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The Kirkwood-Buff integrals (KBls) for one-component systems are calculated from either the pair 
correlation functions or from experimental macroscopic quantities. As in the case of mixtures, the 
KBls provide important information on the local densities around a molecule. In the low density 
limit (p-+O) one can extract from the KBI some information on the strength of the intermolecular 
forces. No· such information may be extracted from· the KBls at higher densities. We used 
experimental data on densities and isothermal compressibilities to calculate the KBls for various 
liquids ranging from inert molecules, to hydrocarbons, alcohols, and liquid water. © 2008 American 
Institute of Physics. [DOl: 10.1063/1.2938859] 

I. INTRODUCTION 

Recently, I have advocated in favor of a new way of 
studying, analyzing, and interpreting liquid mixtures. l- 3 The 
traditional approach is based on the study of the excess ther­
modynamic quantities such as excess free energy, excess en­
tropy, enthalpy, volume; etc.4

-
6 These quantities convey 

macroscopic infonnation, and therefore were referred to as 
global properties of the mixtures. 

The new approach is based on the so-called Kirkwood­
Buff integrals (KBls). These quantities probe into the imme­
diate surroundings of the molecules, and therefore are re­
felTed to as the local properties of the mixtures. For 
mixtures, the KBls provide a rich and interesting information 
on the local densities, local composition, and preferential 
solvation around a single molecule in the mixtures. In addi­
tion, the solvation thermodynamic quantities provide infor­
mation on the strength of the interaction of a molecule with 
its environment, the effect of a molecule on the "structure" 

. 17
of the solvent,' etc. In one-component systems, the reper­
toire of infOlmation that is conveyed by the KBI is much 
more restricted. Nevertheless, it is of interest to have the 
values of the KBls for pure liquids as references to the cor­
responding values in mixtures. 

Nowadays, it is common tO'Tefer to the quantities 

(1.1) 

as the Kirkwood-Buff integrals. They were used in the origi­
nal "Kirkwood-Buff theory of solution" published in 1951.8 

However, the same integrals were introduced much earlier by 
Ornstein and Zernike9 in connection with the fluctuations in 
the number of particles in an open system of one-component. 
In this article, we study these integrals for one-component 
systems, we shall use the term KBI, although a more appro-
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priate term, for a one-component system, might be the 
Ornstein-Zernike integrals. 

The KBI for either a one-component or for mixtures may 
be interpreted (and misinterpreted) in several ways. We shall 
discuss this in the next section. In Sec: III, we shall examine 
the KBI for a variety of systems, ranging from hard spheres 
and Lennard-Jones particles, to hydrocarbons, alcohols, and 
water. Some concluding remarks are presented in Sec. IV. 

II. DEFINITION AND INTERPRETATION OF THE KB 
INTEGRALS 

The KBI for a one-component system is defined by 

Go =Iv [go(R) - l]dR, (2.1) 

where go(R) is the pair correlation function or the radial 
distribution function defined in an open sys.,tem (or in the 
grand canonical ensemble), and the integration is extended 
over the entire macroscopic volume of the system V. Note 

that R in g(R) is the intennolecular distance, whereas if? is 
an element of volume dxdydz. 

The KBI is related to two macroscopic quantities by the 
following equations: 

(If-) - (N)2 
(N) - 1 = pGo = knTPKr - 1, (2.2) 

where kB is the Boltzmann constarit, T is the absolute tem­
perature, p is the average number density NI V in the system, 
and Kr is the isothermal compressibility of the system. 

On the left hand side of Eg. (2.2), we have the fluctua­
tions in the number of particles in the open system. On the 
right hand side (rhs) we have a connection with macroscopic 
measurable quantities. This side of the equation is known as 
the compressibility equation. 1Q-12 

It should be emphasized that Eq. (2.2) is valid only when 
Go is defined as in Eq. (2.1) in an open system (hence the 
subscript 0). Failing to recogniz~ this fact has been a noto­
rious pitfall. To see this we first write 'the KBI, defined in the 
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same way as in Eq. (2.l), but in a closed system (hence the 
subscript C). 

(2.3) 

The two quantities Co and Ce looks deceivingly similar 
(and identical if we remove the subscripts C and 0) but, in 
fact, they are quite different. The difference between the two 
can be dem0nstrated even for ideal gas (see Appendix A). 
For any liquid, and at any density, the closure condition, i.e., 
the fixed nurnber of particles in the system, imposes the nor­
malization condition on Ce,I,lo,n 

Ce = Iv [gC<R) - l]dR = - lip. (2.4) 

Clearly, this condition arises from the fact that the total 
number of particles N in the system is conserved, i.e., 

(2.5) 

On the rhs of Eq. (2.5) the counting of the total number 
of particles is done in two steps: First, count the number of 
particles around a selected particle, then add the selected 
particle to get N. As was pointed out by Munster,l1 if one 
uses the same notation for gc<R) and go(R), and substitute 
the integral in Eq. (2.4) into the compressibility equation 
[Eg. (2.2)], one gets the absurd result KT=O. Clearly, this 
result can be avoided by using different notations for the pair 
con'elation functions in the closed and open systems. 

