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Synthetic incoherence for electron microscopy
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Tomographic studies of submicrometer samples in materials science using electron microscopy have been in-
hibited by diffraction effects. In the present work, we describe a practical method for ameliorating these ef-
fects. First, we find an analytic expression for the mutual coherence function for hollow-cone illumination.
Then, we use this analytic expression to propose a Gaussian weighting of hollow-cone illumination, which we
name tapered solid-cone illumination, and present an analytic expression for its mutual coherence function.
Finally, we investigate numerically an n-ring approximation to tapered solid-cone illumination. The results
suggest a method for removing diffraction effects and hence enabling tomography. © 2007 Optical Society of
America
OCIS codes: 110.4980, 180.6900.
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. INTRODUCTION
ainstream tomography requires an incoherent signal

1]. However, the source of an electron microscope is
ighly coherent. In biology, the most common solution is
o ensure that the sample is amorphous [2]. Plunge freez-
ng prevents the formation of ice crystals; otherwise, the
omplexity of a biological cell ensures the sample is amor-
hous. However, in materials science, small-scale crystals
re extremely common. Crewe and co-workers introduced
method for incoherent imaging in the scanning trans-
ission electron microscope (STEM) using a high-angle

nnular dark field (HAADF) detector [3]. The method is
lso known as Z-contrast imaging; indeed Crewe and co-
orkers imaged a single uranium atom on a carbon film.
he method was applied to tomography by Midgley and
o-workers [4]. For high-angle scattering, incoherence is
chieved because the scattering is primarily due to
honons; formally, the Debye–Waller factor is very small.
ess formally, if k is the wave vector describing the scat-
ering and ū is the rms deviation of the atoms about their
attice positions, whenever kū�1, there is no average
hase relation between the scattering of an atom and its
eighbor, so the sample is effectively amorphous. The
omplement of the ideal HAADF signal has also been in-
roduced, under the name of incoherent bright field (IBF)
maging [5], with the additional advantage that the signal
s a monotonic function of thickness, whereas a practical
AADF detector (with an inner diameter and an outer di-
meter) has a single-peaked thickness-intensity relation.
disadvantage to the HAADF or IBF approach is that

elatively few electrons (typically 1%) are scattered into
r out of the detector, respectively.

Recently, Levine [6] proposed a combination scanning
nd imaging mode to create an incoherent beam on the
ample. The proposal called for scanning with a dosage
iven by a Gaussian. Theoretically, the nonnegligible re-
ion of the mutual coherence function can be confined to a
aussian with a standard deviation well below 1 nm. Of
1084-7529/07/082402-5/$15.00 © 2
ourse, hollow-cone illumination has long been used to re-
uce the coherence in imaging [7,8]. Large-angle hollow-
one illumination [9] represents an alternative to HAADF
o achieve Z-contrast imaging in which part of the inco-
erence is achieved as in conventional HAADF and part

s due to the angular averaging of hollow-cone imaging.
The purpose of the present paper is threefold: first, to

resent analytic results for the mutual coherence function
or hollow-cone illumination; second, to use these analytic
esults to propose another illumination scheme, named
ere tapered solid-cone illumination, and present its mu-
ual coherence function; and finally, to address the merits
f an n-ring (i.e., n-hollow cone) approximation to tapered
olid-cone illumination, which may be implemented with
ollow-cone illumination using a commercial TEM. As in
arlier work [6,7], we demonstrate here an alternative to
ollow-cone illumination, which leads to the non-
egilgible region of the mutual coherence function to be
ore localized.
The definition of the mutual coherence function is given

n many sources, such as Spence [10]:

��r�1,r�2,T� = lim
�→�

1

2�
�

−�

�

dt�*�r�1,t���r�2,t + T�, �1�

here r�1 and r�2 are two positions in the optical field �, t is
time, and T is a time difference. Because the source is

early monochromatic, only the equal time case, i.e., T
0, is of interest here [11]. The complex degree of coher-
nce is defined as the normalized mutual coherence func-
ion:

��r�1,r�2� =
��r�1,r�2�

���r�1,r�1���r�2,r�2��1/2
. �2�

he normalized mutual coherence function is an
ntensity-weighted average of the phase factor between
wo illuminated points. When ���r� ,r� � � �1, the beam is
1 2
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ncoherent. Of course, ��r� ,r��=1, so the best one can do is
o have ���r�1 ,r�2�� go to zero rapidly as �r�1−r�2� grows.

