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Abstract: 

     We have calculated the pair correlation functions for several binary mixtures 

composed of simple solutes in a Lennard-Jones solvent. In particular, we have studied the 

solute-solute pair correlation functions and their dependence on the total density, the 

solvent Lennard-Jones parameters and on the solute-solute energy parameter. All the 

results were obtained from solving the Percus-Yevick equations, as well as from Monte 

Carlo simulations. The relevance of these results to the problem of hydrophobic 

interactions is also discussed. 
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1. Introduction 
In the course of studying the underlying molecular origins of the hydrophobic 

interaction1,2, one of the authors (ABN) examined the potential of mean force (PMF) in a 

one dimensional system composed of a hard-rod solute in two types of solvents. The first 

was a simple solvent consisting of particles interacting via a square-well potential, and 

the second was a water-like solvent consisting of particles interacting via hydrogen-bond-

like potential functions. 3-5 

 

The two solvents showed very different behavior in their pure states; one behaved 

“normally” while the second exhibited water-like behavior. Interestingly, the solubility 

and the PMF of a hard-rod (HR) solute in the two solvents could be made very similar in 

magnitude by adjusting the strength of the solvent-solvent interaction. It was therefore 

suspected that the strength of the so-called hydrophobic interaction (i.e., the PMF 

between two simple solutes in water) is not a result of the peculiarities of the structure of 

water but a result of the strength of the solvent-solvent interaction. 

 

To test this conjecture, we have carried out a series of calculations of the pair correlation 

function (PCF) of a simple solute in a Lennard-Jones (LJ) solvent. We have examined 

the dependence of the PCF on both the strength of the intermolecular interaction as well 

as the size of the solvent particles. In the following section, we describe very briefly the 

methods used to calculate the PCF. A sample of results is presented in section 3, and 

some conclusions on the relevance of these results to the problem of hydrophobic 

interactions are discussed in section 4. 

 

2. Methods of calculating the pair correlation function 

2.1 Numerical solution to the Percus-Yevick equations 
All calculations were done for binary mixtures. The solvent B consisted of particles 

interacting through pair potentials of the form  
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where !  represents the strength of the inter particle attraction and !  represents the 

particle diameter. 

 

The solute A was treated as either hard sphere particles with interaction 

! 

U
AA
(R) =

" R #$
BB

0 R >$
BB

% 
& 
' 

   (2.2) 

or LJ particles with interactions as in (2.1). Interaction parameters involving unlike 

species were obtained using conventional Lorentz-Berthelot mixing rules 6  

    2/)(
BBAABAAB

!!!! +==    (2.3) 

    2/1)(
BBAABAAB
!!!! ==    (2.4) 

The Percus Yevick ( )PY  equation for pure spherical particles has the form 7-10 

  !+=
V

RRfRRyRRy ),(),(1),( 312121 "  

  3323232 ]1),(),(),([ dRRRyRRfRRy !+"    (2.5) 

where

! 

f (R)  is the Mayer function defined as 

[ ] 1)(exp)( !!= RURf "    (2.6) 

and )(Ry  is defined as 

    [ ])(exp)()( RURgRy !=    (2.7) 

A simpler and more useful form of this equation is obtained by transforming to bipolar 

coordinates 

31
RRu != , 

32
RRv != , 

21
RRR !=      (2.8) 

In bipolar coordinates, the element of volume is expressed as  

    RdvduuvdR /2
3

!=     (2.9) 

and thus (2.5) can be transformed into 
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For numerical purposes, it is convenient to transform again thePY equation (2.10) by 

defining the function 1,2,7,8 

     

! 

z(R) = y(R)R     (2.11) 

Hence, an integral equation for )(Rz can be obtained 

! !
" +

#

#++=
0

])()()([)()(2)(

uR

uR

dvvvzvfvzduufuzRRz $%   (2.12) 

 

For a binary mixture, equation (2.12) is generalized to 

! 
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where αβ = AA, AB, or BB. The numerical procedure used to solve the multi-component 

PY equation is similar to that used to solve the pure-fluid variant. One starts with 

     RRz =)(!"     (2.14) 

for all four functions )(Rz!"  and proceeds to solve the four integral equations (2.13) by 

iteration. [For more details, see references (1) and (2)]. Once the functions )(Rz!"  are 

obtained, the pair correlation functions can be calculated using equations (2.7) and (2.11). 

 

2.2 Monte Carlo simulations 
Pair correlation functions were also calculated using Monte Carlo (MC) simulations in 

the canonical ensemble, that is at fixed N (number of particles), V (system volume), and T 

(temperature). For convenience, the quadratically shifted-force version of the Lennard-

Jones interaction was used in the simulations.11 The cutoff distance Rc was taken to be 

2.5σαβ (where αβ = AA, BB, or AB). In all cases, a minimum of 300 particles was used. 

