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Abstract
A value for the measurand determined from a computational model is
frequently referred to as a virtual measurement to distinguish it from a
physical measurement, which is determined from a laboratory experiment.
Any measurement, physical or virtual, is incomplete without a quantitative
statement of its associated uncertainty. The science and technology of
making physical measurements and quantifying their uncertainties has
evolved over many decades. In contrast, the science and technology of
making virtual measurements is evolving. We propose an approach for
quantifying the uncertainty associated with a virtual measurement of a
molecular property determined from a computational quantum chemistry
model. The proposed approach is based on the Guide to the Expression of
Uncertainty in Measurement, published by the International Organization
for Standardization, and it uses the Computational Chemistry Comparison
and Benchmark Database maintained by the National Institute of Standards
and Technology.

1. Introduction

By virtual measurement we mean the output of a computational
model as an alternative to a physical measurement1, which is
determined from a laboratory experiment. As computational
models improve, virtual measurements are being increasingly
treated on the same footing as physical measurements.
Interest in virtual measurements is growing for reasons of
economics and safety. Comparatively rapid computational
approaches are gaining importance as the demand for property
data increasingly exceeds the capacity for making physical
measurements. Virtual measurements are becoming critical
in research and development for chemical processes, new
materials, and drug discovery.

Any measurement, whether physical or virtual, is
incomplete without a quantitative and valid expression of its
associated uncertainty. We address the problem of quantifying
the uncertainty associated with a virtual measurement for a

1 Many chemists and some metrologists prefer the terms calculated and
experimental values rather than virtual and physical measurements.

molecular property determined from a computational quantum
chemistry model. For the present discussion, a virtual
measurement is a scalar quantity with an uncertainty that
arises primarily, but not necessarily exclusively, from its bias
(systematic error) with respect to the value of the molecular
property.

The International Organization for Standardization (ISO)
Guide to the Expression of Uncertainty in Measurement [1] was
developed primarily for physical measurements. However,
the Guide is especially useful for virtual measurements
because the Guide has established an approach for quantifying
the uncertainty arising from bias2, which is the primary
source of uncertainty associated with a virtual measurement.
The approach is as follows. Apply a correction for
bias, thus obtaining a corrected virtual measurement. The
bias is unknown, and so a correction for bias carries
uncertainty. Quantify the standard uncertainty associated
with the correction and include it in the combined standard

2 There was no generally accepted approach to account for the uncertainty
arising from bias before publication of the Guide.
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uncertainty associated with the corrected measurement [1, 2].
The Guide treats all components of uncertainty exactly the
same way, whether arising from random effects or arising
from corrections for biases. Also, the Guide makes no
distinction between the components of uncertainty evaluated
by statistical methods (Type A) and those evaluated by other
means (Type B).

To specify a correction for bias in a virtual measurement
from a computational quantum chemistry model and to
specify its associated standard uncertainty, we propose to use
the Computational Chemistry Comparison and Benchmark
Database (CCCBDB) maintained by the National Institute of
Standards and Technology (NIST). The CCCBDB [3] is a
large, web-accessible database of virtual measurements from
many computational quantum chemistry models. Various
properties of hundreds of molecules are included, along
with the corresponding high-quality physical measurements
and their associated uncertainties, where available. For the
molecular properties addressed in this paper, the difference
between a virtual measurement and the corresponding high-
quality physical measurement characterized in the CCCBDB
is generally an order of magnitude larger than the uncertainty
associated with the high-quality physical measurement.
Therefore, a signed difference between a virtual measurement
and the corresponding high-quality physical measurement is
a useful estimate for the bias in the virtual measurement. In
summary, the CCCBDB provides estimated biases in virtual
measurements for a number of molecular properties.

We refer to the molecule of interest, for which we require
a virtual measurement, as the target molecule to distinguish it
from the molecules already characterized in the CCCBDB.
Suppose that a class of molecules can be identified in the
CCCBDB for which the estimated biases are believed to
be similar in sign and magnitude to the bias for the target
molecule. Then the arithmetic mean of these estimated
biases may be used to specify the correction for bias in the
target molecule, and their standard deviation may be used to
specify the uncertainty associated with the correction. The
correction for bias and its associated uncertainty so determined
may then be used to determine a corrected virtual measurement
and its associated uncertainty. This approach is feasible when
a suitable class of molecules can be identified in the CCCBDB.

