HTML AESTRACT * LINKEES

JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 19 15 NOVEMBER 2004

Transport coefficients of the Lennard-Jones model fluid. Il Self-diffusion

Karsten Meier?
Institut fr Thermodynamik, Helmut-Schmidt-Universitelniversita der Bundeswehr Hamburg,
Holstenhofweg 85, D-22043 Hamburg, Germany

Arno Laesecke
Physical and Chemical Properties Division, Chemical Science and Technology Laboratory, National
Institute of Standards and Technology, Boulder, Colorado 80305

Stephan Kabelac
Institut fir Thermodynamik, Helmut-Schmidt-Universitalniversita der Bundeswehr Hamburg,
Holstenhofweg 85, D-22043 Hamburg, Germany

(Received 19 May 2004; accepted 2 July 2004

In an extensive computer simulation study, the transport coefficients of the Lennard-Jones model
fluid were determined with high accuracy from equilibrium molecular-dynamics simulations. In the
frame of time-correlation function theory, the generalized Einstein relations were employed to
evaluate the transport coefficients. This second of a series of four papers presents the results for the
self-diffusion coefficient, and discusses and interprets the behavior of this transport coefficient in the
fluid region of the phase diagram. The uncertainty of the self-diffusion data is estimated to be 1%
in the gas region and 0.5% at high-density liquid states. With the very accurate data, even fine details
in the shape of the self-diffusion isotherms are resolved, and the previously little-investigated
behavior of the self-diffusion coefficient at low-density gaseous states is analyzed in detail. Finally,
aspects of the mass transport mechanisms on the molecular scale are explored by an analysis of the
velocity autocorrelation functions. @004 American Institute of Physics.
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I. INTRODUCTION number of particles in the simulated system. As many litera-
ture data were obtained from simulations of relatively small
This is the second of a series of four papers that reporgystems with typically 500 or less particles, they are ex-
the results of an extensive molecular-dynamics simulatiorbected to be subject to systematic errors. Since the simula-
study on the transport coefficients of the Lennard-Jonegons of this work were carried out with 1372 particles, the
model fluid™? Here, the results for the self-diffusion coeffi- present results approximate the true infinite-system size val-
cient are presented. The results for the viscosity have begies more closely than most currently available literature
discussed in a preceding papeeferred to hereafter as paper gata. Moreover, many previous studies on the self-diffusion
l, and subsequent papers deal with the bulk viscogityd  coefficient focused on the liquid region. The present work
thermodynamic properties. explores in addition the previously little-investigated low-
The self-diffusion coefficient is a measure for the diffu- density gaseous states.
sion of a particle in a pure fluid. Experimental studies onthe  This paper is organized as follows: The following sec-
self-diffusion coefficient of real fluids are scarce since it isjgn provides the theoretical background for the calculation
difficult to measure the diffusion of a particle in surrounding of the self-diffusion coefficient in equilibrium molecular-
particles of the same species. Available data sets cover fegynamics simulations and describes the simulation procedure
substances and only limited portions of the fluid region. Ex-ang analysis of the results. Section Il presents an investiga-
amples are the studies of Trappeniers and co-wotkens tion of the influence of simulation parameters on the results
methane, xenon, and ethene, cfdemann and co-workefs  for the self-diffusion coefficient. In Sec. IV, the self-diffusion
on halogenated hydrocarbons, of Peerebagiral® on xe-  gata are discussed and compared with literature data. In Sec.
non, and of Harris on methane. In molecular-dynamics V, the temperature and density dependence of the self-
simulations, self-diffusion coefficients can be determinedyiffysion coefficient are examined. Finally, an interpretation
conveniently and with high accuracy. Therefore, this transyf the self-diffusion coefficient in Sec. VI in terms of veloc-
port coefficient was subject of many simulation studies. Ajty autocorrelation functions gives some insights into the

square-well, and Lennard-Jones model fluids was given by

Liu et al1®

It will be shown later in this paper that data for the !l SIMULATION PROCEDURE
self-diffusion coefficient exhibit a strong dependence on the  Thare are two different approaches to calculate the self-
diffusion coefficient by molecular-dynamics simulations:
dElectronic mail: karsten.meier@hsuhh.de either by nonequilibrium molecular dynamics or by time-
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correlation function theory employing the Green—Kubo inte- 04

gral formula or Einstein relation in equilibrium simulations. ’°°°'°o°. o
The latter methods are usually preferred because they yield 2o 8
. . . . 03 | o
self-diffusion data with much higher accuracy. 8,
In time-correlation function theory, the self-diffusion co- . S
efficient D is given by the Green—Kubo integral formtiia g o2 | g, g
(o]
1 N © £ o
- Y v o1 | |
D= g, J, M- vilto)t (1) °
. ) . R 00 L L L L L
or, equivalently, by the Einstein relatith 00 02 04 068 08 10 12
N o Density p*
D=li ! > d t t)]2 2 < 10
=lim ——— 2, == ([ri(t)—r; . *
- 6(N_1)i:1 dt<[ I( ) I( O)] > ( ) g
In these equations\ stands for the number of particles, N 0 o
andv; are the position and velocity vector of parti¢leand =) B 2 s o . 29 g j
t is time. The angular brackets indicate an equilibrium en- S st s a °
semble average over short trajectory sections of the phase- & £ e “
space trajectory of the system with time origigs In both = -10 : ! : ! :
S 00 02 04 08 08 10 12

cases, averaging over all particles is used to reduce the sta-

tistical uncertainty of the self-diffusion data. The Green—

Kubo integral formula determines the self-diffusion as theriG. 1. D*p* along the isothernT* =3.0 as a function of the density for

g . . . . . .