Obviously, the conservation argument for gC<R) in Eq. 
(2.4)does not apply for go(R). The microscopic, or the local 
reason, for the difference in the two integrals can be seen 
from the following considerations. 

We know from both experimental data on the pair cor­
relation functions and from theoretical calculation that the 
pair correlation function is significantly larger than unity 
only in a small region of distances. In other words, there 
exists a correlation length Reorr such that for R ~ ReolT g(R) is 
practically unity. This fact allows us to deduce local infor­
mation from Co (but not from Cd. To see this, it is conve­
nient to rewrite the KBI as 

J[g(R) - l]dR =J + J (2.6) 
V VeOIT V-VeOIT 

where Veorr=41TR~orJ3 is the correlation volume which is 
essentially a microscopic volume, and V- Veorr is the macro­
scopic volume V of the system minus V " It is well known eon 

that the pair conelation function in the region V- VeolT is 
different in the open and the close systems.l.lO.l1 This is 
shown schematically in Fig. 1. 

(2.7) 
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FIG. 1. The effect of placing a particle (dark disk) at the center of the 
correlation sphere (shaded disk) in (a) closed and (b) open systems. 

(2.8) 

From Eqs. (2.7) and (2.8) it follows that the second integral 
on the rhs of Eq. (2.6) can be neglected in Co, but not in Ce, 
hence we have 

(2.9) 

IReOIT k TPK 
Ce = [gC<R) -1]47TR2dR-~, (2.10) 

o . P 

where p=NIV and p' =NI(V- Veorr)' Thus, because of Eq. 
(2.9), Co itself provides local information around a mol­
ecule. Furthermore, since in the conelation region 
(R ~ Reorr) the values of gC<R) and go(R) are nearly the 
same, the same local information is also contained in the 
integral on the rhs of Eq. (2.10). However, in this case this 
integral is not equal to C e. Therefore, we cannot identify the 
local infOlmation conveyed by Co with Ce. Another way of 
viewing the different behavior of the open and closed sys­
tems is shown schematically in Fig. 1. In a closed system 
with fixed density p=NIV, placing one particle at the center 
of a sphere of radius Reorr will change the density in the 
region Reon~R~RM' where RM is the radius of the macro­
scopic system, from p=NIVto p*=p(l-kBTpKTIN). This is 
a result of the conservation of the total number of particles. 
The same process in an open system does not cause any 
change in the density p. 

Thus, in the open system one can replace the integral 
over the entire region V by an integral over the correlation 
region. This makes the KBI Co useful in studying local 
quantities, such as local density, local composition, and local 
preferential solvation. The same is not true for Ce, for which 
the second integral on the rhs of Eq. (2.6) is finite. Therefore, 
one cannot replace Ce by the local integral over the correla­
tion sphere. One can obtain the KBI from integration over 
gc<R) , provided one first takes the thermodynamic limit N 
-+ 00 V -+00, but NI V constant. In which case gc(R) becomes 
equal to go(R). We shaH comment further on the evaluation 
of the KBI from experimental data in Sec. IV. 
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FIG. 2. The integrand {exp[-,BU(R)]-c·[}41TR2 as a function of R for LJ 
particles with parameters rr=2.78 A el ko=34.9 K and at T=273 K. The 
negative and the positive regions contribute negative and positive values to 
the integral G in Eg. (3.3). 

The local meaning of the KBI (Go, but not Gd is the 
following: p4nR2dR is the average number of particles in a 
spherical shell of radius R and width dR. pgo(R)4nR2dR is 
the average number of particles in the same spherical shell, 
but in the center of which a particle is placed. Therefore, 
J~corrp[go(R)-I]4nR2dR is the change in the average num­
ber of particles in the sphere of radius Reom caused by plac­
ing a particle at the center of the sphere. Because of the 
property Eq. (2.7) or (2.9) in the open system, one can re­
place the upper limit ReofP by infinity to obtain the same 
interpretation for the KBI (Go, but not Gd. 

Another useful relation between the KBI and the partial 
molar volume at a fixed position is 

Go =- V*. (2.11) 

Note that the molar volume VM is the change in the 
volume of the system caused by adding one mole (or one 
molecule depending on the context of using this term) of 
particles to the system at constant T and P. The quantity V* 
is the change in the volume of the system caused by placing 
a particle at a fixed position in the system, keeping T and P 
constant. The relation between the two volumes is (per 
particle)1 

VM = V* +kBTKr. (2.12) 

From Eq. (2.11) it follows that 

pGa = I1N(Reo,T) = - pV* . (2.13) 

Thus, the change in the average number of particles in 
the correlation volume I1N(Reon.) caused by placing a particle 
at the center of the correlation volume is equal to minus the 
average number of particles occupying the volume V* in the 
liquid having the density p. 