In section 2, we describe the proposed approach for
quantifying the uncertainty arising from the bias in a virtual
measurement determined from a computational quantum
chemistry model. In section 3, we give a brief description
of the CCCBDB. In section 4, we describe a simple procedure
for specifying a correction for bias in a virtual measurement
and its associated uncertainty using the CCCBDB. In section 5,
we illustrate this procedure. A summary appears in section 6.

2. Uncertainty from bias in computational quantum
chemistry

The virtual measurements addressed here are determined
from quantum chemistry. For a number of reasons,
quantum chemistry is an area where progress in quantifying
uncertainties will have immediate and significant impact.
(i) It has achieved remarkable success in the past decade,
often replacing certain types of laboratory measurements for

isolated, gas-phase molecules. (ii) Commercial software
packages are proliferating. (iii) Its use is expanding so rapidly
that many users of commercial software lack a thorough
understanding of the methods and the limitations thereof.
(iv) The leaders in the field have not seriously attempted
to quantify the uncertainties in quantum chemistry virtual
measurements. (v) Practical considerations, such as finite
resources, force one to use more strongly approximate theories
and/or more severely truncated basis sets than one might prefer,
leading to substantial uncertainties.

A formal theory in quantum chemistry is an analytical
theory based upon an approximate Hamiltonian, which may
be simple or highly complex [4]. The Hamiltonian specifies
the physics that is included in the computational model. For
a given property and molecule there are many theories that
may be selected. Some theories can be ordered according to
theoretical rigour, while others cannot be so ordered; the most
careful work usually employs theories that can be ordered. To
obtain an actual result, the equations of the theory must be
solved numerically. This requires a basis set, which is a set
of functions that are used in linear combinations to express
the molecular orbitals in functional form. Products of the
molecular orbitals, in turn, are used in linear combinations
to express the electronic wavefunction for the molecule in
functional form. Some implementations require a choice of
grid size instead of or in addition to the basis set. Some basis
sets can be ordered according to completeness and some cannot
be so ordered; the most careful work usually employs basis sets
that can be ordered. The numerical results tend to converge as
the basis set is enlarged [5]. The rate of convergence changes
with the property and the molecule under study in a way that
is not understood quantitatively.

The computational cost of quantum chemistry calculations
increases rapidly as the basis set is enlarged. For
example, energy calculations for the molecule H2O using the
sophisticated CCSD(T) theory [6, 7] and the series of basis sets
aug-cc-pVnZ (n = 2–6) [5], which are the most popular in
careful, quantitative work, have computational times of about
0.2 × 10n s on a desktop personal computer. Computational
difficulty also increases rapidly as the complexity of the formal
theory increases. Again for H2O, on the same computer, the
computational time using the n = 3 basis set approximately
doubles with each step in the sequence of theories HF, MP2,
MP3, MP4, CCSD(T). Since the cost of calculations increases
so quickly as the basis set or theory is improved, in practice
one is usually forced to accept strong approximations in both,
leading to significant bias in the output of a computational
quantum chemistry model.

2.1. Bias in computational quantum chemistry

Suppose the measurand is a particular property of a specific
molecule and its value is Y . The value Y is a statistical
parameter. A computational quantum chemistry model is
defined by a combination of a formal theory and a basis
set [8]. Suppose x(t,b) is a virtual measurement for Y based
on a computational quantum chemistry model, where t is the
ordinal number for the formal theory in some hierarchy and
b is the ordinal number for the basis set in some hierarchy. For
example, if ne is the number of electrons in the molecule under
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study, then the level of theory that corresponds to the rigorous
limit is t = ne.