integral of the velocity autocorrelation function, whereas thedifferent numbers of particletl. Simulation parameterd©) N=1372,

Einstein relation relates it to the slope of the mean-squaretfu=50-6.5, 16 time stepsi(]) N=864, r;,=3.0, 3<10° time steps;
. I L : . .. (0) N=500,r%,=3.0, 6x10° time steps{A) N=256,r%,=3.0, 10 10°

displacement of the diffusing particle in the long-time limit steps.

t—oo. The factorsN—1 take into account that onl}—1

particle velocity and position vectors are independent in the

mOleCUlar-dynamiCS ensemble at ConStWEMG,lz in and D*:DM/U, where ¢ and o are the energy and
which the present simulations were carried out. From gength scaling parameters of the Lennard-Jones potential,
mathematical point of view, both the Green—Kubo integralandm is the particle mass.
formula, Eq.(1), and the Einstein relation, E(), are com- In the discussion of the self-diffusion data, the product
pletely equivalerit and could in principle be used to deter- self.diffusion coefficient times densitp* p* is considered
mine the self-diffusion coefficient. In this work, the Einstein rather than the self-diffusion coefficient itself. The self-
relation method was chosen because particle positions aggffusion coefficient tends to infinity in the zero-density
more accurately obtained from the integration of the equafimit, where the mobility of the particles is not restricted by
tions of motion than are particle velociti€s. surrounding molecules. Since this singularity is of order 1, it

The self-diffusion data were derived from the samecan be removed by multiplying the self-diffusion coefficient
simulations from which the viscosity data reported in paper kyith density.D* p* remains finite in the zero-density limit
were Obtained. A" Simulations were Carried out in the ClaS'and takes the Va|ues known from the Chapman_Enskog SO-
sical molecular-dynamics ensemble at constWEMG as  |ytion to the Boltzmann equatidh.
described in paper I. At every simulated time step, the instan-
taneous properties of the system were calculated and stored.
. . e . . Ill. INFLUENCE OF SIMULATION PARAMETERS
Particle posmo'ns anq velocities were stored in regular. mter—ON THE SELF-DIFFUSION DATA
vals. After a simulation run, several separate analysis pro-
grams were used to compute thermodynamic state variables, Any simulation result is subject to statistical and system-
time-correlation functions, and generalized mean-squaredtic errors. Statistical errors in simple simulation averages
displacement functions from the stored data. Mean-squaregiere estimated by the method described by Allen and
particle displacements were calculated from unfolded parTildesley'® which is originally due to Friedberg and
ticle trajectories, from which the periodic boundary condi-Cameron'® Systematic errors can be eliminated to some ex-
tions were removed In a subsequent analysis step, the self-tent by a careful choice of the simulation parameters. Since it
diffusion coefficients were obtained from a careful analysisis not a priori known how the simulation parameters, e.g.,
of the Einstein relations and velocity autocorrelation func-cutoff radius, and number of particles, must be chosen, a
tions by the same procedure as described in paper | for thgystematic investigation of their influence on the results for
viscosity and the shear-stress autocorrelation functions.  macroscopic properties is required.

In the remainder of this paper, reduced quantities de- The influence of the cutoff radius on the results for
noted by a superscript asterisk*™ are used, e.g.,T* D*p* was investigated at the state poirft*(=0.722, p*
=Tke, p*=po°, t*=tJe/mlo, r*=rlo, v*=vimle, =0.8442) close to the triple point of the Lennard-Jones

Dichte r
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TABLE |. Literature data sets for the self-diffusion coefficient of the Lennard-Jones model fluid. Abbreviations: CC, constant color currentGfgthod;
constant color current gradient method; ER, Einstein relation method; GK, Green—Kubo integral method; MC-GO, Monte Carlo generated time origins.

