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In an extensive computer simulation study, the transport coefficients of the Lennard-Jones model
fluid were determined with high accuracy from equilibrium molecular-dynamics simulations. In the
frame of time-correlation function theory, the generalized Einstein relations were employed to
evaluate the transport coefficients. This second of a series of four papers presents the results for the
self-diffusion coefficient, and discusses and interprets the behavior of this transport coefficient in the
fluid region of the phase diagram. The uncertainty of the self-diffusion data is estimated to be 1%
in the gas region and 0.5% at high-density liquid states. With the very accurate data, even fine details
in the shape of the self-diffusion isotherms are resolved, and the previously little-investigated
behavior of the self-diffusion coefficient at low-density gaseous states is analyzed in detail. Finally,
aspects of the mass transport mechanisms on the molecular scale are explored by an analysis of the
velocity autocorrelation functions. ©2004 American Institute of Physics.
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I. INTRODUCTION

This is the second of a series of four papers that rep
the results of an extensive molecular-dynamics simula
study on the transport coefficients of the Lennard-Jo
model fluid.1,2 Here, the results for the self-diffusion coeffi
cient are presented. The results for the viscosity have b
discussed in a preceding paper3 referred to hereafter as pap
I, and subsequent papers deal with the bulk viscosity4 and
thermodynamic properties.5

The self-diffusion coefficient is a measure for the diff
sion of a particle in a pure fluid. Experimental studies on
self-diffusion coefficient of real fluids are scarce since it
difficult to measure the diffusion of a particle in surroundi
particles of the same species. Available data sets cover
substances and only limited portions of the fluid region. E
amples are the studies of Trappeniers and co-workers6 on
methane, xenon, and ethene, of Lu¨demann and co-workers7

on halogenated hydrocarbons, of Peereboomet al.8 on xe-
non, and of Harris9 on methane. In molecular-dynamic
simulations, self-diffusion coefficients can be determin
conveniently and with high accuracy. Therefore, this tra
port coefficient was subject of many simulation studies
review of available literature data for the hard sphe
square-well, and Lennard-Jones model fluids was given
Liu et al.10

It will be shown later in this paper that data for th
self-diffusion coefficient exhibit a strong dependence on

a!Electronic mail: karsten.meier@hsuhh.de
9520021-9606/2004/121(19)/9526/10/$22.00
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number of particles in the simulated system. As many lite
ture data were obtained from simulations of relatively sm
systems with typically 500 or less particles, they are e
pected to be subject to systematic errors. Since the sim
tions of this work were carried out with 1372 particles, t
present results approximate the true infinite-system size
ues more closely than most currently available literat
data. Moreover, many previous studies on the self-diffus
coefficient focused on the liquid region. The present wo
explores in addition the previously little-investigated low
density gaseous states.

This paper is organized as follows: The following se
tion provides the theoretical background for the calculat
of the self-diffusion coefficient in equilibrium molecular
dynamics simulations and describes the simulation proced
and analysis of the results. Section III presents an invest
tion of the influence of simulation parameters on the res
for the self-diffusion coefficient. In Sec. IV, the self-diffusio
data are discussed and compared with literature data. In
V, the temperature and density dependence of the s
diffusion coefficient are examined. Finally, an interpretati
of the self-diffusion coefficient in Sec. VI in terms of veloc
ity autocorrelation functions gives some insights into t
mass transport mechanisms on the molecular scale.

II. SIMULATION PROCEDURE

There are two different approaches to calculate the s
diffusion coefficient by molecular-dynamics simulation
either by nonequilibrium molecular dynamics or by tim
6 © 2004 American Institute of Physics
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correlation function theory employing the Green–Kubo in
gral formula or Einstein relation in equilibrium simulation
The latter methods are usually preferred because they y
self-diffusion data with much higher accuracy.

In time-correlation function theory, the self-diffusion co
efficient D is given by the Green–Kubo integral formula11

D5
1

3~N21! (i 51

N E
0

`

^vi~ t !•vi~ t0!&dt ~1!

or, equivalently, by the Einstein relation11

D5 lim
t→`

1

6~N21! (i 51

N
d

dt
^@r i~ t !2r i~ t0!#2&. ~2!

In these equations,N stands for the number of particles,r i

andvi are the position and velocity vector of particlei , and
t is time. The angular brackets indicate an equilibrium e
semble average over short trajectory sections of the ph
space trajectory of the system with time originst0 . In both
cases, averaging over all particles is used to reduce the
tistical uncertainty of the self-diffusion data. The Gree
Kubo integral formula determines the self-diffusion as t
integral of the velocity autocorrelation function, whereas
Einstein relation relates it to the slope of the mean-squa
displacement of the diffusing particle in the long-time lim
t→`. The factorsN21 take into account that onlyN21
particle velocity and position vectors are independent in
molecular-dynamics ensemble at constantNVEMG ,12 in
which the present simulations were carried out. From
mathematical point of view, both the Green–Kubo integ
formula, Eq.~1!, and the Einstein relation, Eq.~2!, are com-
pletely equivalent11 and could in principle be used to dete
mine the self-diffusion coefficient. In this work, the Einste
relation method was chosen because particle positions
more accurately obtained from the integration of the eq
tions of motion than are particle velocities.13