Suppose X(t,b) is the expected value of the sampling
probability distribution for x(t,b). The difference x(t,b) −
X(t,b) is the random error in x(t,b). The ratio x(t,b)/X(t,b) is
termed the fractional random error. The random error arises
from a variety of small contributions, such as the non-zero
convergence thresholds that create some dependence upon the
choice of initial geometry and wavefunction. Such a random
error is generally negligible. If not negligible, its associated
uncertainty must be quantified and included as a component of
the uncertainty associated with x(t,b). The difference X(t,b)−Y

is the additive bias in x(t,b). The ratio X(t,b)/Y is termed the
fractional (or multiplicative) bias inx(t,b). In this paper, we deal
with the additive bias only, and so we will drop the adjective
‘additive’. The bias X(t,b)−Y , denoted by B(t,b), is a statistical
parameter. The bias is unknown because Y is unknown.

The bias B(t,b) has two components: the bias Bt , arising
from the choice of an approximate formal theory, and the
bias Bb, arising from the choice of an incomplete basis set.
Convergent behaviour is assumed, i.e. that lim(Bt ) = 0
as t → ∞ (at least for some theoretical hierarchies) and
that lim(Bb) = 0 as b → ∞. There have been few
investigations directed towards evaluating the biases Bt and
Bb, attributable to theory and the basis set, respectively. To
reveal Bt , results are needed in the limit of a complete basis
set, at which point Bb = 0. This is usually done using semi-
empirical extrapolation methods [5] but remains too expensive
computationally to be of widespread practical use. To reveal
Bb, results are needed in the limit of a rigorous theory, at
which point Bt = 0. So-called ‘full configuration-interaction’
(FCI) calculations are even more expensive, and see occasional
application only for benchmarking approximate theories [9].
There have been few studies of the correlations between Bt and
Bb [10]. It is often assumed that Bt and Bb are independent
and additive. This ‘additivity approximation’ is believed to be
most valid for ‘high-level’ models, i.e. models that combine
a refined formal theory and a large basis set. Its assumed
validity underlies the popular semi-empirical procedure known
as ‘G3’ [11] and the related ‘focal point’ [12] and ‘W3’ [13]
approaches. Of the few studies of uncertainties in quantum
chemistry models, nearly all consider only the aggregate bias,
B(t,b). This approach stems from the difficulty in obtaining Bt

and Bb independently, as explained above. Furthermore, the
most popular models are relatively crude, for which Bt and
Bb are interrelated anyway. The sign and magnitude of the
aggregate bias, B(t,b), depends on the choices made for the
formal theory and the basis set. In section 2.2, we describe an
approach based on the Guide [1] to quantify the uncertainty
arising from the bias B(t,b) in x(t,b).

2.2. Uncertainty from bias

The Guide is based on the concept of a measurement
equation. In its simplest form, this is a mathematical
function, Y = f (Q1, . . . , QN), that represents the process
used for estimating the value, Y , of the measurand and its
associated standard uncertainty3 from various input quantities

3 Standard uncertainty is the standard deviation of a state-of-knowledge
distribution for Y .

Q1, . . . , QN [2]. Each input and output quantity of a
measurement equation is regarded as a variable with a state-
of-knowledge probability distribution having a finite expected
value and a finite standard deviation. The input variables
Q1, . . . , QN may themselves be viewed as measurands
and functions of additional input variables [2]. Thus the
measurement equation may actually be a hierarchical system
of equations.

The Guide recommends that x(t,b) be corrected to counter
its bias B(t,b), thus providing a corrected virtual measurement y
for Y . From this viewpoint, we refer to x(t,b) as an uncorrected
virtual measurement for Y . A measurement equation is
required to incorporate a correction for bias. The measurement
equation that corresponds to the bias B(t,b) = X(t,b) − Y is

Y = X(t,b) + C(t,b), (1)

where C(t,b) is a variable representing the state-of-knowledge
about the expression Y − X(t,b) for the negative of bias. In
the measurement equation (1), the input quantity X(t,b) is
regarded as a variable with a state-of-knowledge probability
distribution about the expected value X(t,b), and the output
quantity Y is regarded as a variable with a state-of-knowledge
distribution about the value Y of the measurand4. The
expected value, E(X(t,b)), of a state-of-knowledge distribution
forX(t,b) is identified with the uncorrected virtual measurement
x(t,b). The standard deviation S(X(t,b)) of a state-of-knowledge
distribution for X(t,b) is referred to as the standard uncertainty
associated with x(t,b) and is denoted by u(x(t,b)). We will
discuss evaluation of u(x(t,b)) in section 2.3. The expected
value E(C(t,b)) and standard deviation S(C(t,b)) of a state-
of-knowledge distribution for C(t,b) are denoted by c(t,b) and
u(c(t,b)), respectively. We will discuss in section 4 how the
CCCBDB [3] may be used to specify the correction c(t,b) and
its associated uncertainty u(c(t,b)).