Author Year Data  Method Ensemble N [ T p* Simulation length

This work 2004 334 ER NVEMG 1372 5.5-6.5 0.7-6.0 0.005-1.275  4500-6000
Borgelt (Ref. 19 1990 46 GK NVEMG 108 25 0.66-2.94  0.78-0.84 371
Canales(Ref. 20 1999 3 GKI/ER NVT 668 2.71-311  0.53, 1.89 0.756, 1.143  554-1203
Chen(Ref. 21) 1977 6 ER NVEMG 500 25 0.679-2.16  0.3-0.8442 23-35
ErpenbeckRef. 22 1987 4 GK NVT 108-1372 1.7% 1.08 0.85 MC-GO

3 cc NVT 108-1372 1.7% 1.08 0.85 32-932
ErpenbeckRef. 23 1988 6 GK NVT 108-4000 2.75 0.722 0.8442 MC-GO

2 GK NVT 108, 864 2.7% 0.722 0.8442 MC-GO
Gardner(Ref. 24 1991 22 ER NVEMG 108,256  L/2 1.3, 2.49 0.01-0.3 10000
HammondgRef. 29 1988 53 GK NVEMG/T 108-500 25 0.72-10.0 0.4-1.18 3000—14 000
Heyes(Ref. 26 1983 54 ER NVEMG 256 25 0.68-4.58  0.2-1.13 150
Heyes(Ref. 27 1987 16 ER NVT 108-2048 ¢ 1.4562 0.1-1.0 100-9000
Heyes(Ref. 29 1988 213 ER NVT 108-500 ¢ 0.72-10.0 0.2-1.22 417-9500
Heyes(Ref. 29 1990 26 GK NVT 256 25 0.722-6.0  0.4-1.4 1500
Heyes(Ref. 30 1993 4 GK NVEMG 256 25 0.707-6.0  0.5-1.0 655—17 082
Kincaid (Ref. 31) 1994 6 CGIER NVE 256-1372 1.2% 2.0 0.05-0.5 ER: 2200-30 000
Leegwater(Ref. 32 1991 7 GK d 500 d 0.84-1.96 0.2-0.85 d
Michels (Ref. 33 1975 22 GK NVEMG 125 25 1.5-3.0 0.04-0.35
Michels (Ref. 34 1978 43 GK NVEMG 108, 125 25 1.3-5.56 0.01-0.3 306-28 850
Rowley (Ref. 35 1997 141 ER NVT 256 35 0.8-4.0 0.05-1.0 182-6063
Schofield(Ref. 36 1973 4 GK NVEMG ¢ 2.25 1.0 0.626-0.845 ¢
Sharma(Ref. 37) 1994 5 GK NVT 32-864 16,25 0.72 0.84 80—-400
Straub(Ref. 38 1992 35 ER NVEMG 512 25 0.75-4 0.3-1.05 150

:Values of the simulation length are given in reduced time units.
cModified Lennard-Jones potential.

dAccording to Fig. 1 in Ref. 26.

eNot reported by the authors.

At least 500 times the half-value of the correlation function.

model fluid, at which the viscosity was examined in paper l.simulations and the distribution of the simulated state points
The self-diffusion data showed no significant influence onwere already described in paper I. The simulations extend
this simulation parameter at cutoff radii larger thaf),  over a wide range of the fluid region of the phase diagram
=45, from the low-density gas to the compressed liquid close to
In order to examine the dependence of resultdXdp*  the freezing line and cover the temperature range between
on the number of particles, several simulation series withr* =0.7 and 6.0. At every simulated state point, several ther-
different particle numbers were carried out. In Fig. 1, themodynamic state variables, and the transport coefficients’
influence of the number of particles @ p* is illustrated  yiscosity, bulk viscosity, and the self-diffusion coefficient,
for the supercritical isother* =3.0.D* p* shows a strong \yere evaluated. While this paper discusses the self-diffusion
dependence on the number of particles from the demsity coefficient, the results for the viscosity were reported in pa-
=0.2 up to the highest simulated density close to the freézper | and two subsequent publications treat the bulk viscosity

ing line. The largest effect, with up to 8% difference between, thermodynamic properties.

the results for 256 and 1372 particles, is observed at inter- 5, every simulated state point, mean-squared particle
mediate densities. At gaseous densities beidiw-0.3, the displacements and velocity autocorrelation functions were

dependence of the number of particles decreases and go .
. .Th for th f th func-
agreement between the results for 864 and 1372 particles I3 mputed. The parameters for the computation of these func

ouna Consequety, i 1372 parces e et foo1 VST 0 1 Slepan, A genses ve 02,
D* p* at densitiesp* <0.3 represenD* p* for the macro-

scopic Lennard-Jones model fluid well. However, at higherevery te_nth time step duripg the.first million t.i”.‘e steps of the
densities the macroscopic values F p* are expected to production phase of the simulation. Time origins were taken
be still higher than the results for 1372 particles at every 20th time step. At lower densities, the coordinates

and velocities were stored every 20th time step during the
first 1.5x 10P time steps for the isotherif* = 1.2 and higher
IV. RESULTS FOR THE SELF-DIFFUSION temperatures. At lower temperatures, they were stored during
COEFFICIENT the whole production phase of the simulation over IX°
For the determination of the transport coefficients of thetime steps. Every 40th time step was taken as a time origin in
Lennard-Jones model fluid over a wide range of fluid statesthese cases. The self-diffusion coefficients were determined
extensive equilibrium molecular-dynamics simulations werefrom the Einstein relation, Eq.2). The simulation data of
carried out along 16 isotherms on 351 state points, fronthis work were deposited as text files in the electronic ar-
which 334 self-diffusion data were derived. Details of thesechive of this Journal and in the electronic archive of the