The self-diffusion data were derived from the sam
simulations from which the viscosity data reported in pape
were obtained. All simulations were carried out in the cla
sical molecular-dynamics ensemble at constantNVEMG as
described in paper I. At every simulated time step, the ins
taneous properties of the system were calculated and sto
Particle positions and velocities were stored in regular in
vals. After a simulation run, several separate analysis p
grams were used to compute thermodynamic state varia
time-correlation functions, and generalized mean-squa
displacement functions from the stored data. Mean-squa
particle displacements were calculated from unfolded p
ticle trajectories, from which the periodic boundary con
tions were removed.14 In a subsequent analysis step, the se
diffusion coefficients were obtained from a careful analy
of the Einstein relations and velocity autocorrelation fun
tions by the same procedure as described in paper I for
viscosity and the shear-stress autocorrelation functions.

In the remainder of this paper, reduced quantities
noted by a superscript asterisk ‘‘* ’’ are used, e.g.,T*
5Tk/«, r* 5rs3, t* 5tA«/m/s, r * 5r /s, v* 5vAm/«,
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and D* 5DAm/«/s, where « and s are the energy and
length scaling parameters of the Lennard-Jones poten
andm is the particle mass.

In the discussion of the self-diffusion data, the produ
self-diffusion coefficient times densityD* r* is considered
rather than the self-diffusion coefficient itself. The se
diffusion coefficient tends to infinity in the zero-densi
limit, where the mobility of the particles is not restricted b
surrounding molecules. Since this singularity is of order 1
can be removed by multiplying the self-diffusion coefficie
with density.D* r* remains finite in the zero-density limi
and takes the values known from the Chapman–Enskog
lution to the Boltzmann equation.15

III. INFLUENCE OF SIMULATION PARAMETERS
ON THE SELF-DIFFUSION DATA

Any simulation result is subject to statistical and syste
atic errors. Statistical errors in simple simulation averag
were estimated by the method described by Allen a
Tildesley,13 which is originally due to Friedberg an
Cameron.16 Systematic errors can be eliminated to some
tent by a careful choice of the simulation parameters. Sinc
is not a priori known how the simulation parameters, e.
cutoff radius, and number of particles, must be chosen
systematic investigation of their influence on the results
macroscopic properties is required.

The influence of the cutoff radius on the results f
D* r* was investigated at the state point (T* 50.722, r*
50.8442) close to the triple point of the Lennard-Jon

FIG. 1. D* r* along the isothermT* 53.0 as a function of the density fo
different numbers of particlesN. Simulation parameters:~s! N51372,
r cut* 55.0– 6.5, 106 time steps;~h! N5864, r cut* 53.0, 33106 time steps;
~L! N5500, r cut* 53.0, 63106 time steps;~n! N5256, r cut* 53.0, 103106

time steps.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE I. Literature data sets for the self-diffusion coefficient of the Lennard-Jones model fluid. Abbreviations: CC, constant color current methCG,
constant color current gradient method; ER, Einstein relation method; GK, Green–Kubo integral method; MC-GO, Monte Carlo generated time o

Author Year Data Method Ensemble N r cut* T* r* Simulation lengtha

This work 2004 334 ER NVEMG 1372 5.5–6.5 0.7–6.0 0.005–1.275 4500–6000
Borgelt ~Ref. 19! 1990 46 GK NVEMG 108 2.5 0.66–2.94 0.78–0.84 371
Canales~Ref. 20! 1999 3 GK/ER NVT 668 2.71–3.11 0.53, 1.89 0.756, 1.143 554–1203
Chen~Ref. 21! 1977 6 ER NVEMG 500 2.5 0.679–2.16 0.3–0.8442 23–35
Erpenbeck~Ref. 22! 1987 4 GK NVT 108–1372 1.74b 1.08 0.85 MC-GO

3 CC NVT 108–1372 1.74b 1.08 0.85 32–932
Erpenbeck~Ref. 23! 1988 6 GK NVT 108–4000 2.75b 0.722 0.8442 MC-GO

2 GK NVT 108, 864 2.75b 0.722 0.8442 MC-GO
Gardner~Ref. 24! 1991 22 ER NVEMG 108, 256 L/2 1.3, 2.49 0.01–0.3 10 000
Hammonds~Ref. 25! 1988 53 GK NVEMG /T 108–500 2.5c 0.72–10.0 0.4–1.18 3000–14 000
Heyes~Ref. 26! 1983 54 ER NVEMG 256 2.5 0.68–4.58 0.2–1.13 150
Heyes~Ref. 27! 1987 16 ER NVT 108–2048 d 1.4562 0.1–1.0 100–9000
Heyes~Ref. 28! 1988 213 ER NVT 108–500 d 0.72–10.0 0.2–1.22 417–9500
Heyes~Ref. 29! 1990 26 GK NVT 256 2.5 0.722–6.0 0.4–1.4 1500
Heyes~Ref. 30! 1993 4 GK NVEMG 256 2.5 0.707–6.0 0.5–1.0 655–17 082
Kincaid ~Ref. 31! 1994 6 CG/ER NVE 256–1372 1.24b 2.0 0.05–0.5 ER: 2200–30 000
Leegwater~Ref. 32! 1991 7 GK d 500 d 0.84–1.96 0.2–0.85 d