A corrected virtual measurement y for Y is determined
by substituting the expected value x(t,b) for the variable X(t,b)

and the expected value c(t,b) for the variable C(t,b) in the
measurement equation (1). Thus

y = x(t,b) + c(t,b). (2)

That is, c(t,b) is the correction applied to the uncorrected virtual
measurement x(t,b) to counter its possible bias. Following the
Guide, the combined standard uncertainty, u(y), associated
with the corrected virtual measurement y is determined by
propagating the standard uncertainties S(X(t,b)) = u(x(t,b)),
S(C(t, b)) = u(c(t,b)), and the covariance C(X(t,b), C(t,b)).
A distribution for C(t,b) is specified independent of the state-
of-knowledge distribution for X(t,b) after x(t,b) and u(x(t,b))

have been evaluated. So the state-of-knowledge distributions
for X(t,b) and C(t,b) are independent. Consequently, the
covariance C(X(t,b), C(t,b)) is zero. Therefore, the expression
for propagating uncertainties based on the measurement
equation (1) is u2(y) = u2(x(t,b)) + u2(c(t,b)). Thus, the
standard uncertainty associated with y is

u(y) = [u2(x(t,b)) + u2(c(t,b))]
1/2. (3)

The corrected virtual measurement y and uncertainty u(y) so
determined are interpreted as the expected value and standard
deviation of a state-of-knowledge distribution for Y .
4 As in the Guide [1], we use the same symbols for both the statistical
parameters and the variables with state-of-knowledge probability distributions
about the parameters.
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2.3. Uncertainty associated with uncorrected virtual
measurement

The input quantities for determining x(t,b) from a computa-
tional quantum chemistry model are the fundamental physical
constants and a few (or zero) empirically derived parameters.
A computational model for x(t,b) may be expressed in the form
of a measurement equation as follows:

X(t,b) = g(W1, . . . , Wn|t, b) + E(t,b), (4)

where W1, . . . , Wn are variables with state-of-knowledge
distributions for the fundamental physical constants and
any empirically derived parameters, and E(t,b) is a variable
with a state-of-knowledge distribution for the random error.
The expected values of state-of-knowledge distributions
for W1, . . . , Wn are identified with the input values5 of
the fundamental physical constants and any empirically
derived parameters denoted by w1, . . . , wn. The standard
deviations of state-of-knowledge distributions for W1, . . . , Wn

are the standard uncertainties u(w1), . . . , u(wn) associated
with w1, . . . , wn. The expected value of a state-of-knowledge
distribution for E(t,b) is e(t,b) ≡ 0. The standard deviation of a
state-of-knowledge distribution for E(t,b) is referred to as the
standard uncertainty associated with e(t,b) ≡ 0 and denoted by
u(e(t,b)). The uncorrected virtual measurement x(t,b) is

x(t,b) = g(w1, . . . , wn|t, b) + 0 = g(w1, . . . , wn|t, b). (5)

The standard uncertainty, u(x(t,b)), associated with x(t,b) is
determined from a linear approximation, X(t,b) ≈ X(t,b,linear) =
x(t,b) +

∑
i di(Wi − wi) + (E(t,b) − e(t,b)), of the measurement

equation (4), where di is the partial derivative of X(t,b) with
respect to Wi evaluated at wi for i = 1, . . . , n and the partial
derivative of X(t,b) with respect to E(t,b) evaluated at e(t,b) ≡ 0
is one. The variable E(t,b) is uncorrelated with the variables
W1, . . . , Wn. Thus the standard deviation S(X(t,b)), denoted
by u(x(t,b)), is

u(x(t,b)) =
[ ∑

i

d2
i u2(wi) + 2

∑
i<j

didju(wi)u(wj )

× r(wi, wj ) + u2(e(t,b))

