding and analytical insight. The discussion of quan-
titative results is postponed to Sec. IV B, where we use the
TEBD method [9,10] and compare its results with the picture
that emerges from the PMFA.
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We consider the effects of finite #; and introduce the SF
order parameter lﬂn:(ai,n):@z , into the Hamiltonian Eq.
(1), which reduces to

HzZH;“f=E<H?W+2rHE 1,0%]+Vi), (11)
i n

1

where V;==212,1,(aj +a;) describes the transfer of atoms
between the ith site and the condensate i, and is treated
perturbatively.

Using perturbation theory, we obtain the correction AE,
=E,—E®(n,0) to the unperturbed ground state energy
EO(n,0) in terms of i, Performing a linear transformation
(P, W,)'=X(¢Jy, r)* to diagonalize the quadratic part of
AE, leads to

AE, = {E}Agn,a,z‘”,mw%omf“,qf?wz,...), (12)
ref{l2

where X is a 2X2 Hermitian matrix and the overbars on
parameters mean normalization by U, e.g., u=u/U. The
expressions for the coefficients of ‘I’% and fourth-order terms
are quite long; thus we will not give them here. However, A,
is always positive, while A; changes sign, and the fourth-
order coefficients are positive, leading to second-order phase
transitions between the MI (¥,=V¥,=0) and SF (¥,
#0,V,=0) states.

For symmetric double wells (A=0), we obtain analytical
expressions for the MI-SF phase boundary (A,=0) in the
limits (a) 1, <U and (b) 1, >U.

(a) When 7, < U, the phase boundaries in the (u,f;) plane
are obtained by expressing the intrachain hopping ¢, in terms
of the chemical potential x and the interchain hopping 7, as

2

=2
L—p

—, n=1 (v=1/2),
;pb: 4tL
N 120 K70
2(+1) ’ '
(13)

In this case, the critical values of # for half and unit filling
are given by

1

é_ltb n=1 (v=1/2),
3-242 1
—2 U—Etl, n=2 (v=1),

with w,=0 for v=1/2 and p.=((2-1)U for v=1.

(b) When 7, > U, the double-well system reduces effec-
tively to a single 1D lattice, and the phase boundaries as well
as the value #; can be obtained from the standard results [16]
by replacing U— U/2 and u— u+t,. Therefore, the phase
boundaries are given by
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FIG. 2. (Color online) Phase
diagrams for symmetric double
wells (A=0). Dashed lines repre-
sent the phase boundary calcu-

lated within the PMFA. Solid
lines, density plots, and dots are

calculated by the infinite TEBD
method. 77 is integer inside the
solid lines. The density plots rep-
resent o. The dots represent the
critical points of the BKT
transition.
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(15)

For the half- and unit-filling cases, the critical values of 7, as
a function of U are

—2\2
3 4\ Cn=1 (v=172),

1 = — (16)
20y, w=2 =),

while the corresponding critical values of the chemical po-
tential are given by

h-1
—tl+\TU, n=1 (v=102),
= 17
M \’%_1 ( )
-t + U, n=2 (v=1).

In Fig. 2, the MI-SF phase boundaries for A=0 calculated
within the PMFA are shown as dashed lines for different
values of #,. Notice that the figures are not on the same
scale. In Fig. 3, the critical intrachain hoppings #; for the
half- and unit-filling MI phases are shown as functions of 7,
as dashed and solid lines. As the interchain hopping ¢, in-
creases, the half-filling MI lobe or 7 grows and the unit-
filling MI lobe or tﬁ shrinks, so that the double-well system

0.08 0.12

reduces to a single 1D system in the limit of 7, > U.

Next, we discuss the case of tilted double wells (A #0). In
Fig. 4, we show the MI-SF phase boundaries for different
values of \ at fixed 7, =0.1U indicated by dashed lines. In
Fig. 5, we show the critical intrachain hoppings #; versus A
for the half- and unit-filling MI phases indicated by dashed
and solid lines, respectively. The half-filling MI lobe or f;
grows monotonically as A increases. In contrast, the unit-
filling MI lobe or #; changes nonmonotonically as a function
of \.