Downloaded 05 Nov 2004 to 132.163.193.90. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 121, No. 19, 15 November 2004 Transport in Lennard-Jones fluids. Il 9529

10 24 = S 0.35
s}
0.30
Bl s+ 4% X% % eoccommake o o /1
* v V v v ¢ v 0.25
- 4pFgemo0+® O 0O OoO OBOBOO
) OODODD O @ 8 B W NODOMOy o
::_'; SR ABAD O OO0 OODKOOO . 0.20
© mucE+R B 8% =
g olpeoa,g o 5. §8%5a 0.15
£ oooX S ] i i | K4
ﬁ BAPARAE & | A O onﬁ: o, 0.10
1 oo 8 o o o /o 0.05
SESERO
00 02 04 06 08 10 12 14 L L
Density p* Density p”

FIG. 3. D*p* on the subcritical isotherni* =1.3 and on the supercritical

FIG. 2. The distribution of literature data sets for the self-diffusion coeffi- . . : . :
cient in theT*, p* plane. The gray shaded area is the state region considlsorherm =25as afunct|o_n of density. The shaded area is enlarggd in the
ered in this work. LegendO) Borgeltet al. (Ref. 19, (X) Gardneret al. inset. Symbols at zero density denote the Chapman—Enskog solution to the

Boltzmann equation, angd} , pf, and p? represent the saturated vapor
Ll?e(;fé:(‘ge(f*)z"/)—l a(n:( Toggiez?ge':eggﬁei)zg’egs) ;inege;és\,ﬁ:gg (2.9) density, saturated liquid density, and critical density, respectively. Legend:
(A) Michels and Trappenier&ef. 33, (+) Michels and TrappenierRef. (@) This work, (X) Gardneret al(Ref. 24, (*) Hammonds and Heyd&ef.
34), () Rowley and Painte(Ref. 35, and( <) Straub(Ref. 38. 25), (V) Heyes(Ref. 26, (X) Heyes(Ref. 29, (#) Heyes and Powles
' ' (Ref. 29, (+) Michels and Trappenier®ef. 34, ((J) Rowley and Painter
(Ref. 39, and(—) correlation of Rowley and PaintéRef. 35.

NIST Physical and Chemical Properties DivisiiiThe sta-
tistical uncertainty of the data is estimated to be 0.5% at
densities larger thap* =0.2, and 1% at lower gaseous den- both functions are single particle properties, they are usually
sities. averaged over all particles in the system to increase the ac-
Table | summarizes details of literature data sets for theuracy of the results. Thus, simulations of large systems with
self-diffusion coefficient of the Lennard-Jones model fluid.many particles yield data with smaller uncertainties than
In an additional study, Hey&determined the self-diffusion those carried out with small systems, provided that the simu-
coefficient by equilibrium molecular-dynamics simulations lations extend over comparable time periods and that time
using the Einstein relation method, but the data were nobrigins are taken sufficiently frequent and at equally spaced
reported in the publication. A critical assessment of the qualintervals from the simulated phase space trajectory. Besides
ity of the data sets must take into account the simulatiorthe present data, the data sets of Hammonds and Heyes,
method and parameters employed by the authors. Heyes?®3% Michels and Trappenier$, and Rowley and
Most data sets were determined from simulations of sysPaintef® were obtained from relatively long simulation runs.
tems with 108—-500 particles. Exceptions are the data sets of Figure 2 shows the distribution of the data sets for the
Erpenbeck and Kincaidet al3! which were obtained from self-diffusion coefficient in relation to the phase boundaries
simulations of systems with up to 4000 or 1372 particles,jn the T*, p* plane. The present data cover the temperature
respectively. In the preceding section, it was shown that selfrange betweeii* =0.7 up to 6.0 and the density range from
diffusion data depend strongly on the number of particles ilow-density gaseous states up the compressed liquid close to
the simulated system. It must be expected that the literaturthe freezing line. The literature data sets concentrate in the
data are also subject to this effect. high-density liquid region. Similar temperature ranges are
The data sets of Erpenbéélkand Kincaidet al>* were  covered by the data sets of Hammonds and Hé&Yes,
derived from simulations with a modified Lennard-Jones po-Heyes?®?® Heyes and PowleS, and Rowley and Paintér.
tential, in which the attractive part of the potential was re-The data sets of Hammonds and Héyemd Heye€ extend
placed by a cubic polynomial function that decays continu-up to the temperaturé* =10. Data at low-density gaseous
ously to zero. This modification of the potential results instates were reported by Gardnest al.?* Michels and
macroscopic thermodynamic state variables and transport cdrappeniers>*and Rowley and Painté?.
efficients that deviate significantly from the corresponding In Fig. 3, the present simulation results for p* are
properties of the original potenti&l.Hence, these data can- shown for two selected isotherms, the subcritical isotherm
not be compared with those data sets that are based on ti& =1.3 and the supercritical isotherifi* =2.5. Also in-
original Lennard-Jones potential. cluded are literature data from different sources discussed
In the majority of studies, equilibrium molecular- above and the correlation of Rowley and Pairtefhe
dynamics simulations were employed, and the Einstein relgpresent data appear very consistent and extrapolate well into
tion or Green—Kubo integral methods were used to deterthe zero-density limit. On the isotheriii* = 1.3, a shallow
mine the self-diffusion data. Indicators for the accuracy ofminimum is observed at the approximate dengity=0.1 in
the data obtained by these methods are the lengths of thbe gas region. Isotherm* =2.5, however, does not show
production phases of the simulations and the number of timguch a minimum.
origins that are used in the calculation of the velocity auto-  The data of Rowley and Painférlso give a consistent
correlation and mean-squared displacement functions. Singacture, but are systematically lower than the present data in
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FIG. 4. D* p* for all simulated subcritical isotherms as a function of den- FIG. 5. D*p* for all simulated supercritical isotherms as a function of