]1/2

, (6)

where r(wi, wj ) is the correlation coefficient between Wi and
Wj for i, j = 1, . . . , N , i < j . The uncorrected virtual
measurement x(t,b) and uncertainty u(x(t,b)) determined from
equations (5) and (6), respectively, are components of the
corrected virtual measurement y for Y and uncertainty u(y)

defined by equations (2) and (3), respectively.
Quantum chemistry computations are done in atomic units,

which are defined units and therefore have zero uncertain-
ties. However, they are converted to conventional units upon
output. The conversion factors carry uncertainties. In par-
ticular, the value of the atomic unit of energy, the hartree
(Eh), has a relative standard uncertainty of 1.7 × 10−7 [14].
This is about 10−4 times typical relative uncertainties associ-
ated with the most rigorous protocol for computing molecular
atomization energies [13], or about 6 × 10−3 times the relative

5 The input values w1, . . . , wn would not change if x(t,b) were to be evaluated
repeatedly.

uncertainty associated with one of the most precisely mea-
sured atomization energies (for the H2 molecule [15]). Thus,
the uncertainties u(w1), . . . , u(wn) associated with the funda-
mental physical constants are negligible. Some methods (e.g.
B3LYP hybrid density functional, G3 composite model) con-
tain parameters whose values have been determined empir-
ically, suggesting another source of uncertainty. However,
since the definitions of these methods include specific values
of the empirical parameters, the parameters remain fixed, and
therefore a source only of bias. When empirical parameters
are independent of defined methods, such as scaling factors
for vibrational zero-point energies, they may contribute sig-
nificantly to the uncertainty u(x(t,b)).

The uncertainty u(e(t,b)) includes numerical approxima-
tions. All computations require non-zero convergence thresh-
olds, which lead to unpredictable dependence upon the initially
chosen molecular geometry and wavefunction. For example,
using default thresholds, a set of more than 500 calculations
[HF/6-31G(d) geometry optimization of the C3H8 molecule]
with randomized initial geometries had a standard deviation of
0.002 kJ mol−1, or 7×10−9 times the mean. This is negligible
for most applications. An even smaller uncertainty arises from
incomplete convergence during wavefunction optimization.
A set of more than 1500 energy calculations [UHF/6-31G(d)
for the NO2 molecule] with randomized initial wavefunctions
had a standard deviation of 0.000 02 kJ mol−1, or 4 × 10−11

times the mean. Some computations involve spatial grids,
which introduce unpredictable errors, including possible mi-
nor gauge dependencies. Some computations involve auxiliary
basis sets (e.g. for resolution of the identity). Such additional
sources of uncertainty must be included explicitly if they are
significant for the application of interest.

3. Computational chemistry comparison and
benchmark database

The CCCBDB is a web-accessible database of differences
between virtual measurements and the corresponding high-
quality physical measurements. The initial focus was on
gas-phase thermochemistry. Values derived from physical
measurements, including uncertainties where available, have
been collected for the enthalpies of formation, entropies,
heat capacities, geometries, and vibrational frequencies of
640 molecules. The uncertainties associated with the physical
measurements are generally an order of magnitude smaller
than the differences between virtual measurements and the
corresponding high-quality physical measurements. Thus
the high-quality physical measurements are appropriate for
benchmarking the virtual measurements.

The quantum chemistry calculations in the CCCBDB
have been performed using a variety of computational
models. As of August 2004, results from more than
85 000 quantum chemistry calculations are available in the
database. The CCCBDB includes web pages for examining
the differences between virtual and physical measurements.
Thus, the CCCBDB provides the estimated biases in virtual
measurements from many computational models. Because
some interesting properties are neither calculated nor measured
directly (such as enthalpy of formation), tools are provided for
designing customized chemical reactions. The corresponding
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thermochemical properties may then be used as the basis for
comparing virtual and physical measurements.

4. Specification of a correction for bias and its
associated uncertainty

The correction c(t,b) and its associated standard uncertainty
u(c(t,b)) are determined from a state-of-knowledge distribution
for C(t,b) that is specified from all available information
including relevant data and scientific judgment. We propose
for C(t,b) a mixture probability distribution whose expected
value and standard deviation are determined using the
CCCBDB. Then c(t,b) and u(c(t,b)) are identified with the
expected value E(C(t,b)) and standard deviation S(C(t,b)) of
the distribution for C(t,b), respectively. The correction c(t,b) and
uncertainty u(c(t,b)) are then used to determine the corrected
virtual measurement y and uncertainty u(y) from equations (2)
and (3), respectively.