. GAUSSIAN BEAMS
e assume that the beam is a Gaussian solution of the

araxial ray equation of scalar diffraction theory. Actual
eams in electron microscopes may be better described by
Gaussian times a Hermite polynomial, which is also a

olution to the paraxial ray equation, but we ignore this
omplication here.

The Gaussian solution to the paraxial ray approxima-
ion for a beam traveling with its center in the z� direction
s [12]

��x�,y�,z�� =
1

1 + iZ
exp�−

X2 + Y2

1 + iZ � , �3�

here the scaled dimensions X, Y, and Z are related to
he physical dimensions x�, y�, and z� by

X = x�/r0,

Y = y�/r0,

Z = �z�/	r0
2 = z�/lR, �4�

here r0 is a parameter characteristic of the beam waist
orresponding to two standard deviations of the intensity,
.e., the square of the wave function; � is the wavelength;
nd the Rayleigh length lR is defined implicitly. Primes
re used to reserve x, y, and z for the frame of the sample.
he beam waist may be given in terms of the angle 
1 be-
ween the direction of maximum intensity and the angle
t which the intensity has fallen by a factor of e2:

r0 = �/	
1. �5�

In Eq. (1), we are led to consider a time average of the
llumination. Although this time average arises com-

only from a statistical source, such as thermal effects in
light bulb, the definition also admits a controlled varia-

ion of the illumination. The paper is an exploration of the
utual coherence function for various controlled varia-

ions of the illumination, a procedure we call “synthetic
ncoherence.” Abstractly, the beams we consider may be
escribed in a five-parameter space consisting of the
hree-dimensional (3D) position of the beam center rela-
ive to the sample and the direction (a 2D point on the
nit sphere) of the beam relative to the z axis. The vari-
us sections below may all be viewed as particular aver-
ges in this five-parameter space. (In this paper and an
arlier one [6], the averages are over no more than two
arameters.)

. HOLLOW-CONE ILLUMINATION
n hollow-cone illumination, the focal point of the beam is
ommon throughout the averaging process. This point is
aken as the origin. The center of the sample is taken to
ie at a point �0,0,z�, i.e., directly under the focal spot.
he half-angle of the hollow cone is taken to be 
. The av-
raging of hollow-cone illumination consists of varying
he azimuthal angle �. Formally, the beam is related to
he laboratory frame by the orthogonal transformation

	
x�

y�

z�

 = �

cos 
 cos � cos 
 sin � − sin 


− sin � cos � 0

sin 
 cos � sin 
 sin � cos 

�	

x

y

z

 . �6�

he variables x�, y�, and z� are related to the dimension-
ess variables X, Y, and Z by Eq. (4). If we make the
mall-angle approximation 
�1 and the related approxi-
ation lR

−1�r0
−1, both well justified for an electron micro-

cope, the dimensionless coordinates are given approxi-
ately from the laboratory coordinates by

	
X

Y

Z

 
 �

cos �/r0 sin �/r0 − 
/r0

− sin �/r0 cos �/r0 0

0 0 1/lR
�	

x

y

z

 . �7�

The mutual coherence function for hollow-cone illumi-
ation is given in the average over � of a Gaussian beam
ilted at fixed 
 evaluated at two points r�1 and r�2 where
ach vector has Cartesian components given by r�j=xjx̂
yjŷ+zjẑ:

HC�r�1,r�2�

=
1

2	
�

0

2	

d��
j=1

2 �1 � i
zj

lR
�−1


exp�−
xj

2 + yj
2 − 2
zj�xj cos � + yj sin �� + 
2zj

2

r0
2�1 � izj/lR� � . �8�

e introduce the convention that the top sign is used for
=1 and the bottom sign for j=2.