Michels ~Ref. 33! 1975 22 GK NVEMG 125 2.5 1.5–3.0 0.04–0.35
Michels ~Ref. 34! 1978 43 GK NVEMG 108, 125 2.5 1.3–5.56 0.01–0.3 306–28 850
Rowley ~Ref. 35! 1997 141 ER NVT 256 3.5 0.8–4.0 0.05–1.0 182–6063
Schofield~Ref. 36! 1973 4 GK NVEMG d 2.25 1.0 0.626–0.845 d

Sharma~Ref. 37! 1994 5 GK NVT 32–864 1.6, 2.5 0.72 0.84 80–400
Straub~Ref. 38! 1992 35 ER NVEMG 512 2.5 0.75–4 0.3–1.05 150

aValues of the simulation length are given in reduced time units.
b
Modified Lennard-Jones potential.

c
According to Fig. 1 in Ref. 26.

d
Not reported by the authors.

e
At least 500 times the half-value of the correlation function.
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model fluid, at which the viscosity was examined in pape
The self-diffusion data showed no significant influence
this simulation parameter at cutoff radii larger thanr cut*
54.5.

In order to examine the dependence of results forD* r*
on the number of particles, several simulation series w
different particle numbers were carried out. In Fig. 1, t
influence of the number of particles onD* r* is illustrated
for the supercritical isothermT* 53.0.D* r* shows a strong
dependence on the number of particles from the densityr*
50.2 up to the highest simulated density close to the fre
ing line. The largest effect, with up to 8% difference betwe
the results for 256 and 1372 particles, is observed at in
mediate densities. At gaseous densities belowr* 50.3, the
dependence of the number of particles decreases and
agreement between the results for 864 and 1372 particle
found. Consequently, with 1372 particles the results
D* r* at densitiesr* <0.3 representD* r* for the macro-
scopic Lennard-Jones model fluid well. However, at hig
densities the macroscopic values forD* r* are expected to
be still higher than the results for 1372 particles.

IV. RESULTS FOR THE SELF-DIFFUSION
COEFFICIENT

For the determination of the transport coefficients of
Lennard-Jones model fluid over a wide range of fluid sta
extensive equilibrium molecular-dynamics simulations w
carried out along 16 isotherms on 351 state points, fr
which 334 self-diffusion data were derived. Details of the
Downloaded 05 Nov 2004 to 132.163.193.90. Redistribution subject to AI
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simulations and the distribution of the simulated state po
were already described in paper I. The simulations ext
over a wide range of the fluid region of the phase diagr
from the low-density gas to the compressed liquid close
the freezing line and cover the temperature range betw
T* 50.7 and 6.0. At every simulated state point, several th
modynamic state variables, and the transport coefficie
viscosity, bulk viscosity, and the self-diffusion coefficien
were evaluated. While this paper discusses the self-diffus
coefficient, the results for the viscosity were reported in p
per I and two subsequent publications treat the bulk visco
and thermodynamic properties.

At every simulated state point, mean-squared part
displacements and velocity autocorrelation functions w
computed. The parameters for the computation of these fu
tions depend on the state point. At densities abover* 50.2,
the coordinates and velocities of the molecules were sto
every tenth time step during the first million time steps of t
production phase of the simulation. Time origins were tak
at every 20th time step. At lower densities, the coordina
and velocities were stored every 20th time step during
first 1.53106 time steps for the isothermT* 51.2 and higher
temperatures. At lower temperatures, they were stored du
the whole production phase of the simulation over 23106

time steps. Every 40th time step was taken as a time origi
these cases. The self-diffusion coefficients were determi
from the Einstein relation, Eq.~2!. The simulation data of
this work were deposited as text files in the electronic
chive of this Journal17 and in the electronic archive of th
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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NIST Physical and Chemical Properties Division.18 The sta-
tistical uncertainty of the data is estimated to be 0.5%
densities larger thanr* 50.2, and 1% at lower gaseous de
sities.

Table I summarizes details of literature data sets for
self-diffusion coefficient of the Lennard-Jones model flu
In an additional study, Heyes39 determined the self-diffusion
coefficient by equilibrium molecular-dynamics simulatio
using the Einstein relation method, but the data were
reported in the publication. A critical assessment of the qu
ity of the data sets must take into account the simulat
method and parameters employed by the authors.

Most data sets were determined from simulations of s
tems with 108–500 particles. Exceptions are the data se
Erpenbeck22 and Kincaidet al.31 which were obtained from
simulations of systems with up to 4000 or 1372 particl
respectively. In the preceding section, it was shown that s
diffusion data depend strongly on the number of particles
the simulated system. It must be expected that the litera
data are also subject to this effect.

The data sets of Erpenbeck22 and Kincaidet al.31 were
derived from simulations with a modified Lennard-Jones
tential, in which the attractive part of the potential was
placed by a cubic polynomial function that decays contin
ously to zero. This modification of the potential results
macroscopic thermodynamic state variables and transpor
efficients that deviate significantly from the correspond
properties of the original potential.40 Hence, these data can
not be compared with those data sets that are based o
original Lennard-Jones potential.