Suppose, for the same theory and basis set as for the
target molecule, a class of molecules in the CCCBDB can be
identified with the following three characteristics.

(i) The bias B(t,b) for the target molecule is believed to be of
the same sign and of similar magnitude as the estimated
biases for the molecules in the class. The negatives
of these estimated biases are estimated corrections for
the molecules in the class. Suppose the number of
molecules in this class is m and the estimated corrections
are c1, . . . , cm.

(ii) The estimated corrections c1, . . . , cm appear to have an
approximately normal distribution and do not have an
excessively large spread. An approximately normal
distribution is desired because we treat c1, . . . , cm as a
set of randomly distributed values about their arithmetic
mean, µ = (1/m)

∑
i ci . A distribution that has an

excessively large spread is often a mixture of narrower
distributions that may be separated. The approximate
normality and spread can be assessed from a histogram
of c1, . . . , cm, the standard deviation σ = [

∑
(ci −

µ)2/m]1/2, and the coefficient of skewness η3 = [
∑

(ci −
µ)3/m]/σ 3 [16], which is zero for a normal distribution.

(iii) The number, m, of molecules in the class is sufficiently
large.

Suppose the values of the molecular property for the
identified class of molecules in the CCCBDB are Y1, . . . , Ym,
the corresponding uncorrected virtual measurements are
x1, . . . , xm with standard uncertainties u(x1), . . . , u(xm), and
the high-quality physical measurements are z1, . . . , zm with
standard uncertainties u(z1), . . . , u(zm), respectively. The
uncertainties u(x1), . . . , u(xm), like u(x(t,b)), do not include
the components of uncertainty arising from the biases in
x1, . . . , xm, respectively. Suppose the expected values of
the sampling distributions for x1, . . . , xm are X1, . . . , Xm,
respectively. Then the bias in xi is Xi −Yi for i = 1, 2, . . . , m.
The virtual measurement xi is an estimate for Xi and the high-
quality physical measurement zi is an estimate for Yi , and so
xi −zi is an estimate for the bias Xi −Yi in xi and the estimated
correction for bias is ci = zi − xi .

In accordance with the Guide, the virtual measurement xi

and the uncertainty u(xi) are regarded as the expected value

and the standard deviation of a state-of-knowledge distribution
for Xi . The physical measurement zi and the uncertainty u(zi)

are regarded as the expected value and the standard deviation
of a state-of-knowledge distribution for Yi . Let Ci = Yi − Xi

be a variable representing the correction for bias in xi . Then
the expected value of a state-of-knowledge distribution for Ci

is ci = zi − xi . Since the state-of-knowledge distributions
for Yi and Xi are determined independently, the covariance
between Yi and Xi is zero. Thus the standard deviation of a
state-of-knowledge distribution for Ci is S(Ci) = [u2(zi) +
u2(xi)]1/2. We will use the symbol u(ci) for S(Ci). Thus
u(ci) = [u2(zi)+u2(xi)]1/2. The uncertainty u(xi) is generally
negligible relative to the uncertainty u(zi) (see section 2.3).
Thus, to a reasonable approximation u(ci) ≈ u(zi), for
i = 1, 2, . . . , m.

According to the belief that the bias B(t,b) for the target
molecule is similar to the estimated biases for the class of
molecules identified in the CCCBDB, each of the m state-
of-knowledge distributions for C1, . . . , Cm may be attributed
to C(t,b). Suppose the probability density function (PDF)
for Ci is pi(.). We propose that the PDF p(.) attributed to
C(t,b) be defined as a linear combination p(y) = ∑

i κipi(.)

of the PDFs pi(.), where κi = ai/
∑

i ai and a1, . . . , am

are non-negative ‘weights’ attributed to p1(.), . . . , pm(.),
respectively. A combined probability distribution with PDF
p(.) = ∑

i κipi(.) is referred to as a mixture probability
distribution. The expected value and standard deviation of
the PDF p(.) are