Note that pV* is different from the average number of 
particles occupying the correlation volume. The relation be­
tween the two q"uantities follows from Eq. (2.9) and (2.13), 

(2.14) 

It is sometimes convenient to reinterpret the KBI as fol­
lows (we drop the subscript 0 in the rest of this paper since 
we shall always refer to Go, and not to Gd, 

G =f [g(R) - 1]dR =J + J (2.15) 
v V" v-V''' 

=- vex + J [g(R) - 1]dR = - vex +L, (2.16) 
v-V" 

where vex is the excluded volume. This is defined as the 
region around the center of the particle for which g(R) == 0, 
hence the integration over this region produce the negative 
quantity - vex. For spherical particles with hard-core diam­
eter (J this volume is simply 

41T(?vex_- ­ (2.17)- 3 . 

Thus, in general G has two contributions: One, - vex, 
which is always negative, and L which may be either positive 
or negative depending on the strength of the correlation func­
tion in the region VeOlT - vex. It is tempting to interpret the 
two parts of Gin Eq. (2.16) as arising from the repulsive and 
attractive parts of the potential function, respectively. This is 
true only in very special cases of ideal gases (see Sec. III A), 
but it is not true, in general. While - vex results only from the 
repulsi ve parts Of the pair potential, the remaining part L is a 
result of both the repulSIve and the attractive parts of the pair 
potential. We shall see in the next section that for hard 
spheres (HSs) particles both parts of the KBI are negative, 
and obviously both results from the repulsive part of the pair 
potential. For real molecules at liquid densities, there is no 
way of extracting information on the attractive part of the 
pair potential from the KBI. 

III. EXAMPLES 

In this section, we present values of the KBI as defined 
in Eq. (2.1), but we shall omit the subscript O. We shall start 
with ideal gases, then simple Lennard-Jones particles, then 
water and some other liquids. 

A. Ideal gas 

Ideal gas (i.g.) behavior can be realized by either sys­
tems of hypothetical, strictly noninteracting particles or by 
real particles but at the limit of low densities p--+ O. Both of 
these give the same equation of state, 

P=pkBT. (3.1) 

However, the two systems produce different KBls. For 
the hypothetical ideal gas, all intermolecular interactions are 
by definition zero, hence, the pair COiTelation function is 
unity, and therefore 
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G(hypothetical i.g.) =O. (3.2) 

Note that this equality is not true for the KBI defined in a 
closed system (see Appendix A). 

B. Real gases at low densities 

For the real ideal gas, i.e., system of interacting particles 
but at p--;O, we have the limiting value of the KBI, 

G(real i.g.) =lim G =f {exp[- (3U(R)] - l}dR. (3.3) 
p--->O v 

This limit follows from the well known expression for the 
. I' f' 0 I 10-12palr cerre atJOn unctIOn at p--; ,name y, 

lim g(R) =exp[- (3U(R)], (3.4) 
p--->O 

where U(R) is the pair potential. 
The simplest interacting particles are HSs for which 

00 for R :'E;; a­
UHs(R) = (3.5) 

. 0 for R > a-.1
Hence 

47Ta-' 
G(hard spheres, p --; 0) =- --. (3.6)

3 

This is simply the excluded volume for the hard sphere par­
ticles. 

For any other real gas at very low density, we can write 

- 47Ta-' f .'.G(real i.g.) = --+ {exp[- (3U(R) - J]}dR,
3 v_vx 

(3.7) 

FIG. 3. g(R) and G(RM) for hard 
spheres at low densities (p=O.I) [Eq. 
(3.8)]. 

where a- is the effective hard-core diameter. For Lennard­
Jones (LJ) particles, the effective hard core diameter is usu­
ally chosen as the parameter a- in the Lennard-Jones poten­
tial. For the purpose of interpreting the two terms in Eq. 
(3.7), we ignore the difference between a- [the value of R at 
which U(R)=O], and the location of the minimum in the LJ 
potential [this minimum is at a-f{i, when a- is chosen as the 
LJ parameter (see Sec. III D). For such a system, G consists 
of two telms: One negative due to the excluded volume and 
one positive due to the positive correlation [i.e., g(R) ~ I in 
the region R ~ a-]. The two corresponding regions of the in­
tegrand in Eg. (3.3) are shown in Fig. 2. Here we have a 
clear-cut separation between the positive and negative con­
tributions to G. It should be noted that only in this case one 
can claim that the second term on the rhs of Eg. (3.7) is due 
to the attractive part of the potential function (i.e., the region 
R> a- where a- is chosen as the location of the minimum in 
the potential). 

For any other density, the sign of the second contribution 
to the KBI, whether positive or negative, is a result of both 
the attractive as well as the repulsive part of the pair poten­
tial. 