This nonmonotonic behavior for v=1 can be understood
as follows. At A=0, the critical intrachain hopping 7 is given
approximately by Eq. (14) since #;, <U when ¢, =0.1U. As A
increases, tﬁ initially decreases. At A=U, the critical intrac-

0.2(m

0 0.1 02 03 04 0.5

FIG. 3. (Color online) Critical intrachain hopping 7 as a func-
tion of ¢, for symmetric double wells (A=0). Dashed and solid
lines represent ¢ for the half- and unit-filling MI phases calculated
within the PMFA. Triangles and squares represent #;’s for the half-
and unit-filling MI phases calculated by the infinite TEBD method.
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FIG. 4. (Color online) Phase
diagrams for tilted double wells

(z,=0.10).
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hain hopping reaches a minimum at which 7 = V21 /6, since
the states |1,1) and |0,2) are nearly degenerate, i.e., the local
state of the MI phase at N\=U is |®, )= (|1, 1)+ 0,2))/2.
The development of this local coherence then pushes the
system into the SF phase. Further increase of N moves the
system away from this degeneracy which favors SF, and
forces 7] to increase, causing a reentrance into a MI phase. In
particular, when A > U, all atoms move to a single chain and
are in [0,2); thus the critical value becomes #;=(5
—2\%) U/2, as expected for a single chain [16].

The nonmonotonic behavior of 7 shows a reentrant quan-
tum phase transition from MI to SF to MI, induced by the tilt
N, when 7 is kept between (#]) ., and (7). Taking into
account the high degree of control achieved in double-well
optical lattices [5], we expect the reentrant transition to be
observed experimentally. However, since we do not expect

0.3 R T R N
0.25 A
A
0.2
-
~ 0.15“ A -
& n -
0.1 A [ -
4 . m- - -. -------------
0.05 v
09 05 1 15 5
A/U

FIG. 5. (Color online) Critical values ¢ of the intrachain hop-
ping as a function of A for fixed value of the interchain hopping
t,=0.1U. (Error bars are smaller than the size of the symbols.)

02 03

the PMFA to give quantitatively correct results for the
double-well (ladder) optical lattice, we next discuss numeri-
cal results using the TEBD method.

B. TEBD approach

In order to determine quantitatively the phase diagrams
for double-well (ladder) optical lattices, we use the infinite-
size version of TEBD [10], which provides an excellent
ground state for 1D quantum lattice systems via imaginary
time evolution. In order to apply the TEBD method to our
problem, we map the double-well (ladder) Bose-Hubbard
model into a single chain with next-nearest-neighbor hop-
ping, whose ground state can be calculated via the swapping
technique [18]. We note that the infinite TEBD algorithm has
been recently applied to single chains with only nearest-
neighbor hopping, where the quantum Berezinskii-
Kosterlitz-Thouless critical point was obtained for the unit-
filling case [19]. While the maximum number of bosons per
site 1S N =%, convergence is already achieved in our nu-
merical calculations when N,,=4 for v=1/2 and N,,=5
for v=1.

The phase diagrams in the (u,#;) plane are shown in Figs.
2 and 4, where the solid lines indicate the MI-SF phase
boundaries, which have roughly a triangular shape. At the
sides of the MI lobe, the phase transition occurs from a v
=1/2,1 MI to a SF with v#1/2,1. However, the two sides
of the “triangle” merge for each MI phase (see dots in Figs.
2 and 4), producing a phase transition from a v=1/2,1 MI to
a SF with v=1/2,1, which is of the BKT type [17,20].

In order to locate the phase boundaries we calculate di-
rectly the mean number of atoms per double well, 7
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2 5 10 20 50
r

FIG. 6. (Color online) Correlation function (&:d()) as a function
of the intrachain hopping #, where ¢ | =0.2U, A=0, and v=1/2.

=2 (A, ,), which is integer in the MI regions. We also cal-
culate the fluctuation o= w(ﬁ?)—(ﬁi)z, which is small deep in
the MI regions, and relatively large in the SF regions. The
fluctuation o is represented by density plots in the phase
diagrams of Figs. 2 and 4. Since we are interested in local
observables, such as 7 and o, convergence is already
achieved for y=15, where y is the size of the basis set re-
tained in the TEBD procedure [9].