∑
i κici and [

∑
i κiu

2(ci) +
∑

i κi(ci −∑
i κici)

2]1/2, respectively [17].
For the molecular properties of interest in this paper, the

weights a1, . . . , am may be set as equal. Then κi = 1/m

and the expected value and standard deviation of the PDF
p(.) reduce to µ = (1/m)

∑
i ci and [(1/m)

∑
i u

2(ci) +∑
i (ci − µ)2/m]1/2, respectively. Thus, based on a mixture

probability distribution with equal weights, the correction c(t,b)

and uncertainty u(c(t,b)) may be specified as

c(t,b) = µ = 1

m

∑
i

ci (7)

and

u(c(t,b)) =
[

1

m

∑
i

u2(ci) +
1

m

∑
i

(ci − µ)2

]1/2

=
[

1

m

∑
i

u2(ci) + σ 2

]1/2

, (8)

respectively. In equation (8), u(ci) is approximated by
u(zi), the uncertainty associated with the high-quality physical
measurement, for i = 1, 2, . . . , m.

5. Illustration of the procedure

We consider a computationally inexpensive quantum chem-
istry model6 for calculating enthalpy changes for atomization
reactions (e.g. H2O → 2H + O). The virtual measurement
x(t,b) is the atomization enthalpy for a target molecule, at the

6 The density-functional method denoted mPW1PW91 [18] combined with
the basis set denoted 6-31G(d).
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Figure 1. Estimated corrections for atomization enthalpies of
sulfur-containing molecules, as computed using the model
mPW1PW91/6-31G(d) [18]. Source of data: CCCBDB [3].

temperature 298.15 K. The computational model is such that
the standard uncertainty u(x(t,b)) is negligible relative to the
uncertainty u(c(t,b)). Therefore from equations (2) and (3),
the corrected virtual measurement for atomization enthalpy
and its associated standard uncertainty are y = x(t,b) + c(t,b)

and u(y) ≈ u(c(t,b)), respectively.
Suppose the target molecule is the sulfur-containing

organic molecule ethyl thioformate (C2H5SCHO). Figure 1
shows a histogram of estimated corrections for the biases
in the atomization enthalpies for a class of 65 sulfur-
containing organic molecules for which data are available in
the CCCBDB. Figure 2 separates the histogram of figure 1
into two histograms, corresponding to two smaller classes,
one for the molecules containing S–O bonds and the other
for the molecules lacking S–O bonds. The entries in columns
2, 3, 4, and 5 of table 1 are the number, m, of molecules
in the three classes, the arithmetic mean, µ, the standard
deviation, σ , and the coefficient of skewness, η3, for the three
distributions of estimated corrections. Figure 2 and table 1
illustrate the benefit of recognizing better ways of classifying
molecules. When we distinguish between the molecules based
upon whether they contain S–O bonds, the two resulting
distributions for estimated corrections are more symmetric
than is their combined distribution. It is clear from table 1
that the finer classification leads to a marked reduction in the
coefficient of skewness and the standard deviation. The entries
in columns 3 and 6 of table 1 are the corrections c(t,b) = µ

based on equation (7) and the uncertainties u(c(t,b)) based on
equation (8) for the three classes of molecules.

The target molecule, ethyl thioformate (C2H5SCHO), is
a member of the class of sulfur-containing organic molecules
without an S–O bond. Therefore the summary statistics for the
class of molecules without S–O bonds apply. The atomization
enthalpy for ethyl thioformate using the same model as above is
x(t,b) = 4093.8 kJ mol−1. Therefore the appropriate correction
c(t,b) and uncertainty u(c(t,b)) are c(t,b) = µ = 21.8 kJ mol−1
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Figure 2. Separation of the histogram of figure 1 into two based on
whether the molecules contain S–O bonds.

Table 1. Summary statistics for estimated corrections in
atomization enthalpies for the data plotted in figures 1 and 2. The
units of measurement are kJ mol−1.