Since the simulations were performed in the canonical ensemble, only random trial 

displacements were employed. Cluster moves were not employed in the mixtures 

involving large size asymmetry. Instead, multiple independent simulations (a minimum 

of five in the case of large size asymmetry, and a minimum of three in other cases) were 

performed. The reported PCFs represent the mean of the independent runs. The standard 

deviation gives an indication of how well configuration space is explored. Each 
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simulation consisted of an equilibration period of at least 500,000,000 trial moves and a 

subsequent production period of at least 5 billion moves. Maximum trial displacements 

for each species were adjusted to yield an acceptance rate of 0.40. In addition, systems 

composed of 500 and 1000 particles were investigated to verify that system size effects 

were not important. Within the uncertainties, which are taken as the standard deviation of 

at least three independent runs, system size effects were negligible. 

   

3. Results from the Percus Yevick (PY) equations and the Monte 

Carlo simulations 
In this section, we present a sample of the results obtained from (a) solution of the PY  

equations and (b) by Monte Carlo simulations. We have carried out four sets of 

calculations for a mixture composition of xA = 0.1 (where xA is the solute mole fraction) 

and temperature T = 1. These are discussed in the following subsections: 

 

3.1 Dependence on the solvent size parameter  

The first series consists of results obtained for a fixed solute diameter 1=
AA

!  while 

varying the solvent diameter 
BB

! . The other parameters for these calculations are 

   1// == TkTk
BBBBAA

!! , and η = 0.4  (3.1) 

where η is the packing fraction, defined as 

   ( )33

6
BBBAAA

!"!"
#

$ +=     .    (3.2) 

where 
i
! is the number density of species i. 

Figures 1 and 2 show the PCF’s calculated by PY equations for 1=
BB

!  to 5 and 6=
BB

!  

to 10, respectively. Figure 3 shows ( )RgAA  in the region near the first maxima. As can be 

seen from these figures, the height of the first peak of AAg  increases with solvent size 

 σBB while the heights of the first peaks of either ABg  and BBg  remain relatively constant. 

In Figure 4, the heights of the first and second peaks of the PCF’s predicted by theory 

and simulation are compared. The predictions of the two methods are in good agreement.  
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3.2 Dependence on packing fraction η   

In this series of calculations, the packing fraction η is varied while fixing the following 

parameter values 

   1=
AA

! , 6=
BB

!  

   1// == TkTk
BBBBAA

!!     (3.3) 

We vary !  between 0.01 and 0.5. Figures 5 and 6 show the results computed by using the 

PY equations. In both the pure LJ liquid and LJ mixtures,1,2,12  it is well known that the 

first peak increases with increasing ! . The interesting finding in our calculations is that 

the height of the first peak in ABg  almost does not change, while that of BBg  changes 

only slightly, with increasing η. In contrast, the height of the first peak in AAg changes 

quite dramatically with ! . Figure 6 shows the details of AAg  around the first maxima. 

Figure 7 compares the locations of the first and second peaks of the PCF obtained by the 

two methods. 

 

3.3 Dependence on 
AA

!  

Figure 8 shows a series of results with the following fixed parameters  

   1=
AA

! , 6=
BB

!  

   1/ =Tk
BBB

! ,     4.0=! ,    (3.4) 

while varying εAA. Note that in this case where εAA=0, the solute is treated as a hard 

sphere. Again, as expected, the solvent PCF, BBg , does not change significantly, 

indicating that the solvent is not affected by the solute-solute interactions. On the other 

hand, AAg  changes considerably with 
AA

! . A comparison of the peak heights predicted 

by the PY equations and MC simulation is provided in Figure 9.  

 

3.4 Dependence on 
BB
!  

In the last series of calculations, the influence of the strength of solvent-solvent 

interaction is investigated. Other relevant parameter values were held fixed 

    1==
BBAA

!!  , 
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    0/ =Tk
BAA

! , 

    η = 0.4      (3.5) 

Notice that this corresponds physically to a hard-sphere solute in a LJ solvent. In the case 

where εBB = 0, the solvent is also a hard-sphere. The predictions of the PY equations are 

shown in Figure 10. Several important aspects of these results should be noted. First, the 

function ABg  is relatively insensitive to the strength of the solvent-solvent interaction. On 

the other hand, the function BBg  changes as expected for a normal liquid 10 , i.e., all 

the peaks increase with 
BB
! . These results are similar to the results obtained in one 

dimensional systems.3,3,14 

 

The most interesting finding is the behavior of AAg . With increasing 
BB
! , the height of 

the first peak of AAg  increases even more than the height of the first peak of BBg . More 

important is the range of the solute-solute correlation, which grows with 
BB
! . 