C. Hard spheres at finite densities 

Hard spheres are defined by their pair potential [Eg. 
(3.5)]. 

As we have seen in the previous subsection, in the limit 
of p--; 0, the only contribution to G comes from the hard­
core repulsion. As we increase the density we find cOlTela­
tion at distances R> a-. This cOlTelation will affect the value 
of G. 

As we have seen in the limit of p--; 0, the value of G is 
simply -47Ta-' /3. We also know the first order cOITection to 
the pair correlation function, which iS1,1O 

o for R < a-

g(R) = 47Ta-' [1 +p-- 1 ­
3 

3 R 1 (R)3]-­ + - -
4 a­ 16 a-

for a-:'E;; R:'E;; 2a­ (3.8) 

1 for R > 2a-. 
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FIG. 4. The density dependence of G for hard spheres [Eq. (3.9)]. 

Figure 3 shows g(R) and G(RM) for this case (the illustration 
is for p= 0.1 particles per a3, where u is chosen as the unit of 
length). 

For higher densities, there are several approximation for 
the pair cOlTelation function, hence for G(RM). For instarice, 
from the exact solution of the Percus-Yevick (PY) equation 
for hard spheres we have the following expression: 12 

(3.9) 

where 1]= 7T<? f 6 
From Eq. (3.9) we can obtain G as a function of p for 

hard spheres. This is shown in Fig. 4. 
At any density the split of G into two parts as in Eq. 

(3.7) applies. The first term on the rhs of Eq. (3.7) is due to 
the repulsive part of the potential. So does the second term. It 
is sometimes said that the second term arises from the "in­
teraction" between the particles. This is true if by "interac­

D. Lennard-Jones particles 

LJ particles are defined through the pair potential, 

(3.10) 

Figure 5 shows the pair correlation function g(R) and the. 
integral 

(3.11) 

for a system of LJ particles with parameters 

u= 1, efkBT= 0.5,0.6,0.7. (3.12) 

In all the calculations in this section, the parameter u 

was chosen as the unit of length, and we vary the energy 
parameter ef kBT. The results shown in Fig. 5 were computed 
for the limit of p~ 0, using the limiting fOlm of the pair 
correlation function, 

g(R) =exp[- /3Uu (R)]. (3.13) 

Note that all the G(RM) curves start at zero, then de­
crease to a minimum at about RM = 1. Beyond RM = 1, 
G(RM) starts to increase and eventually levels off. Note that 
the limiting value of G(RM ) is reached for RM of the order of 
the range of the pair potential. The limiting value of G(RM) 

at RM~ 00, which is the KBI, is positive, and is larger the 
larger the energy parameter ef koT. Again, we emphasize that 
only in this case there is a clear cut separation between the 
positive and the negative contributions to G (neglecting the 
small region u~ R~ uRfi for which the potential is repul­
sive). 

We next turn to higher densities for which the limiting 
form of g(R) in Eq. (3.13) does not apply. In all the follow­
ing demonstrations in this section, we use the numerical so­

tion" one includes both the repulsive and the attractiveparts. lution of the Percus-Yevick integral equation. 
This example shows how one cannot learn much on the mo­ The PY equation for pure spherical molecules has the 
lecular interactions by studying the KBls. following form: 1,13-16 
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FIG. 5. g(R) and G(RM) for Lennard­
Jones particles with parameters in Bq. 
(3.12) in the limit of low density p 
----.0. 
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y(R"Rz) = 1+ pJ/(R"R3)f(Rlt R3) 

x [y(Rz,R3)J(Rz,R3) +y(Rz,R3) - l]dR3 , 

(3.14) 

where f is the Mayer function defined as 

f(R) =exp[- f3U(R)] - 1, (3.15) 

and y(R) is defined as 

y(R) = g(R)exp[f3U(R)]. (3.16) 

Another simpler and useful form of this equation is ob­
tained by transforming to bipolar coordinates, 

(3.17) 

The element of volume is expressed as 

dR3 =2nuvdudv/R, (3.18) 

and Eq. (3.14) is transformed into '" fR+U 
y(R) =1+ 2npW' y(u)f(u)udu [y(v)J(v)fa IR-ul 

+ y( v) - l]vdv. (3.19) 

For the numerical solution, it is convenient to transform 
the PY equation by defining the following function: 

z(R) == y(R)R. (3.20) 

Hence, we get an integral equation for z(R), which reads 

z(R) == R + 2np fa'" z(u)f(u)du 

X (R+u [z(v)f(v) + z(v) - v]dv. (3.21) 
J1R-ul 

The numerical solution starts by choosing the following ini­
tial input function: 

z(R) == R, (3.22) 

and proceeds to solve the integral equation [Eq. (3.21)] by 
iteration. (For more details on the PY equation and its nu­
merical solutions, see Ref. 1). 