sity. Symbols at zero density denote the Chapman—Enskog solution to thgengity. Symbols at zero density denote the Chapman—Enskog solution to
Boltzmann equation. Legend©) T*=0.7, (+) T*=0.8, (O) T*=0.9, the Boltzmann equation. LegendV) T*=1.35, (¥) T*=1.5, (X) T*

(X) T = l.O,(A) T = 1.1, (A) T = 1.2,(0) T = 1.25,(’) T = 1.3, and =1.8, (X) T =21, (.) T* =25, (.) T* =3.0, (N) T* =4.0, and(N) T*

(V) T* =1.35 (supercritical. —6.0.

the liquid region. Since their simulations were performed

with 256 particles, and the present simulations with 1372Along an isothermD* p* never exceeds the zero-density

particles, these systematic deviations are probably due tgalue. At high-density liquid states, the isotherms decrease

finite-size effects. The low-density data of Michels andover the whole temperature range. Below the critical density,

Trappenierd' lie between the present data and the data ofhe isotherms have concave curvature, whereas in the high-

Rowley and Painter. As their simulations were carried outdensity region the curvature is convex.

with 108 and 125 particles, these systematic deviations may At low and intermediate densities, the behavioDdfp*

also be attributed to finite-size effects. On the other handis similar to that of the viscosity contributios, , which was

this is surprising because it is expected that self-diffusiordiscussed in paper I. Close to the freezing line, the behavior

data from simulations with fewer particles are smaller thans different. Thez;, isotherms are flat in this state region,

data derived from simulations of large systems. On the isoand their curvature is concave.

therm T* =2.5, the literature data sets of Gardretral,>* Figure 6 shows the results f@* p* along selected iso-

Hammonds and Heyés Heyes®*®and Heyes and Powl&s  chors as a function of temperature. In this representation, the

lie mostly below the present data and scatter more. Theyange of the isochors is limited by the zero-density values

were derived from simulations with up to 500 particles. Thefrom above and the values @*p* on the freezing line

correlation of Rowley and Painter follows their data well atfrom below. The dependence &*p* on temperature is

high densities, but fails to describe the correct physical bemonotonic over the entire density range between the zero-

havior in the gas region. density limit and the freezing lin@* p* increases with tem-
This discussion shows that the present comprehensivgerature and, thus, reflects the increased mobility of the par-

self-diffusion data are substantially more accurate than théicles at high temperatures due to their higher average

literature data on the two isotherms. Similar observations as

those reported above were made in comparison to the present

data with literature data on other isotherhfs.

0.7
V. TEMPERATURE AND DENSITY DEPENDENCE 06 | E'
OF THE SELF-DIFFUSION COEFFICIENT 05 b a
The present results characterize the temperature and den- = .

; : 04 } a s
sity dependence ob* p* comprehensively and accurately. o s v
Figures 4 and 5 display the* p* data for all 16 simulated O o3} L 33 : x
subcritical and supercritical temperatures. Every isotherm oo L 232 v x
extrapolates well into the zero-density limit, and their initial ' 2 5 v M x *
slope is always negative. The isotherms betw@&é&nr=1.0 0.1 F 'é: ;§ : x x
and 1.5 in the vicinity of the critical temperature exhibit 0.0 - , , .
shallow minima in the gas region, as already observed for the ) 11 3 4 5 6 7
isotherm T* =1.3 in the preceding section. These results T Temperature T*

suggest that the minima are real physical effects. At lower

temperatures, the gas isotherms become shorter as the dE{}?- ‘j-PO*g; %]) Si"ic(t)ef is.%Chfffan ?Af;miﬂfﬂo gf(tiTpf?gULe-(éigendi
density decreases with temperature and they decrease moria-:% . (“)’é* 0 6.(V) (p* o7 ) o Poe &) p*£0_9 @
tonically with density. On higher supercritical isotherms, the—1 o, and ) p* =1.1: (—) Chapman—Enskog solution to the Boltzmann