In the majority of studies, equilibrium molecula
dynamics simulations were employed, and the Einstein r
tion or Green–Kubo integral methods were used to de
mine the self-diffusion data. Indicators for the accuracy
the data obtained by these methods are the lengths o
production phases of the simulations and the number of t
origins that are used in the calculation of the velocity au
correlation and mean-squared displacement functions. S

FIG. 2. The distribution of literature data sets for the self-diffusion coe
cient in theT* , r* plane. The gray shaded area is the state region con
ered in this work. Legend:~s! Borgelt et al. ~Ref. 19!, ~s! Gardneret al.
~Ref. 24!, (* ) Hammonds and Heyes~Ref. 25!, ~,! Heyes~Ref. 26!, ~j!
Heyes~Ref. 27!, (3) Heyes~Ref. 28!, ~l! Heyes and Powles~Ref. 29!,
~n! Michels and Trappeniers~Ref. 33!, (1) Michels and Trappeniers~Ref.
34!, ~h! Rowley and Painter~Ref. 35!, and~L! Straub~Ref. 38!.
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both functions are single particle properties, they are usu
averaged over all particles in the system to increase the
curacy of the results. Thus, simulations of large systems w
many particles yield data with smaller uncertainties th
those carried out with small systems, provided that the sim
lations extend over comparable time periods and that t
origins are taken sufficiently frequent and at equally spa
intervals from the simulated phase space trajectory. Bes
the present data, the data sets of Hammonds and Hey25

Heyes,28,30 Michels and Trappeniers,34 and Rowley and
Painter35 were obtained from relatively long simulation run

Figure 2 shows the distribution of the data sets for
self-diffusion coefficient in relation to the phase boundar
in the T* , r* plane. The present data cover the temperat
range betweenT* 50.7 up to 6.0 and the density range fro
low-density gaseous states up the compressed liquid clos
the freezing line. The literature data sets concentrate in
high-density liquid region. Similar temperature ranges
covered by the data sets of Hammonds and Heye25

Heyes,26,28 Heyes and Powles,29 and Rowley and Painter.35

The data sets of Hammonds and Heyes25 and Heyes28 extend
up to the temperatureT* 510. Data at low-density gaseou
states were reported by Gardner,et al.,24 Michels and
Trappeniers,33,34 and Rowley and Painter.35

In Fig. 3, the present simulation results forD* r* are
shown for two selected isotherms, the subcritical isothe
T* 51.3 and the supercritical isothermT* 52.5. Also in-
cluded are literature data from different sources discus
above and the correlation of Rowley and Painter.35 The
present data appear very consistent and extrapolate well
the zero-density limit. On the isothermT* 51.3, a shallow
minimum is observed at the approximate densityr* 50.1 in
the gas region. IsothermT* 52.5, however, does not show
such a minimum.

The data of Rowley and Painter35 also give a consisten
picture, but are systematically lower than the present dat

-
d-

FIG. 3. D* r* on the subcritical isothermT* 51.3 and on the supercritica
isothermT* 52.5 as a function of density. The shaded area is enlarged in
inset. Symbols at zero density denote the Chapman–Enskog solution t
Boltzmann equation, andrv* , r l* , and rc* represent the saturated vapo
density, saturated liquid density, and critical density, respectively. Lege
~d! This work,~s! Gardneret al.~Ref. 24!, (* ) Hammonds and Heyes~Ref.
25!, ~,! Heyes~Ref. 26!, (3) Heyes~Ref. 28!, ~l! Heyes and Powles
~Ref. 29!, (1) Michels and Trappeniers~Ref. 34!, ~h! Rowley and Painter
~Ref. 35!, and~—! correlation of Rowley and Painter~Ref. 35!.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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the liquid region. Since their simulations were perform
with 256 particles, and the present simulations with 13
particles, these systematic deviations are probably du
finite-size effects. The low-density data of Michels a
Trappeniers34 lie between the present data and the data
Rowley and Painter. As their simulations were carried
with 108 and 125 particles, these systematic deviations m
also be attributed to finite-size effects. On the other ha
this is surprising because it is expected that self-diffus
data from simulations with fewer particles are smaller th
data derived from simulations of large systems. On the
therm T* 52.5, the literature data sets of Gardneret al.,24

Hammonds and Heyes,25 Heyes,26,28and Heyes and Powles29

lie mostly below the present data and scatter more. T
were derived from simulations with up to 500 particles. T
correlation of Rowley and Painter follows their data well
high densities, but fails to describe the correct physical
havior in the gas region.