To perform the integral, we introduce the variables

� =
2


r0
2 �

j=1

2 zjxj

i ± zj/lR
,

� =
2


r0
2 �

j=1

2 zjyj

i ± zj/lR
. �9�

hese may be further transformed via

� = � cos �,

� = � sin �. �10�

quation (10) implies that

�2 + �2 = �2, �11�

ven though �, �, �, and � are all complex. Omitting fac-
ors independent of �, the integral of Eq. (8) may be writ-
en as

I =�
0

2	

exp�i��cos � cos � + sin � sin ���

=�
0

2	

exp�i� cos�� − ���

= 2	J ���. �12�
0
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ince J0��� is an even function, the answer does not de-
end on the sign of the square root implicit in finding �
rom Eq. (11). In passing from the second to the third
ines above, we may change variables to some �̄=�−� and
se Cauchy’s theorem to deform the contour of integration
ver �̄ into three parts: from −� to 0, from 0 to 2	, and
rom 2	 to 2	−�. The first and third parts cancel because
f the periodicity of the integrand, and the second is Pois-
on’s integral [13]. Writing the solution in the original
ariables, we have

�HC�r�1,r�2� = ��
j=1

2 �1 � i
zj

lR
�−1

exp�−
xj

2 + yj
2 + 
2zj

2

r0
2�1 � izj/lR���J0���,

�13�

ith

� =
2


r0
2 ���

j=1

2 zjxj

i ± zj/lR
�2

+ ��
j=1

2 zjyj

i ± zj/lR
�2�1/2

. �14�

o gain some insight into the relevant values of �, con-
ider the special case of z=z1=z2 and y1=y2=0. Then the
hase arg �=tan−1���x2+x1�lR� / ��x2−x1�z�� may be esti-
ated. Typically, x2+x1�
1z; so, using Eqs. (4) and (5), a

ubstantially real value will be achieved whenever �x2
x1��� / �	
1�. In our typical case, �=1.969 pm and 
1
3 mrad, so crossover to real behavior would occur at a
eparation of 209 pm. For the purposes of estimation, if
ot calculation, the argument of the Bessel function may
e taken to be real for separations in the range of interest,
.e., above 1 nm for tomography.

The special case of Eq. (13) required for the denomina-
or of the normalized mutual coherence function is

�HC�r�j,r�j� = �1 +
zj

2

lR
2 �−1


exp�− 2
xj

2 + yj
2 + 
2zj

2

r0
2�1 + �zj/lR�2��I0�4


r0
2

zj�xj
2 + yj

2�1/2

1 + �zj/lR�2 � ,

�15�

hich contains the modified Bessel function I0, which is
onoscillatory because its argument is real.
Finally, we are in a position to write an approximation

o the normalized mutual coherence function for hollow-
one illumination:

HC�r�1,r�2� =��
j=1

2

exp�±i tan−1� zj

lR
�

� i
xj

2 + yj
2 + 
2zj

2

r0
2

zj/lR

1 + �zj/lR�2��

J0�����

j=1

2

I0�4


r0
2

zj�xj
2 + yj

2�1/2

1 + �zj/lR�2 ��−1/2

. �16�

The numerical approximations we have made appear to
e very modest. An example of the normalized mutual co-
erence function is given in Fig. 1. A fully numerical cal-
ulation using the exact transformations is compared
ith the results from Eqs. (13) and (15). Because the re-
ults are so close, in order to compare them it was neces-
ary to plot the difference. We also show the difference of
he Bessel function to its asymptotic formula [14],

J0�z� 
 � 2

	z�
1/2

cos�z −
	

4� , �17�

hich shows that the asymptotic form may be used for
ualitative understanding.