minima vanish, so thaD* p* decreases monotonically. equation p*—0).
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& 0.00 VI. VELOCITY AUTOCORRELATION FUNCTIONS
:g -0.05 The decay of velocity autocorrelation functions provides
§ 2010 F insights into the diffusion mechanisms on the molecular
= 015 L O, . scale. Since the self-diffusion coefficient is related to the
£ 7 O * . time integral of the velocity autocorrelation function, E),
§ 020 F * the details of the decay influence the temperature and density
é 025 . dependence dD* p*. The discussion in this section focuses
2 030 F on normalized velocity autocorrelation functions at the same
§ 035 L - state points for which the shear-stress correlation functions
s f were discussed in paper I. In some instances, time deriva-
& 040 : ! ! : . tives, or double logarithmic representations of the velocity

autocorrelation functions, are given to illustrate their decay
behavior. The representation is chosen so that the effects are
FIG. 7. The second self-diffusion virial coefficienB§, for the Lennard-  optimally visible.

Jones model fluid as a function of temperature. Figure 8 shows the initial behavior of normalized veloc-
ity autocorrelation functions and their time derivatives at low
densities in the gas region. At low temperatures, the decay of

velocities. The zero-density isochor is the steepest isochoff1€ autocorrelation functions is superimposed by small oscil-

With increasing density the slopes of the isochors decreasddtions that decay after a few cycles. The oscillations are
For a detailed investigation of the initial behavior of the Cl€arly evident in the time derivatives of the velocity auto-

isotherms, estimates for the initial slopes were derived fronforrelation functions. The strongest effect is observed for the

the present simulation data on 15 isotherms. The isotherrfgMpPeraturer™ =0.7, close to the triple-point temperature.
T*=1.35 was excluded because the data at this temperatufd'® Magnitude of the oscillations increases with density,
do not extend close enough to the zero-density limit. Thavhile the overall decay of the autocorrelation function be-
slopes were determined from a linear least-squares fit to thePMes faster. Along the isochpi* =0.025, the oscillations
first few state points of every isotherm including the zero-P€come smaller with increasing temperature and vanish for

density value from the Chapman—Enskog theory. Since thedB€ highest temperatures displayed in Fig. 8. Moreover, the
initial slopes are derived in a very simple way from the simy-Velocity autocorrelation functions decay more rapidly with

lation data, they are of qualitative nature and might be subiNcréasing temperature. .
ject to future adjustment. Similar observations were reported by Michels and

The initial slopes correspond to the second se|f_0|”.fusionTrappenier3$3 for velocity autocorrelation functions of the

virial coefficients that appear as coefficients of the lineal-€nnard-Jones model fluid at the temperaturés=1.0 and
term in the density expansion 8 p* at low densitied2 1.5. Additionally, Michels and Trappeniers found the same
effect in the velocity autocorrelation function for a system of

. otk % . particles interacting by a square-well potential. They attrib-
D*p* =(D*p*)o+Bp(T*)p™ +---. (3 Uted the oscillations to the formation of bound states at low
temperatures since the effect was observed only for intermo-
Figure 7 depicts the second self-diffusion virial coefficient aslecular potential functions with attractive forces.
a function of temperature. Despite the scatter of the data, the Michels and Trappeniet$ explained the occurrence of
qualitative temperature dependenceBff is evident. The oscillations by pointing out that the velocity autocorrelation
second self-diffusion virial coefficients are negative over thefunction is the scalar product of the velocity vector at the
whole temperature range betwe€h=0.7 andT* =6.0. At  time origin and the velocity vector at a later tihand, thus,
subcritical temperaturesBf increases with temperature, closely related to the angle between the two vectors. For
reaches a maximum atT*=1.5, and decreases at higher example, in the case of dimers, internal vibrations and rota-
temperatures. This temperature dependence is similar to theibns of the dimer relative to its center of mass introduce
of the second viscosity virial coefficients of real flutfs®®  periodic components into the motions of the particles that
Bennett and Curtié8 calculated the second self- superimpose their translational motion. In an undisturbedly
diffusion virial coefficient for the Lennard-Jones model fluid vibrating dimer, the relative velocity of the two molecules is
numerically from the solution of a modified Boltzmann reversed within half of an oscillation period resulting in a
equation. They found th&} is negative at all temperatures, negative contribution to the velocity autocorrelation func-
approaching zero in the high-temperature limit, and reportedion. In the following half period, the relative velocities re-
the valueBf = —3.982,—0.9536, and-0.7240 at the tem- turn to their initial value, yielding a positive contribution.
peraturesT* =1, 2, and 8, respectively. Within their approxi- Due to the permanent creation and destruction of bound
mative theoryBf has a monotonic temperature dependencestates by collisions with other particles and the existence of a
However, the treatment of Bennett and Curtiss lacks morevhole spectrum of rotational and vibrational frequencies, the
recent contributions to the theory by Rainwater and Fri€nd, oscillations in the velocity autocorrelation functions are
which improve the description of several effects previouslydamped out rapidly.
treated less rigorously. This might be the reason for the dis- Dufty and Gubbin¥ and Marchetti and Duff{? calcu-
crepancy to the present results. lated the short-time behavior of the velocity autocorrelation