This discussion shows that the present comprehen
self-diffusion data are substantially more accurate than
literature data on the two isotherms. Similar observations
those reported above were made in comparison to the pre
data with literature data on other isotherms.1,2

V. TEMPERATURE AND DENSITY DEPENDENCE
OF THE SELF-DIFFUSION COEFFICIENT

The present results characterize the temperature and
sity dependence ofD* r* comprehensively and accuratel
Figures 4 and 5 display theD* r* data for all 16 simulated
subcritical and supercritical temperatures. Every isothe
extrapolates well into the zero-density limit, and their init
slope is always negative. The isotherms betweenT* 51.0
and 1.5 in the vicinity of the critical temperature exhib
shallow minima in the gas region, as already observed for
isotherm T* 51.3 in the preceding section. These resu
suggest that the minima are real physical effects. At low
temperatures, the gas isotherms become shorter as the
density decreases with temperature and they decrease m
tonically with density. On higher supercritical isotherms, t
minima vanish, so thatD* r* decreases monotonically

FIG. 4. D* r* for all simulated subcritical isotherms as a function of de
sity. Symbols at zero density denote the Chapman–Enskog solution to
Boltzmann equation. Legend:~s! T* 50.7, (1) T* 50.8, ~h! T* 50.9,
(3) T* 51.0,~n! T* 51.1,~m! T* 51.2,~L! T* 51.25,~l! T* 51.3, and
~,! T* 51.35 ~supercritical!.
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Along an isotherm,D* r* never exceeds the zero-densi
value. At high-density liquid states, the isotherms decre
over the whole temperature range. Below the critical dens
the isotherms have concave curvature, whereas in the h
density region the curvature is convex.

At low and intermediate densities, the behavior ofD* r*
is similar to that of the viscosity contributionhkk* , which was
discussed in paper I. Close to the freezing line, the beha
is different. Thehkk* isotherms are flat in this state regio
and their curvature is concave.

Figure 6 shows the results forD* r* along selected iso-
chors as a function of temperature. In this representation,
range of the isochors is limited by the zero-density valu
from above and the values ofD* r* on the freezing line
from below. The dependence ofD* r* on temperature is
monotonic over the entire density range between the z
density limit and the freezing line.D* r* increases with tem-
perature and, thus, reflects the increased mobility of the
ticles at high temperatures due to their higher aver

he
FIG. 5. D* r* for all simulated supercritical isotherms as a function
density. Symbols at zero density denote the Chapman–Enskog solutio
the Boltzmann equation. Legend:~,! T* 51.35, ~.! T* 51.5, ~s! T*
51.8, ~r! T* 52.1, ~d! T* 52.5, ~j! T* 53.0, ~q! T* 54.0, and~p! T*
56.0.

FIG. 6. D* r* on selected isochors as a function of temperature. Lege
~d! r* 50.05, ~h! r* 50.1, ~j! r* 50.2, ~n! r* 50.3, ~m! r* 50.4, ~L!
r* 50.5, ~l! r* 50.6, ~,! r* 50.7, ~.! r* 50.8, ~s! r* 50.9, ~r! r*
51.0, and (3) r* 51.1; ~—! Chapman–Enskog solution to the Boltzman
equation (r* →0).
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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velocities. The zero-density isochor is the steepest isoc
With increasing density the slopes of the isochors decrea

For a detailed investigation of the initial behavior of th
isotherms, estimates for the initial slopes were derived fr
the present simulation data on 15 isotherms. The isoth
T* 51.35 was excluded because the data at this tempera
do not extend close enough to the zero-density limit. T
slopes were determined from a linear least-squares fit to
first few state points of every isotherm including the ze
density value from the Chapman–Enskog theory. Since th
initial slopes are derived in a very simple way from the sim
lation data, they are of qualitative nature and might be s
ject to future adjustment.

The initial slopes correspond to the second self-diffus
virial coefficients that appear as coefficients of the line
term in the density expansion ofD* r* at low densities:41,42

D* r* 5~D* r* !01BD* ~T* !r* 1¯ . ~3!

Figure 7 depicts the second self-diffusion virial coefficient
a function of temperature. Despite the scatter of the data
qualitative temperature dependence ofBD* is evident. The
second self-diffusion virial coefficients are negative over
whole temperature range betweenT* 50.7 andT* 56.0. At
subcritical temperatures,BD* increases with temperature
reaches a maximum at'T* 51.5, and decreases at high
temperatures. This temperature dependence is similar to
of the second viscosity virial coefficients of real fluids.43–45

Bennett and Curtiss46 calculated the second sel
diffusion virial coefficient for the Lennard-Jones model flu
numerically from the solution of a modified Boltzman
equation. They found thatBD* is negative at all temperature
approaching zero in the high-temperature limit, and repor
the valuesBD* 523.982,20.9536, and20.7240 at the tem-
peraturesT* 51, 2, and 8, respectively. Within their approx
mative theory,BD* has a monotonic temperature dependen
However, the treatment of Bennett and Curtiss lacks m
recent contributions to the theory by Rainwater and Frien43

which improve the description of several effects previou
treated less rigorously. This might be the reason for the
crepancy to the present results.

FIG. 7. The second self-diffusion virial coefficientsBD* for the Lennard-
Jones model fluid as a function of temperature.
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VI. VELOCITY AUTOCORRELATION FUNCTIONS

The decay of velocity autocorrelation functions provid
insights into the diffusion mechanisms on the molecu
scale. Since the self-diffusion coefficient is related to t
time integral of the velocity autocorrelation function, Eq.~1!,
the details of the decay influence the temperature and den
dependence ofD* r* . The discussion in this section focuse
on normalized velocity autocorrelation functions at the sa
state points for which the shear-stress correlation functi
were discussed in paper I. In some instances, time der
tives, or double logarithmic representations of the veloc
autocorrelation functions, are given to illustrate their dec
behavior. The representation is chosen so that the effects
optimally visible.