Figure 6 shows the functions g(R) and G(RM ) for the LJ 
parameters a= 1 and e/ kBT=0.7, but at three different den­
sities. At very low densities p=O.01, the curve in Fig. 6(a) is 
similar to the one shown in Fig. 5. The G values are negative 
for RM~ a, but increase to positive values that depend on the 
energy parameter e /kBY. As the density increases new 
maxima and minima appear in the pair correlation function 
as well as in the function G(RM ). Figure 6(b) shows the 
curves g(R) and G(RM ) for an intermediate density p=OA, 
and Fig. 6(c) for a high density p=0.8. Note that the limiting 
value of G becomes lower at p=OA and negative at p=0.8. 
Again, we can conclude that nothing can be learned on the 
strength of the interactions from the values of G. 

Figure 7(a) shows the function G(RM) for fixed molecu­
lar parameters a= 1 and e/ kBT=0.5, but at varying densities. 
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FIG. 6. g(R) and G(RM ) for Lennard-Jones particles at three densities. 

As can be seen, the limiting values of G(RM) at RM-;oo 
initially decrease as we increase the density, but at higher 
densities it reaches a value nearly equal t.o -1. 

On the other hand, Fig. 7(b) shows the same plots for the 
molecular parameters u= 1 and e/ kBT=0.7. Here in contrast 
to the case of Fig. 7(a), the limiting value of G(RM) initially 
increases with the increase in the density, then decrease to 
negative value and reaches a value, again of about G=-I, at 
higher densities. 

Clearly, the increase or decrease of G as a function of p 
cannot be attributed to the changes in the strength of the 
molecular interaction. 

A similar conclusion may be drawn by comparing the 
two sets of results in Figs. 7(a) and 7(b) at each density. For 
instance, at p= 0.1, we see that G is positive and increases 
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FIG. 7. Dependence of G(RM) on the density for (a) (T= 1 and 61 klJT=O.s and (b) (T= 1 and eI knT=0,7, 
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with elkBT. The same is true for p=0.2 and p=OA, however, 
for p=0.7and p=0.8. The values of the KBI almost do not 
change. 

Again we conclude that there exists no simple relation­
ship between the strength of the molecular interactions and 
the values of the KBls. This is true even if we deduct from G 
that part of the integral between zero and (T, as in Eq. (2.16). 

Figure 8 summarizes the density dependence of G, for 
three values of elkBT. It is clearly seen that at low densities, 
G is positive and increases with 61 kBT, while at higher den­
sities all the values of G converge to about -1, and they are 
almost insensitive to the changes in the energy parameter. 

FIG, 8, The density dependence of G for Lennard-Jones particles, with 
different energy parameters. 
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Figure 9 shows the "two components" of the KBI. In (a), 
the two components are obtained from the compressibility 
equation, written in the form 

(3.23) 

As expected, at very low density (p ~ 0.3) both of the 
terms on the rhs of Eq. (3.23) are large, but of opposite signs. 
The difference between kBTKT and 1IP is, however, finite. At 
higher densities the term kBTKT is usually very small and G 
is determined by the value of -llp=-VM . This is true for 
most of the real liquids discussed in the following sections. 

Figure 9(b) shows the split of G into two regions of the 
interaction as in Eq. (2.16). It is clear that by adding vex to G 
one merely shifts the curve of G, but one cannot gain any 
new information from L which is not contained in G. 

E. Inert gases 

The calculated results of this and the following sections 
were based on data from Hirschfelder et al. l ? and Lemmon 
et al. 18 

Figure 10 shows the functions g(R) and G(RM ) for the 
Lennard-Jones parameters corresponding to neon, argon, 
krypton, and xenon, where all plots are based on Eqs. (3.10), 
(3.11), and (3.13) with parameters given in Table I and T 
=273 K. In contrast to Fig. 5 where the diameter is held 
constant, here, both the diameter and the energy parameters 
change. As can be seen from the Fig. 10, for neon at very 
low densities, the excluded volume term vex in Eq. (2.16)is 
the dominant contribution to G, making the value of G nega­
tive. In all other cases, the values of G are positive indicating 
that the attractive part of the potential dominates Eq. (2.16) 
and the resulting values of G are all positive. 

Figure 11 (a) shows the values of G calculated from data 
on the densities and the compressibilities of the gases at 
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FIG. 9. Two different splits of G into two terms: (a) Eq. (3.22) and (b) Eq. (2.16). 
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1 atm. As can be seen in this case, all the values of G, in­
cluding those of neon, are positive. The temperature depen­
dence of G for neon is different from all the other gases. 

Figure 11 (b) shows the values of G at pressures and 
temperatures corresponding to the liquid state and only three 
points are shown for each gas. Here, the order of the G 
values is reversed. First, note that all the G values are nega­
tive, and that the larger the molecules, the larger the negative 
value of G. Clearly, these results are consistent with the well 
known fact that in the liquid state the KBls are dominated by 
the excluded volume which is proportional to the size of the 
atoms. 