Temperature T*
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(©) Time t* (d) Time t* velocity autocorrelation function decays slowly, whereas in

the liquid region it decays rapidly to negative values, exhib-

FIG. 8. Short-time behavior of the normalized velocity autocorrelation func-its a minimum and increases to positive values. Close to the

tion and its time derivative at gaseous densiti@sand (b) Density depen-

dence on the lowest isotheriit =0.7. Legend{—) p* =0.005,(- - - -) freezing Ilne at the deqsﬂg ='O.95, sgveral o;cﬂlgﬂons are
p*=0.01, and(—--—-—) p* =0.015.(c) and (d) Temperature dependence Observed in the negative regime. This behavior is known as
along the isochop* =0.025. Legend{—) T*=0.8, (- - - -) T*=0.9, the backscattering effect, see, for example, Refs. 50 and 51.
E*'*)'T:ji oT*:LL (—— ) T"=15 (~-----) T*=25 and |t was examined in detail by Rahmah.By molecular-

dynamics simulations with an argonlike potential at a high-
density liquid state, Rahman resolved the behavior of a par-
ticle within the cagelike structure formed by its neighboring
function at low densities by means of kinetic theory for theparticles in the liquid. He found that the particle moves pref-
square-well fluid. In their theory, the correlation function waserably in that direction where the neighboring particles of the
separated into contributions due to scattering and bounfrst shell are farthest apart from the particle and thus provide
states. The bound-state contribution showed damped oscillfree space for the particle to diffuse to. In the plane perpen-
tions, whereas the scattering contribution decayed monotondicular to this direction, the particle may oscillate several
cally. The superimposed result was in excellent agreemeritmes back and forth before the correlations vanish. This lat-
with the simulation results of Michels and Trappeni&ts. ter effect mainly causes the negative regime and oscillating
Since the integral of the velocity autocorrelation func- behavior of the velocity autocorrelation function.
tion determines the self-diffusion coefficient, the latter is in-  The decay of the velocity autocorrelation functions at
fluenced by the formation of bound states. Michels anchigh densities differs from that of the kinetic-kinetic shear-
Trappeniers® suggested that the formation of bound statesstress correlation functions described in paper I. The kinetic-
also has an influence on the second self-diffusion virial cokinetic shear-stress correlation functions do not show the
efficients because at low densities the number of dimers isegative regime found for the velocity autocorrelation func-
proportional to densit§® This hypothesis is supported by the tions in this state region. This difference yields the explana-
Rainwater—Friend theofy which shows that bound states tion for the different behavior of th®* p* and 7}, iso-
have an influence on the second viscosity and thermal cortherms at high densitig€igs. 4 and 5 of this work and Fig.
ductivity virial coefficient. A quantification of the effect 9 of paper ). The negative regime of the velocity autocorre-
would require an extension of the Rainwater—Friend theoryation function lowers the values @* p* so that the iso-
to self-diffusion. therms are relatively steep at high densities. On the other
The decay behavior of the velocity autocorrelationhand, thery, isotherms are flat in this state region, which is
closely resembles the behavior of the kinetic-kinetic sheara consequence of the monotonic decay of the kinetic-kinetic
stress correlation functions at low densities discussed in pashear-stress correlation functioff§g. 17 in paper)L.
per . However, this is not surprising since both correlation  The long-time behavior of the autocorrelation functions
functions measure correlations between particle velocitieds better assessed in the double logarithmic representation. It
Moreover, the dependence bf p* and the viscosity contri- is evident that the velocity autocorrelation function always
bution 7y, on density and temperature at low densities isapproaches the time axis asymptotically from above. At long
similar. Superimposed oscillations were also observed in paimes, the decay is linear in double logarithmic representa-
per | in the decay of the kinetic-potential, and potential-tion before it vanishes in random noise for values of the
potential shear-stress correlation functions with the samautocorrelation functions below 0.001. This linear long-time
temperature and density dependence as found here for tiehavior corresponds to hyperbolic decay of the tyge ™
velocity autocorrelation functions. in the linear representation. The exponemn is the slope of
Figure 9 shows the dependence of the normalized velodhe linear decay in the double logarithmic representation.
ity autocorrelation function on density for the supercritical The slope depends on the density of the state point and in-
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«~ 10 «~ 109 p and the increase @* p* is caused by the initial value of the
g o0s € o | correlation function(v?). As (v?) is related to the tempera-
2 06 S i ture by the equipartition theoretdthe temperature itself is
Eg: 04 15 102 f the cause for the increase Bf p*. In double logarithmic
2 2 400 L representation, the linear long-time regime is evident for ev-
g 02 = i ery displayed temperature at this isochor. The long-time tails
< 00 < 10+ are almost parallel, with exponents of abeu8.
0 1 2 3* 45 At the higher liquid isochop* =0.85, the behavior is
(@) Time t ®) different. The negative region at intermediate times is shifted
< < 10° above the time axis with increasing temperature, thus, in-
5 S 10t creasing the integral under the normalized autocorrelation
;a/ \\a/ 102 function. At this density, the increase &* p* is due to
E..:f s 10° temperature as well as to the slower decay of the normalized
2z i autocorrelation function. In double logarithmic representa-
S S 10* tion, the autocorrelation function at the highest displayed
< 0 < 10°% temperatureT* =6.0 reaches the linear long-time behavior
0.0 0.5 1.0 107 10° 10

after the negative regime and follows closely the curve
( 0.003%5 %2 The exponent from a linear-least-squares fit to
FIG. 10. Dependence of the normalized velocity autocorrelation function orfhe double logarithmic representation +s1.54. At lower

temperature in linear and double logarithmic representatianand (b)  temperatures, the linear long-time tails are not observable
Along the isochorp™ =0.3 close to the critical density. Legené-) T pefore the autocorrelation functions vanish in the noise.