Figure 8 shows the initial behavior of normalized velo
ity autocorrelation functions and their time derivatives at lo
densities in the gas region. At low temperatures, the deca
the autocorrelation functions is superimposed by small os
lations that decay after a few cycles. The oscillations
clearly evident in the time derivatives of the velocity aut
correlation functions. The strongest effect is observed for
temperatureT* 50.7, close to the triple-point temperatur
The magnitude of the oscillations increases with dens
while the overall decay of the autocorrelation function b
comes faster. Along the isochorr* 50.025, the oscillations
become smaller with increasing temperature and vanish
the highest temperatures displayed in Fig. 8. Moreover,
velocity autocorrelation functions decay more rapidly w
increasing temperature.

Similar observations were reported by Michels a
Trappeniers33 for velocity autocorrelation functions of th
Lennard-Jones model fluid at the temperaturesT* 51.0 and
1.5. Additionally, Michels and Trappeniers found the sam
effect in the velocity autocorrelation function for a system
particles interacting by a square-well potential. They attr
uted the oscillations to the formation of bound states at l
temperatures since the effect was observed only for inter
lecular potential functions with attractive forces.

Michels and Trappeniers33 explained the occurrence o
oscillations by pointing out that the velocity autocorrelati
function is the scalar product of the velocity vector at t
time origin and the velocity vector at a later timet and, thus,
closely related to the angle between the two vectors.
example, in the case of dimers, internal vibrations and ro
tions of the dimer relative to its center of mass introdu
periodic components into the motions of the particles t
superimpose their translational motion. In an undisturbe
vibrating dimer, the relative velocity of the two molecules
reversed within half of an oscillation period resulting in
negative contribution to the velocity autocorrelation fun
tion. In the following half period, the relative velocities re
turn to their initial value, yielding a positive contribution
Due to the permanent creation and destruction of bo
states by collisions with other particles and the existence
whole spectrum of rotational and vibrational frequencies,
oscillations in the velocity autocorrelation functions a
damped out rapidly.

Dufty and Gubbins47 and Marchetti and Dufty48 calcu-
lated the short-time behavior of the velocity autocorrelat
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



he
as
un
il

on
e

c-
in
n
te
co
s
e
s
o
t
or

on
a
p

ion
ie

i
p
al
m

r

lo
a

e
in

ib-
the

e
as
51.

h-
ar-

ng
ef-
the
ide
en-
ral
lat-
ting

at
r-
tic-
the
c-

na-

.
e-

ther
is
etic

ns
n. It
ys
ng
ta-
he
e

on.
in-

nc

e

on

9532 J. Chem. Phys., Vol. 121, No. 19, 15 November 2004 Meier, Laesecke, and Kabelac
function at low densities by means of kinetic theory for t
square-well fluid. In their theory, the correlation function w
separated into contributions due to scattering and bo
states. The bound-state contribution showed damped osc
tions, whereas the scattering contribution decayed monot
cally. The superimposed result was in excellent agreem
with the simulation results of Michels and Trappeniers.33

Since the integral of the velocity autocorrelation fun
tion determines the self-diffusion coefficient, the latter is
fluenced by the formation of bound states. Michels a
Trappeniers33 suggested that the formation of bound sta
also has an influence on the second self-diffusion virial
efficients because at low densities the number of dimer
proportional to density.49 This hypothesis is supported by th
Rainwater–Friend theory43 which shows that bound state
have an influence on the second viscosity and thermal c
ductivity virial coefficient. A quantification of the effec
would require an extension of the Rainwater–Friend the
to self-diffusion.

The decay behavior of the velocity autocorrelati
closely resembles the behavior of the kinetic-kinetic she
stress correlation functions at low densities discussed in
per I. However, this is not surprising since both correlat
functions measure correlations between particle velocit
Moreover, the dependence ofD* r* and the viscosity contri-
bution hkk* on density and temperature at low densities
similar. Superimposed oscillations were also observed in
per I in the decay of the kinetic-potential, and potenti
potential shear-stress correlation functions with the sa
temperature and density dependence as found here fo
velocity autocorrelation functions.

Figure 9 shows the dependence of the normalized ve
ity autocorrelation function on density for the supercritic

FIG. 8. Short-time behavior of the normalized velocity autocorrelation fu
tion and its time derivative at gaseous densities.~a! and~b! Density depen-
dence on the lowest isothermT* 50.7. Legend:~—! r* 50.005,~• • • •!
r* 50.01, and~–••–••–! r* 50.015.~c! and ~d! Temperature dependenc
along the isochorr* 50.025. Legend:~—! T* 50.8, ~• • • •! T* 50.9,
~ • • • ! T* 51.1, ~ ! T* 51.5, (-••-••-) T* 52.5, and
(---•) T* 54.0.
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isothermT* 51.35. At low and intermediate densities, th
velocity autocorrelation function decays slowly, whereas
the liquid region it decays rapidly to negative values, exh
its a minimum and increases to positive values. Close to
freezing line at the densityr* 50.95, several oscillations ar
observed in the negative regime. This behavior is known
the backscattering effect, see, for example, Refs. 50 and
It was examined in detail by Rahman.52 By molecular-
dynamics simulations with an argonlike potential at a hig
density liquid state, Rahman resolved the behavior of a p
ticle within the cagelike structure formed by its neighbori
particles in the liquid. He found that the particle moves pr
erably in that direction where the neighboring particles of
first shell are farthest apart from the particle and thus prov
free space for the particle to diffuse to. In the plane perp
dicular to this direction, the particle may oscillate seve
times back and forth before the correlations vanish. This
ter effect mainly causes the negative regime and oscilla
behavior of the velocity autocorrelation function.