F. Hydrocarbons 

We next move on to linear hydrocarbons. Figures 12(a) 
and 12(b) show the values of G for propane and butane as a 
function of temperature for two pressures. At 1 atm, we see 

?,.:5.'""""'.........._liliiii... IIIIIIII....1IIIIIIII1IIIIIIII_..
 

'4 

that the butane curve is above propane's curve, and all values 
are positive. Clearly, in this case the molecules are in the 
gaseous phase and the attractive part of the interaction domi­
nates the value of G. This explains both the positive values 
of G and the relative magnitude of G. On the other hand, at 
high pressure, the role of the two contributions to G is re­
versed; here we observe negative values of G for the two 
gases and the reversal of the relative order of magnitude, i.e., 
tbe larger the molecule, the larger the excluded volume, and 
hence from Eq. (2.16) it also follows that the larger the nega­
tive values of G. 

A similar trend is observed for the higher hydrocarbons 
at 1 atm. Figure 13(a) shows that the values of G (at 1 atm) 
are negative and decrease with the increase of temperature. 
The larger the size of the molecule, the larger the size of the 
negative G values. These results are consistent with the 
dominating contribution of vex in Eq. (2.16). 

300 

1200,' 

:~ laO 

®' 

'5 

FIG. 10. Values of g(R) and G(RM ) for inert gases at low densities (P-lO) with parameters given in Table I and T=273 K (R in A). 
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TABLE 1. Values of IJ and of e/ kn for the Lennard-Jones function fitted to 
obtain the second virial coefficient of some simple gases [from Hirschfelder 
el al. (1954) (Ref. 17)]. 

Gas IJ (A) e/kn (K) 

Ne 
Ar 

Kr 
Xe 

2.78 

3.40 

3.60 

4.10 

34.9 

119.8 

171.0 

221.0 

In Fig. 13(b), we show the effect of increasing the pres­
sure on the G values of hexane. Here, the increase in pres­
sure causes a decrease of the negative values of G.. 

Finally, in Fig. 13(c), the values of the KBI for hexane 
and cyclohexane are compared. It is worthwhile noting that 
the values of the KBI for cyclohexane are much smaller (in 
absolute magnitude compared with hexane) and are even 
smaller than the values of G for pentane. The interpretation 
of this finding is that cycling of the hydrocarbon consider­
ably reduces the effective excluded volume of the molecule, 
hence reducing the values of G: Note that reducing the chain 
length by one carbon atom reduces IGI by about 
15-17 cm3 mol-1 [Fig. 13(a)]. The effect of cycling the hex­
ane on G (basically on veX) is more than reducing the length 
of the hydrocarbon by one carbon atom. 

G. Methanol and ethanol 

Figure 14 shows the KBI for methanol and ethanol as a 
function of temperatiJre at 1 atm. Since the overall attractive 
part of the intermolecular interactions is the same, the rela­
tive difference in the KBI is expected to depend on the size 
of the molecules. 

The KBI for both molecules are negative and the tem­
perature dependence is negative too. The general trends are 
similar to the hydrocarbons except for the relatively higher 
values of G for the alcohols compared with the expected 
values of the hydrocarbons of the same size, in the liquid 
state (note that hydrocarbon molecules of the "same-size" 
would not be in the liquid state at this range of temperatures 

and pressures). This is probably due to the stronger attractive 
interactions between the alcohol molecules compared with 
the corresponding hydrocarbon molecules of similar sizes. 

H. Liquid water 

Liquid water is an outstanding liquid. 19
-
23 It is both an 

interesting and an important substance; interesting because 
of its unusual properties, and important because of its being 
an indispensable medium for sustaining life. 

The outstanding properties of water can be roughly di­
vided into two gi"OUps: One that includes properties that are 
unique or almost unique (e.g., the negative temperature de­
pendence of the volume, the large entropy of solvation of 
inert gases in it, etc.) and some that are not unique but have 
outstanding values (e.g., the high value of the heat capacity). 

One practical criterion that can be used to make a deci­
sion as to which group a given property belongs is to draw 
the values of the property for a series of linear alcohols hav­
ing the formula CH3(CH2)1l_10H and extrapolate the value 
of that property for the case n=O. 

Figure 15 shows the KBI for a series of linear alcohols 
as a function of the number of carbon atoms. It is seen that 
the values are all negative and decreases with n. Clearly, the 
larger the chain, the larger the contribution from the hard­
core repulsion, hence the more negative the value of the 
KBI. If we extrapolate from these values to n=O, we get the 
value of G for the hypothetical alcohol with no carbon at­
oms. Interestingly, the value of the KBI for water almost 
coincides with the extrapolated value from the series of al­
cohols. This finding is quite puzzling for the following rea­
sons. As can be seen from Eq. (3.22). the KBI is determined 
by both the molar volume and the compressibility of water. 
These two properties show anomalous behavior as a function 
of temperature (Fig. 16). Yet, the combination of the two 
produces a quantity that seems to behave "normally." 