O

) Time t*

—_
Q.
-

Time t*

=1.358, (- - - ) T*=18, (~-----) T*=25, (----) T*=3.0, . . :
() T*=40, and (---) T*=6.0. (c) and (d) Along the liqud 1OWeVer, a consequent continuation of the previously de-
isochor p* =0.85. Legend:(—) T*=0.7, (- - - -) T*=0.9, (~-----) scribed behavior to low temperatures would support the ex-
T*=13, (----) T*=18, (————) T*=25, and (---) T*=6.0.  istence of the long-time tails after the negative regime.

Nega_tive yalues of the autocorrelation functions are not shown in the double  The results of this section for the Iong-time behavior of
logarithmic plots. . . .

the velocity autocorrelation functions suggest that the expo-

nent of the long-time tail depends on the density of the state
creases towards lower densities. Numerical values of thoint. Only at liquid densities, the present results agree with
slopes were determined by linear-least-squares fits to the lithe theoretically predicted value3/2. With decreasing den-
ear long-time parts of the velocity autocorrelation functionssity, the hyperbolic decay at long times persists, but the ex-
in the double logarithmic representation. The slopes ar@onent becomes larger. This behavior is not unreasonable
—1.4,-1.95,—2.5, and—4.8 at the densities* =0.7, 0.5, because it is expected that there is a continuous transition to
0.3, and 0.1, respectively. the zero-density limit.

Hyperbolic long-time tails in the velocity autocorrelation ~ Hyperbolic long-time tails in velocity autocorrelation
functions were first observed by Alder and Wainwrijtif  functions with exponents- 3/2 were mainly found for hard-
for a hard-sphere fluid and, subsequently, explained by theand soft-sphere model fluids, in which the particles interact
oretical investigations using mode coupling approaches any repulsive forces only?*®At high liquid densities, where
kinetic theory>>=>’ In contrast to the present results for the we find long-time tails with exponents 3/2, the properties
long-time tail exponents, Alder and Wainwright found the of the Lennard-Jones model fluid are also dominated by the
value — 3/2 for the hard-sphere fluid independent of the den+epulsive forces between the particles. However, with de-
sity of the state point. Alder and Wainwright® explained  creasing density, where we observe hyperbolic decay with
the long-time decay of the velocity autocorrelation functionlarger negative exponents, the influence of the attractive part
by a simple hydrodynamic model. This hydrodynamic modelof the Lennard-Jones potential increases. It is likely that the
treats the motion of a spherical particle with a prescribedslow hyperbolic decay with exponent3/2 at long times is
initial velocity through a continuum liquid that represents theonly observed if the forces between the fluid particles are
surrounding particles. The forward movement of the spheripurely repulsive. If long-time tails at low and intermediate
cal particle creates a vortex. After about ten collisions, thedensities in the Lennard-Jones model fluid are observable,
vortex has the size of three particle diameters and feeds thbey must occur at greater times than those considered in this
velocity of the spherical particle back into itself via the sur- work.
rounding medium. This effect leads to the long-time correla-  Very recently, McDonouglet al>® investigated the long-
tions. time behavior of the velocity autocorrelation functions of the

Figure 10 depicts the normalized velocity autocorrela-Lennard-Jones and soft-sphere model fluid with systems of
tion functions for the two isochois* =0.3 andp* =0.85 for 4000 particles at the reduced temperatlite=2.17. They
several temperatures. Along the close-critical isocptr  found that long-time tails with the exponent3/2 are ob-
=0.3, the decay becomes faster with increasing temperatureervable for both models after 2.57 and 2.1 reduced time
Due to the higher average velocity of the particles, collisionsunits at the reduced densitigg =0.35 andp* =0.55, re-
occur more frequently, which causes the correlations to despectively. However, a closer inspection of their results
cay more rapidly. Therefore, the integral of the normalized(Figs. 1 and 3 in Ref. 59shows that in this time regime
velocity autocorrelation function decreases with temperaturenoise dominates the velocity autocorrelation functions, so
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that their conclusion in our view appears questionable. Fodepending strongly on the density of the state point. Only at
p*<0.15, McDonougtet al.found that the long-time behav- high liquid densities, the theoretically predicted hyperbolic
ior of the velocity autocorrelation function is well approxi- decay with exponent-3/2 was observed.

mated by an exponential decay. At liquid densitig$
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