The decay of the velocity autocorrelation functions
high densities differs from that of the kinetic-kinetic shea
stress correlation functions described in paper I. The kine
kinetic shear-stress correlation functions do not show
negative regime found for the velocity autocorrelation fun
tions in this state region. This difference yields the expla
tion for the different behavior of theD* r* and hkk* iso-
therms at high densities~Figs. 4 and 5 of this work and Fig
9 of paper I!. The negative regime of the velocity autocorr
lation function lowers the values ofD* r* so that the iso-
therms are relatively steep at high densities. On the o
hand, thehkk* isotherms are flat in this state region, which
a consequence of the monotonic decay of the kinetic-kin
shear-stress correlation functions~Fig. 17 in paper I!.

The long-time behavior of the autocorrelation functio
is better assessed in the double logarithmic representatio
is evident that the velocity autocorrelation function alwa
approaches the time axis asymptotically from above. At lo
times, the decay is linear in double logarithmic represen
tion before it vanishes in random noise for values of t
autocorrelation functions below 0.001. This linear long-tim
behavior corresponds to hyperbolic decay of the type;t2m

in the linear representation. The exponent2m is the slope of
the linear decay in the double logarithmic representati
The slope depends on the density of the state point and

-

FIG. 9. Dependence of the normalized velocity autocorrelation function
density along the near-critical isothermT* 51.35 in~a! linear and~b! double
logarithmic representation. Legend:~—! r* 50.95, ~• • • •! r* 50.8, (-•
•-••-) r* 50.7, (---•) r* 50.5, ~ • • • ! r* 50.3, and(---•) r*
50.1.
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creases towards lower densities. Numerical values of
slopes were determined by linear-least-squares fits to the
ear long-time parts of the velocity autocorrelation functio
in the double logarithmic representation. The slopes
21.4, 21.95, 22.5, and24.8 at the densitiesr* 50.7, 0.5,
0.3, and 0.1, respectively.

Hyperbolic long-time tails in the velocity autocorrelatio
functions were first observed by Alder and Wainwright53,54

for a hard-sphere fluid and, subsequently, explained by
oretical investigations using mode coupling approaches
kinetic theory.55–57 In contrast to the present results for th
long-time tail exponents, Alder and Wainwright found th
value23/2 for the hard-sphere fluid independent of the d
sity of the state point. Alder and Wainwright54,58 explained
the long-time decay of the velocity autocorrelation functi
by a simple hydrodynamic model. This hydrodynamic mo
treats the motion of a spherical particle with a prescrib
initial velocity through a continuum liquid that represents t
surrounding particles. The forward movement of the sph
cal particle creates a vortex. After about ten collisions,
vortex has the size of three particle diameters and feeds
velocity of the spherical particle back into itself via the su
rounding medium. This effect leads to the long-time corre
tions.

Figure 10 depicts the normalized velocity autocorre
tion functions for the two isochorsr* 50.3 andr* 50.85 for
several temperatures. Along the close-critical isochorr*
50.3, the decay becomes faster with increasing tempera
Due to the higher average velocity of the particles, collisio
occur more frequently, which causes the correlations to
cay more rapidly. Therefore, the integral of the normaliz
velocity autocorrelation function decreases with temperat

FIG. 10. Dependence of the normalized velocity autocorrelation function
temperature in linear and double logarithmic representation.~a! and ~b!
Along the isochorr* 50.3 close to the critical density. Legend:~—! T*
51.358, ~• • • •! T* 51.8, (-••-••-) T* 52.5, (---•) T* 53.0,
~ • • • ! T* 54.0, and (---•) T* 56.0. ~c! and ~d! Along the liquid
isochor r* 50.85. Legend:~—! T* 50.7, ~• • • •! T* 50.9, (-••-••-)
T* 51.3, (---•) T* 51.8, ~ • • • ! T* 52.5, and (---•) T* 56.0.
Negative values of the autocorrelation functions are not shown in the do
logarithmic plots.
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and the increase ofD* r* is caused by the initial value of th
correlation function̂ vi

2&. As ^vi
2& is related to the tempera

ture by the equipartition theorem,13 the temperature itself is
the cause for the increase ofD* r* . In double logarithmic
representation, the linear long-time regime is evident for
ery displayed temperature at this isochor. The long-time t
are almost parallel, with exponents of about23.