We locate the BKT transition on the lines of integer 7
(v=1/2,1) by calculating the correlation function (&' &),
where &j creates an atom in the lowest single-particle state
of a double well. The SF phase of the double-well ladder can
be regarded as a two-band Tomonaga-Luttinger liquid (TLL),
and the correlation function exhibits power-law decay as
(&' @y r 8. The exponents K, at the phase transitions can
be calculated from the TLL theory. For instance, when
max(¢, ,\)> U, our system is effectively a single 1D chain
and has the critical value K.=1/2 for the BKT transition
[17]. In addition, when A=0 and 7=2(v=1), the critical
value is also K,=1/2 [20]. Consequently we use the criterion
K.=1/2 to identify the critical point for the BKT transition at
integer values n(v=1/2,1).

In Fig. 6, the correlation function (d:&()) (in logarithmic
scale) is shown as a function of the intrachain hopping 7, for
t,=0.2U, =0, and v=1/2. We can see that <&j&0> indeed
has power-law behavior proportional to %2 for sufficiently
large #,. For instance, see the dashed line in Fig. 6 corre-
sponding to #;/U=0.12. In contrast, deep in the MI regime
the correlation function does not exhibit power-law behavior,
but an exponential decay (see the solid line in Fig. 6 corre-
sponding to 7,/ U=0.08).

In Fig. 7, we plot the exponent K as a function of ¢, for
t,=0.2U, A=0, and v=1/2. The exponent K is obtained by
fitting the function f(r)=ar %2, with free parameters a and
K, to the correlation function (&I&(Q shown in Fig. 6. To
achieve a high-precision value for K, we use the TEBD
method with a large size for the basis set (y=60). We use the
intervals 10=r=<15, 15=<r=<20, 20=<r=<25, and 25=<r
<30 for the fit and take the average value of K for each
interval to produce error bars. The critical intrachain hopping
7; along the lines of integer 7' is determined by taking the
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SN s aa 255 £ 30
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FIG. 7. (Color online) Exponent K extracted for four intervals,
where ¢, =0.2U, A=0, and v=1/2. The dashed line represents K
=K, (=1/2) line.

intersection of K(#,/U) and K=K_.=1/2. The dots in Figs. 2
and 4 correspond to the BKT transition points calculated via
the TEBD method. In Figs. 3 and 5, the critical values tﬁ
obtained via TEBD are shown as triangles and squares for
n=1,2 (v=1/2,1), respectively. The phase boundaries as-
ymptotically approach those of the PMFA as ¢, tends to zero.
On the other hand, differences between the PMFA and TEBD
results are significant when ¢, is relatively large. In particular,
the values of 7 obtained using TEBD are more than twice as
large as those obtained within the PMFA. Furthermore, the
general form of the phase boundaries in the (u,7) plane is
triangular for TEBD, while is it rounded for the PMFA.
However, the qualitative behavior of the phase diagram as a
function of #, and N\ obtained within the PMFA is consistent
with that of the TEBD method.

V. CONCLUSION

In summary, we have studied the superfluid-to-Mott insu-
lator transition of bosons in double-well (ladder) optical lat-
tices. Applying the time-evolving block decimation method
to the two-legged Bose-Hubbard model, we have calculated
the zero-temperature phase diagram. We have found that the
phase diagram changes significantly depending on the inter-
chain hopping and tilt of the double wells. In particular, we
have shown that the tilt can be used to induce reentrant tran-
sitions between Mott insulator and superfluid phases.
Through a comparison of the results of TEBD and the per-
turbative mean-field approach, we have shown that the
PMFA captures some qualitative trends, but fails to describe
the phase diagram quantitatively. Especially, the PMFA fails
dramatically in obtaining the critical points for the
Berezinskii-Kosterlitz-Thouless transition between the Mott-
insulator and superfluid phases at commensurate fillings,
while TEBD provides an accurate location for these critical
points.
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