. TAPERED SOLID-CONE ILLUMINATION
t was shown in an earlier paper that the normalized mu-
ual coherence function could go to zero like a Gaussian if
he illumination conditions were suitably arranged [6].
ere, we find another method for doing so based on what
e call tapered solid-cone illumination. Specifically, we
ill average the hollow-cone illumination over the param-
ter 
 with the function

W�
� =




0
2 exp�−


2

2
0
2� , �18�

here 
0 is a constant (chosen to be the standard devia-
ion of the Gaussian) and �0

�d
W�
�=1. The linear 

eighting may be viewed as the Jacobian in polar coordi-
ates, so there is a uniform illumination per unit area for
�
0. Because we anticipate 
0 to be in the milliradian
ange, there is very little approximation by the replace-
ent of the maximum value of 
, namely 	, by �.
If Eq. (13) is weighted with Eq. (18), we are led to con-

ider an integral

I =�
0

�

d
 
 exp�−

2

2
2
2�J0��
�, �19�

here �
=� with � given by Eq. (14) and

ig. 1. (Color online) Absolute value of the normalized mutual
oherence function for hollow-cone illumination calculated nu-
erically (solid curve), absolute value of the difference between

hat and the analytic solution of Eq. (13) (dashed bottom curve),
nd the absolute value of the difference between the asymptotic
xpression of Eq. (17) and the analytic solution (dotted middle
urve). The parameters are 
=3 mrad, 
1=3 mrad, �=1.969 pm
corresponding to a 300 keV electron energy), z1=z2=1 mm, and
1=y1=y2=0.
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2
−2 = 
0

−2 +
2

r0
2�

j=1

2 zj
2

1 � izj/lR
. �20�

sing the tabulated integral [15]

�
0

�

d
 
 exp�− a
2�J0�b
� =
1

2a
exp�−

b2

4a� , �21�

e obtain

�TC�r�1,r�2� = ��
j=1

2 �1 � i
zj

lR
�−1


exp�−
xj

2 + yj
2

r0
2�1 � izj/lR���
2

2


0
2 exp�−


2
2�2

2 � .

�22�

or the cases we consider here, 
2 is comparable to 
0.
lso, if z1=z2, then 
2 is real.
To obtain the normalized mutual coherence function,

he denominator requires the special case of Eq. (22):

�TC�r�j,r�j� = �1 +
zj

2

lR
2 �−1

exp�−
2

r0
2

xj
2 + yj

2

1 + �zj/lR�2�
2j
2


0
2


exp�8
2j
2

r0
4

zj
2�xj

2 + yj
2�

�1 + �zj/lR�2�2� , �23�

here


2j
−2 = 
0

−2 +
4

r0
2

zj
2

1 + �zj/lR�2 . �24�

The normalized mutual coherence function is given by

TC�r�1,r�2�

=��
j=1

2 
2


2j
exp�±i tan−1� zj

lR
� � i

xj
2 + yj

2

r0
2

zj/lR

1 + �zj/lR�2��

exp�−


2
2�2

2
− �

j=1

2 4
2j
2

r0
4

zj
2�xj

2 + yj
2�

�1 + �zj/lR�2�2� . �25�

ence, tapered solid-cone illumination causes the nor-
alized mutual coherence function to vanish like a
aussian in the separation of the two positions, which are

ts arguments.
Next, we give a representative example to illustrate the

ypical magnitudes. We consider only ��TC�. For the pa-
ameters z=z1=z2=1 mm, hence 
2=
2j, �=1.969 pm, 
0

1=3 mrad, and y1=y2=0, if we vary x1−x2 holding x1
x2 constant, then, using Eqs. (14) and (25) and neglect-

ng 1 compared with z / lR,

��TC� � exp�− 2
2
2
lR
2

r0
4 �x1 − x2�2�

= exp�− �21/2	
2

�
�2 �x1 − x2�2

2 � . �26�

nder these assumptions, ��TC� decreases like a Gaussian
ith a standard deviation of � / ��2	
 �=210 pm. This re-
2
ult suggests that essentially complete incoherence may
e achieved in less than 1 nm using practical choices for
ll parameters. The illumination conditions proposed are
herefore suitable for enabling incoherent illumination for
omography.