At the higher liquid isochorr* 50.85, the behavior is
different. The negative region at intermediate times is shif
above the time axis with increasing temperature, thus,
creasing the integral under the normalized autocorrela
function. At this density, the increase ofD* r* is due to
temperature as well as to the slower decay of the normal
autocorrelation function. In double logarithmic represen
tion, the autocorrelation function at the highest display
temperatureT* 56.0 reaches the linear long-time behavi
after the negative regime and follows closely the cur
0.0035t23/2. The exponent from a linear-least-squares fit
the double logarithmic representation is21.54. At lower
temperatures, the linear long-time tails are not observa
before the autocorrelation functions vanish in the noi
However, a consequent continuation of the previously
scribed behavior to low temperatures would support the
istence of the long-time tails after the negative regime.

The results of this section for the long-time behavior
the velocity autocorrelation functions suggest that the ex
nent of the long-time tail depends on the density of the s
point. Only at liquid densities, the present results agree w
the theoretically predicted value23/2. With decreasing den
sity, the hyperbolic decay at long times persists, but the
ponent becomes larger. This behavior is not unreason
because it is expected that there is a continuous transitio
the zero-density limit.

Hyperbolic long-time tails in velocity autocorrelatio
functions with exponents23/2 were mainly found for hard-
and soft-sphere model fluids, in which the particles inter
by repulsive forces only.53,58At high liquid densities, where
we find long-time tails with exponents23/2, the properties
of the Lennard-Jones model fluid are also dominated by
repulsive forces between the particles. However, with
creasing density, where we observe hyperbolic decay w
larger negative exponents, the influence of the attractive
of the Lennard-Jones potential increases. It is likely that
slow hyperbolic decay with exponent23/2 at long times is
only observed if the forces between the fluid particles
purely repulsive. If long-time tails at low and intermedia
densities in the Lennard-Jones model fluid are observa
they must occur at greater times than those considered in
work.

Very recently, McDonoughet al.59 investigated the long-
time behavior of the velocity autocorrelation functions of t
Lennard-Jones and soft-sphere model fluid with system
4000 particles at the reduced temperatureT* 52.17. They
found that long-time tails with the exponent23/2 are ob-
servable for both models after 2.57 and 2.1 reduced t
units at the reduced densitiesr* 50.35 andr* 50.55, re-
spectively. However, a closer inspection of their resu
~Figs. 1 and 3 in Ref. 59! shows that in this time regime
noise dominates the velocity autocorrelation functions,

n
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that their conclusion in our view appears questionable.
r* ,0.15, McDonoughet al. found that the long-time behav
ior of the velocity autocorrelation function is well approx
mated by an exponential decay. At liquid densitiesr*
.0.55, they could not assess the long-time behavior wit
the accuracy of their simulations. This may be due to
reduced temperatureT* 52.17 of their simulations. The
present results clearly show the hyperbolic decay with ex
nent 23/2 at the higher temperatureT* 56.0, but we also
found it difficult to observe it at much lower temperatures

The results for the long-time behavior of the veloc
autocorrelation function raise the question of whether
slow decay has an impact on the accuracy of the s
diffusion data. Since the fit interval in the Einstein plots
always chosen in the linear regime, it is ensured that
correlations have decayed to a negligible level. For exam
at densities abover* 50.7 the start of the fit interval wa
usually chosen att* 56.0 or later, where the long-time tail
have vanished in the noise. Therefore, systematic error
the present data due to long-time tails are not expected.

VII. CONCLUSIONS

Thermophysical properties of model fluids are importa
references for developing an understanding of the beha
of real fluids. The Lennard-Jones potential describes inte
tions between spherical nonpolar molecules and is an im
tant model in many applications of statistical thermodyna
ics. In this work, the self-diffusion coefficient of th
Lennard-Jones model fluid was determined by equilibri
molecular-dynamics simulations using the Einstein-relat
method. About 330 data cover a large part of the fluid reg
from the low-density gas to the compressed liquid close
the freezing line in the temperature range betweenT* 50.7
close to the triple-point temperature andT* 56.0 ~about 4.5
times the critical temperature!. It was found that the self-
diffusion coefficient shows a strong dependence on the n
ber of particles in the simulated system. By using syste
larger than in previous studies, the present data base
1372 particles are significantly closer to the infinite-syst
size values. The accuracy of the present data is estimate
be 0.5% in the liquid region and 1% at gaseous states.
high accuracy of the data is demonstrated by comparis
with literature data. With this comprehensive data set,
temperature and density dependence of the product
diffusion coefficient times densityD* r* is characterized. In
particular, the previously little-investigated behavior at lo
density gaseous states was analyzed in detail. Furtherm
an analysis of the velocity autocorrelation functions yield
some insights into the mass transport mechanisms on
molecular scale and helped in explaining the temperature
density dependence ofD* r* . In this context, the influence
of the formation of bound states at low-temperature gase
states on the self-diffusion coefficient was discussed, and
decay behavior of the velocity autocorrelation function
long times was examined over a wide range of fluid sta
Within the considered time domains and statistical errors
was found that the velocity autocorrelation function deca
hyperbolically at long times, with the exponent of the dec
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depending strongly on the density of the state point. Only
high liquid densities, the theoretically predicted hyperbo
decay with exponent23/2 was observed.
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