Figure 17 shows the values of G for water as a function 
of temperature at 1 atm. From what we have learned in the 
previous sections, we would have expected that for a small 
molecule such as water, with an effective diameter similar to 

-30 

(b) -120 

FIG. 11. Values of G for inelt gases at various temperatures and P= 1 atm. 
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FIG. 12. Values of G for propane and butane at different pressures. 
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that of neon, and with such strong interactions (hydrogen­
bonding), the positive contribution to the KBI would domi­
nate the value of G. Yet the values of the KBI of water are all 
negative over the entire range of temperatures. Had we cal­
culated the KBI for low density steam, the value of G would 
have been large and positive. The reason is that in the gas­
eous phase at low density, the pair interaction determines the 
pair correlation function [Eq. (3.4)J, hence strong interac­
tions (hydrogen-bonding) should contribute large positive 
values to the KBI. In the liquid state, the pair correlation 
function is determined not only by the pair interactions but 
also on higher order, nonadditive potentials. The net effect of 
these interactions is to produce a relatively narrow first peak 
of the pair cOiTelation function of water. This is equivalent to 
small coordination numbers. Hence, in this case the effect of 
the strong attractive forces is reduced, and the value of G 
becomes negative. 

Figure 17 shows the values of the KBI for H20 and D20 
at 1 atm computed from experimental data on molar volume 
and isothermal compressibilities. It is interesting to note that 
the temperature dependence of G is almost linear in the en­
tire range of temperature. 

The values of G for D20 are systematically lower than 
the corresponding values of H20. This curve goes through a 

maximum value at about 6 0 C (not corresponding to either 
the minimum of the volume or the compressibility of D20). 

Since H20 and DiO have almost the same effective die 
. ameters one cannot explain the larger negative values of G of 

D20 due to a larger excluded volume. Hence Eq. (2.16) is of 
no help in this regard. On the other hand, looking at the 
compressibility equation, we notice that the term kBTKT is 
much smaller than the molar volume VM' We can interpret 
the difference in the KBI of H20 and D20 in terms of the 
molar volumes. The molar volumes, in turn, may be inter­
preted in terms of the "relative degree of structure" of the 
two liquids. The strength of the hydrogen-bond energy of 

D20 is known to be larger than that of H20. This leads to 
more molecules being engaged in hydrogen-bonding, hence, 

to a larger concentration of the open structure component, 
and hence to larger and larger negative KBI. 

The pressure dependence of the KBI for H20 and D20 
at 25°C is shown in Fig. 18. The two curves are almost 
linear and almost parallel to each other. Again, we see that 

D20 has the larger (negative) values of the KBI in the entire 
range of pressures. 

FIG. 13. Values of G for some linear hydrocarbons as a function of temperature and pressure. 
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FIG, 14, Values of G for methanol and ethanol as a function of temperature 
at 1 atm, 

IV. DISCUSSION AND CONCLUSION 

Originally, the KBls were defined in terms of the pair 
correlation functions. This is true for both a one-component 
system and mixtures of any number of components, The 
compressibility equation was mainly used to calculate the 
isc;>thelmal compressibility from the pair correlation 
function, W-12. The results obtained from this calculation 
could be compared with the experimental results. The extent 
of agreement between the calculated and the measured quan­
tities could serve as a sensitive test of the accuracy of the 
computed pair correlation functions. This procedure could, in 
principle, be used also to examine the quality of the pair 
correlation functions in mixtures, However, in practice this 
procedure was rarely used, simply because it was difficult to 
obtain the pair correlation functions for mixtures neither 
from experiments nor from a theory. 

The procedure advocated in this article is essentially to 
inverse the role of input and output in the calculations, Here, 
as well as in mixtures,I-3 we use macroscopically measurable 
quantities as input to extract microscopic information as out­
put. Since the KBI are integrals over the pair correlation 
functions, much of the microscopic information contained in 
the pair correlation functions is lost by the integration. Nev­
ertheless, the KBI still convey local information, This local 
character of the KBI is due to the fact that the pair correla­
tions have short range, and the main contribution to the in­
tegrals comes from a range of few molecular diameters only, 

In the case of mixtures, the KBI provides information on 
the local density, local composition, and local preferential 
solvation around each molecule. In one-compo'nent systems, 
the KBI provides only information on local density, the 
change in the average number of particles in the con'elation 
sphere caused by placing a molecule as its center. 

In the past there were attempts to extract information on 
the intermolecular interactions from the KBls, Although it is 
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FIG. IS. Values of G for pure linear alcohols at 1 atm and 25°C, The 
extrapolated value at n=O is indicated by the arrow. 

true that the values of KBls are ultimately determined by the 
intermolecular interactions, the extraction of the latter from 
the KBIs is not possible. 