Set m µ σ η3 u(c(t,b))

All molecules 65 50.5 64.2 1.7 64.2
With S–O bonds 13 165.2 52.0 0.5 52.1
Without S–O bonds 52 21.8 19.0 0.6 19.2

and u(c(t,b)) = 19.2 kJ mol−1, respectively. Thus the corrected
virtual measurement for ethyl thioformate isy = x(t,b)+c(t,b) =
4115.6 kJ mol−1 and the standard uncertainty associated with
the correction is u(y) ≈ u(c(t,b)) = 19.2 kJ mol−1. In
summary, after applying the conventional coverage factor
k = 2, the result of measurement determined from the
computational model is (4115.6 ± 38.4) kJ mol−1. This is
in agreement with the corresponding physical measurement
(4129.2 ± 5) kJ mol−1 [19]. We note that many quantum
chemistry models are superior to this one, although they
generally carry a higher computational cost.

As illustrated by table 1, the central problem is discovering
useful classification schemes for molecules. Identifying a
useful class of molecules requires some understanding of the
relationship between the property being modelled and the
limitations of quantum chemistry models. Fortunately, a few
simple considerations are appropriate for many properties. For
example, molecules can be divided into large classes based
upon the chemical elements of which they are composed. An
example is shown in figure 1. A finer distinction, which is
often beneficial, is to distinguish molecules based upon the
types of chemical bonds that they contain. This is illustrated
in figure 2, where the initial class has been divided into two
smaller classes. Further distinctions might be made based upon
how many bonds of a given type are in the molecule, upon the
existence of low-lying excited states, etc. Smaller classes are
expected to be more reliable since they may resemble the target
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molecule more closely. However, classes must be sufficiently
large for the arithmetic mean and standard deviation to be
useful. Furthermore, the distribution of estimated biases
for the class of molecules should be approximately normal.
Classification schemes need not be unique and classes need
not be disjoint. Different classification schemes may yield
different uncertainties. Although the present discussion deals
with discrete classification, classification schemes may also
be continuous. For example, the correction for bias may be a
function of an electron density or the length of a bond [20].

6. Summary

The uncertainty associated with a virtual measurement from
a computational quantum chemistry model arises primarily
from its bias, which results from the choice of the theory and
the basis sets used for computation. According to the Guide, a
correction for bias must be applied to the virtual measurement,
thus obtaining a corrected virtual measurement. The
uncertainty associated with the correction must be quantified
and then included in the combined standard uncertainty
associated with the corrected virtual measurement. We
propose the following procedure for determining a corrected
virtual measurement and its associated uncertainty:

Step 1. Determine the virtual measurement x(t,b) and its
associated uncertainty u(x(t,b)) for the target molecule. The
uncertainty u(x(t,b)) includes the components of uncertainty
associated with the fundamental physical constants, any
empirically derived parameters, and a variety of small
contributions, such as the non-zero convergence thresholds that
create some dependence upon the choice of initial geometry
and wavefunction.

Step 2. Identify a suitable class of molecules in the CCCBDB
database that are believed to have biases similar to that of
the target molecule. The database provides the estimated
corrections (negative of estimated biases) in the virtual
measurements of the same property for the selected class of
molecules. Suppose c1, . . . , cm are the estimated corrections
with standard uncertainties u(c1), . . . , u(cm), respectively, for
the class of molecules. The uncertainties u(c1), . . . , u(cm)

are approximated by the uncertainties u(z1), . . . , u(zm)

associated with the high-quality physical measurements used
to benchmark the virtual measurements characterized in
the database. Compute the mean µ = (1/m)

∑
ci and

standard deviation σ = [
∑

(ci − cA)2/m]1/2 of the estimated
corrections. Then the correction to be applied to the
virtual measurement x(t,b) is c(t,b) = µ and the standard
uncertainty associated with the correction is u(c(t,b)) =
[(1/m)

∑
i u

2(ci) + σ 2]1/2.

Step 3. Determine the corrected virtual measurement y =
x(t,b) + c(t,b) and its associated standard uncertainty u(y) =
[u2(x(t,b)) + u2(c(t,b))]1/2. Frequently, the uncertainty u(x(t,b))

is negligible relative to u(c(t,b)). In that case u(y) ≈ u(c(t,b)).
The corrected virtual measurement y and uncertainty u(y) are
regarded as the expected value and standard deviation of a state-
of-knowledge distribution for Y , the value of the molecular
property for the target molecule.
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