 

Figure 11 shows the comparison with the MC results. We suspect that the disagreement 

between the two sets of results in this case is due to a phase separation. To clarify this 

point, we calculated the finite Kirkwood-Buff integrals defined by 

   ( ) ( )[ ]! "=
MR

ijMij dRRRgRG
0

2
41 #    (3.6) 

Figure 12 shows that for small values of 
BB
! , the function ( )Mij RG  behaves “normally”, 

i.e., as expected.10 However, for larger values of 
BB
!  the functions ( )Mij RG  do not seem 

to converge as 
M
R  increases. We also calculated the parameter 

    
ABBBAAAB

GGG 2!+="    (3.7) 

Although we do not have the Kirkwood-Buff integrals (i.e., ( )!"Mij RG ) the values of 

ijG  at 10=
M
R  as well as 

AB
! , as reported in Table 1 indicates that something grows 

“wild” as we increase 
BB
! . In Figure 13, we show a phase-separated configuration for εBB 

= 1.1. 
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4. Discussion 
All the results reported in the previous sections in terms of the PCF may be reinterpreted 

in terms of the potential of mean force (PMF). The relationship between the two 

quantities is 

    ( ) ( )RgTkRW ijBij ln!=    (4.1) 

Since we are interested in the solute-solute PMF, and since the direct solute-solute 

interaction is kept constant in each of the series of results, we can reinterpret the results in 

terms of the solvent induced interaction, i.e., we write 

    
AAAAAA
AUW !+=     (4.2) 

where 
AA

U  is the direct solute-solute interaction and 
AA
A!  is the solvent induced part of 

the PMF. The quantity 
AA
A!  was studied extensively in connection with the problem of 

hydrophobic interactions.1,2 

 

There are several conclusions that can be drawn from the results of this work. The first is 

“technical”; that is the good agreement between the PY and the MC results proves once 

again the reliability of the PY equations. Even in the case where the results disagree, we 

can trace the origin of the discrepancy, and learn something about the applicability of the 

PY approximation in regions near phase separation. 

 

The second conclusion is similar to the one drawn in a previous article (Ref. 3). As in 

reference 3, we found that in a one-dimensional system of mixtures that the correlation 

can be made large, or the solute-solute PMF can be made deeper by varying the solvent-

solvent interactions. These findings strongly indicate that the solute-solute PMF for non-

polar solutes in real water is basically a result of the strength of the solvent-solvent 

interactions. In real water, these interactions are due to hydrogen-bonding. However, it 

seems that hydrogen-bonding  per se, or the peculiarities of the structure of water, are not 

necessary for the manifestation of strong solute-solute correlation, as is currently believed 

to be the case for so-called hydrophobic interactions. 
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As was also pointed out in reference 3, the extended range of the solute-solute PCF in a 

solvent with strong intermolecular interactions (or at low temperatures) is also not a 

phenomenon relevant to the hydrophobic interaction. In our case, it is probably due to the 

fact that the mixture becomes less symmetrical and less ideal, and perhaps approaching 

the region of phase separation.  

 
 
 
 

Table 1 
The values of ( )10=Mij RG  and 

AB
!  for the series of calculations in section 3.4 

       0=
BB
!       5.0=

BB
!     0.1=

BB
!      5.1=

BB
!  

AA
G        -1.09       10.36       414.8        1843 

AB
G        -1.09       -3.27      -84.17        -443 

BB
G        -1.09       -0.67       15.53         105 

AB
!              0      16.23      598.7        2834 
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Figure captions 
Figure 1: The pair correlation functions (PCF) for a mixture of a solute A in a 

solvent B predicted by the PY equations. The parameters for this series are provided 

in equations 3.1. 

Figure 2: Same as in Figure 1 but for higher values of the solvent diameters 
BB

! . 

Figure 3: The same as in Figure 1 and 2 but a close up view near the first peak of the 

PCF. 

Figure 4: Comparison of the locations of the first and second peaks of AAg obtained 

by solution of the Percus Yevick equations (diamonds) and by Monte-Carlo 

simulations (circles). Error bars represent the standard deviation of at least three 

independent runs. 

Figure 5: Dependence of the PCFs on the packing fraction. Parameters for this 

series are provided in equations 3.3. 

Figure 6: As in Figure 5, but a close up view near the first peak. 

Figure 7: Comparison of the results from PY (diamonds) and MC (circles) for the 

first and second peak of AAg  and their dependence on ! . Error bars represent the 

standard deviation of at least three independent runs. 

Figure 8: Dependence of the PCF on the solute-solute energy parameter 
AA

! . The 

other parameters for this series are provided in equations 3.4. 

Figure 9: Comparison of the results from the PY (diamonds) and the MC (circles) 

for the first and second peaks of AAg  and the dependence on 
AA

! . Error bars represent 

the standard deviation of at least three independent runs. 

Figure 10: Dependence of the PCF on the solvent-solvent energy parameters 
BB
! . 

The other parameters for this series are provided in equations 3.5. 

Figure 11: Comparison of the results from the PY (diamonds) and MC (circles) for 

the first and second peaks of AAg  and their dependence on 
BB
! . For clarity, the upper 

panel corresponds to the height of the first peak in gAA, and the lower panel 

corresponds to the height of the second peak. Error bars represent the standard 

deviation of at least three independent runs. 
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Figure 12: The finite Kirkwood-Buff integrals for the same series as in Figure 10. 

The four columns correspond to the four values of ( )5.1,0.1,5.0,0
BB
!  as in Figure 10. 

Figure 13: Phase separation for a hard-sphere solute in a LJ solvent ( εBB = 1.1) 

observed in MC simulation. The total number of particles used in this simulation was 

1000. (a) Both solvent and solute are shown. (b) For clarity, the solvent particles have 

been removed. Note also that periodic boundaries are applied. 
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