As we have learned in this article, one cannot learn any­
thing on the intermolecular interactions from the KBI: This is 
true for one-component system as well as for mixtures. In 
spite of this obvious fact some authors suggested to either 
modify the KBI or to reinterpret the KBI so as to extract 
information on the molecular interactions. As we have seen 
in Sec. III A, some information on the intermolecular inter­
actions can be obtajned from the low density limit (p-+ 0) of 
the KBI, but none in the liquid densities. If one is interested 
in local interactions, the best way to study this is from sol­
vation quantities and not from the KBL1 

Following a suggestion of a reviewer of this article, I 
would like to add two comments. 

First, in practice, when the KBls are calculated from 
experimental or simulated data, one always calculates the 
integral with a finite upper limit, say, 

RM 

G(RM ) =f0 [g(R)- 1]41TR2dR, (4.1) 

where g(R) is the experimental or simulated pair correlation 
function, and RM is the largest distance at which g(R) is 
known. 

Assuming that RM is larger than the correlation distance 
RCOIT ' one can extend the upper limit of the integral in Eq. 
(4.1) to infinity, by defining g(R) == 1 for R;?: RM. Since the 
pajr correlation function in the region 0 ~ R ~ Rcorr is nearly 
the same, if one measures g(R) in an open or in a closed 
system, it follows that by simply extending the upper limit of 
the integral in Eq. (4.1) to infinity, one gets the KBI: This is 
also true for simulated results caITied out in the T, V, N, the 
T, P ,N, or the T, V, fL ensembles. The identification of the 
experimental (or simulated) quantity G(RM) with the KBI is 
a result of the assumption that g(R) == 1 for R;?: RM• 

The second comment regards the lower limit of the in­
tegral. Clearly, the lower limit of the KBI results from the 
transformation of variables and the integration over the en­
tire vohime of the system. This lower limit has nothing to do 
with the size of the particles, neither in one-component nor 
in mixtures. This comment sounds trivial. Unfortunately, an 
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FIG. 16. Two anomalous behaviors of water: (a) The molar volume and (b) the isothermal compressibility. 

erroneous interpretation of the lower limit of the KBl ap­
peared in the .literature. A more detailed critique of some 
misinterpretations of the KBl, in general, and the lower limit 
of the integral, in particular, may be found elsewhere.24

,25 
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APPENDIX A: THE KBI IN AN IDEAL-GAS 
SYSTEM 

We start with a hypothetical ideal-gas, a system of 
strictly noninteracting particles. For a system of such par­
ticles, it is known that the pair correlation functions in the 
open and the closed systems are1,10-12 

go(R) =I, (AI) 

(A2) 

The corresponding KBls are defined as 

{bi.20 

FIG. 17. (a) Values of G for H20 and 0 20 as a function of temperatures at I atm and (b) details at low temperatures. 



234501-13 Kirkwood~Buff integrals 

-i6,65 

-i6.75 

'1 
rlo -16.1\
 
S
 m 

5-16.85 

-16.95 

a roo 5.00 600200. ,p ~~ tn 40P 

FIG. 18. The pressure dependence of G for H 20 and D20 at 25 0 C. 

Go =Iv [go(R) - l]dR =0, (A3) 

- 1f­Gc = [g c(R) - l]dR =- - dR =- - , (A4) 
V N pJ 1 

where the integration is carried over the entire volume of the 
system. 

Clearly, the two quantities Go and Gc are very different. 
While Go is identically zero, the quantity Gc is finite, and 
diverges to -00 when p---4 O. 

Next, we examine ideal gas systems of "real particles," 
i.e., interacting particles, but at very low densities p---4 O. For 
the open and closed systems we have,,10-12 

go(R) = exp[- ,BU(R)] , (AS) 

gc(R) =exp[- ,BU(R)] ( 1- ~). (A6) 

We define the functions G(RM ) for spherical systems of 
radius RM as 

(A7) 

(A8) 

Clearly, while GO(RM ) converges to the KBI at the limit 
of large RM , the corresponding function in the closed system 
diverges for RM ---4 00. 

For instance, for hard spheres of diameter (J we have 

(A9) 
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-47Tif fRM- 47TR2 
GdRM)=--- --dR
 

3 0 N
 

- 47Tif 47TR~ Rw"'oo 
=---_---) _00 (A10)

3 3N 

Thus, to obtain the correct KBI, we can either use the 
pair correlation function go(R) in an open system and take 
the macroscopic limit of the integral GO(RM ) or we can first 
take the macroscopic limit of gdR) (i.e., we let N --7 00 , and 
V --7 00 , but N / V constants), then perform the integration, i.e., 

(All) 

However, if one first takes the integral GdRM) as in Eq. 
(A8), and then take the limit RM ---4 00 , the result diverges. 

When the pair correlation function is available only in 
finite range, say, between zero and RM , one can simply ob­
tain the KBI by extending the upper limit of the integral to 
infinity. This is true provided that RM is larger than the cor­
relation length. 
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