Typically, the vendor supports hollow-cone illumination
ut not tapered solid-cone illumination. Hence, we con-
ider discrete approximations of tapered solid-cone illumi-
ation by a finite set of hollow-cone illuminations, called
ere the n-ring approximation. We consider the approxi-
ation of Eq. (21) by a weighted sum of discrete values of

. If we introduce u=
2 / �2
2
2�, Eq. (19) becomes

I = 
2
2�

0

�

du J0��2
2��u�exp�− u�. �27�

n this form, the highly efficient Laguerre integration [16]
ay be applied. The results for the normalized mutual co-
erence function averaged over two, four, and eight hol-

ow cones with 
 used to emulate the exact tapered-cone
llumination are shown in Fig. 2 along with the results for
apered solid-cone illumination and hollow-cone illumina-
ion, which may be regarded as a one-point approxima-
ion to the integral.

The results may be summarized by the statement that
he n-ring approximation represents most of the first n
tandard deviations adequately; in more detail, the rela-
ion appears to be sublinear. Afterward, the results di-
erge and revert to an envelope given by the asymptotic
orm of Eq. (17). With care, it appears to be possible to ob-
ain good incoherence on medium scales. Such illumina-
ion may be suitable for tomography; however, tapered
olid-cone illumination emulated by a few values of
ollow-cone illumination is not a fully satisfactory substi-
ute for properly implemented tapered solid-cone illumi-
ation because of coherence at long length scales. The key
dvantage of the n-term approximation is that it may be
mplemented on an existing TEM merely by running
ollow-cone illumination many times with suitable angles
nd taking a weighted average of the results, whereas

ig. 2. Real part of normalized mutual coherence function for
he average of one, two, four, and eight hollow cones using La-
uerre integration points and weights [16] and the analytic limit
labeled �), given in Eq. (25). The imaginary part is very small.
arameters are given in the text. For small x2, not all of the
urves are distinguishable.
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mplementing true tapered-cone illumination will prob-
bly require cooperation of a vendor.

. DISCUSSION AND CONCLUSIONS
tandard tomography is based on projections, i.e., beams
ropagating in a straight line from the entrance to the
xit. However, an incoherent beam must come from a
ange of directions. These conditions are compatible if the
ivergence of the incoherent beam is not too large and the
umber of voxels across the sample is also not too large.
pecifically, the edge of validity for the projection approxi-
ation occurs if two beams entering the sample at a given

oxel emerge at adjacent voxels. If 
 is the divergence
ngle of the beam and N is the sample thickness in vox-
ls, we require 
�N−1 for the projection assumption to be
alid. To optimize the operating conditions, the standard
eviation of the normalized mutual coherence function for
apered solid-cone illumination should be chosen to be as
arge as reasonably possible (i.e., just a little smaller than
he pixel width) so that the beam is as parallel as possible
o allow many voxels. For large systems or the highest
esolution, ultimately the projection assumption will need
o be abandoned.

Incoherent illumination in TEM may enable tomogra-
hy of small crystalline samples with a dose that is lower
han previously possible using HAADF by 1 to 2 orders of
agnitude. Tapered solid-cone illumination is the most

romising scheme presently available because it leads to
very rapid decrease in the mutual coherence, has no ap-
reciable long-range tail, and may be implemented with
imited change to the existing hardware and software of a

odern commercial transmission electron microscope.
pecifically, one needs to add a good method for averaging
ver the tilt of the cone angle in hollow-cone illumination.

Because we have made use of only scalar wave theory,
he results could be applied to other areas of optics, e.g.,
chieving incoherent illumination with laser beams or
ynchrotron undulator radiation. However, a small nu-
erical aperture is required for the validity of our ap-

roximations.
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