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of an individual in parentheses, indicate the life span. In the text, the year of
publication, in parentheses, follows the name(s) of the author(s). It directs
the reader to the list of references in the back of the book, which is arranged
alphabetically by the last name of the first author. If the first author has pub-
lished more than one paper in a given year, these are distinguished by letters
a, b, etc. For details on the conventions used in references, please consult the
notes preceding the list of references.

Regarding the units of physical quantities, the following policy has been
followed. Presently, by global agreement, the units of physical quantities are
those of the Systeme International (s1), which did not exist in the time peri-
od covered in this book. Here, therefore, these units are used only if reference
is made to modern work. For the historical accounts, the units are those
reported in the original papers.

Frequently used abbreviations

GTP The paper by Korteweg (1891b) on the General Theory of Plaits

HMW Koninklijke Hollandse Maatschappij van Wetenschappen [Royal
Holland Society of Sciences and Humanities]

KNAW Koninklijke Nederlandse Akademie van Wetenschappen [The
Royal Netherlands Academy of Arts and Sciences]. In the text, it
is referred to as ‘the Academy’ when the context is clear.

K&S The paper by Van Konynenburg and Scott (1980)

PP The paper by Korteweg (1891a) on Plait Points
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1. Introduction

1.1 Historical setting: time period and place

This book narrates the story of pioneering scientists in the Netherlands who
reached a profound and comprehensive understanding of fluid mixture phase
separation within a brief time span around the turn of the 19t century. This
achievement was the consequence of the felicitous collaboration of two Dutch
physicists, Johannes Diderik van der Waals (1837-1923) at the University
of Amsterdam, and Heike Kamerlingh Onnes (1853-1926) of the University
of Leiden. Both were to win Nobel prizes along with several other of their
countrymen of that period, including Hendrik Antoon Lorentz, Jacobus
Henricus van ’t Hoff, and Pieter Zeeman.

This period of flourishing science in the Netherlands was coined ‘the
Second Golden Age’ by Willink (1998). He named it in reference to the glo-
rious 17% century Golden Age of the Dutch republic, when Holland became
a dominant power at sea, and could boast not only of its unsurpassed school
of painters, but also of scientists such as Anthony van Leeuwenhoek and
Christiaan Huygens.

This second Golden Age of science in the Netherlands did not arise by
accident. As is carefully documented in the biography of Van der Waals by
Kipnis ez al. (1996), the way to a scientific revival was paved by the restruc-
turing of Dutch secondary education in the 1860s. Before that time, only
gymnasia, or Latin schools, reserved for sons of the privileged, gave access to
university education. When a solid middle class of business owners and indus-
trialists began to form due to the upturn of the economy, a need was felt for
a more practically oriented type of school, with emphasis on mathematics
and science instead of the classical languages. In 1862, a non-sectarian, free-
market-oriented government under prime minister Johan Rudolph Thorbecke
came to power. Thorbecke had democratized elementary education during an
earlier period of governing. During his new tenure, he opened secondary
education to the middle class. In 1862, a new type of school, the ‘Hoogere
Burgerschool” (1Bs), or high school for (male) burghers, was signed into law.

INTRODUCTION 1



The s-year HBs taught a solid curriculum of mathematics and the sciences,
in addition to Dutch, three modern foreign languages, history and geo-
graphy. Curiously, it did not give direct access to university education until
more than half a century after its founding. After completing the HBs,
students aspiring to a university education had to pass a ‘state’ (nation-wide)
exam in Latin and Greek, which usually took another year of preparation.
The new HBs required an influx of well prepared science and mathematics
teachers. Improved economic conditions in the country provided the oppor-
tunities for the necessary expansion of science education at the universities.

Although it was possible to obtain teacher qualification by other paths,
many of the new HBs teachers were university-trained, which enabled
them, in turn, to inspire their students and open the prospect of a uni-
versity education for them. On finishing a mathematics or science doc-
torate, many would find secure, well paid and respected jobs as HBs teach-
ers, from which they might later graduate to an academic position. As
a consequence, a strong interaction resulted between HBs and university
science education. As stated by Kipnis ez al., ‘Almost all Dutch scientists
passed through the HBs, either as students or as teachers, or both.” For
instance, Van der Waals, who himself never had the privilege of an HBs
education, let alone a gymnasium, taught HBS for a dozen years before he
became a university professor in 1877.

In the Netherlands, the uBs, as founded by Thorbecke, functioned largely
unchanged until well into the 1960s. Then, as had happened in the United
States early in the 20t century, the demand for mass access to high schools
led to reforms of the high school teacher education system that ruptured the
tie between university education and teacher training. Some ascribe the cur-
rent decline of interest in mathematics, the natural sciences and engineering
in the Netherlands to the fact that teachers with specialized university
degrees no longer electrify the high school classroom.

It is within this context that science flourished in the Netherlands around
the turn of the 20 century. In this time period, Dutch scientists achieved
primacy in the field of fluid criticality and fluid phase behavior, the topic of
this book

1.2 Understanding fluid phase behavior — the challenge

For millennia past, humanity has built up practical knowledge about the
behavior of fluids and fluid mixtures and their changes of state: freezing,
evaporation, and boiling; mixing and separation; dissolution and precipita-
tion. Experience about dissolving solids, boiling and distilling liquids, melt-
ing and purifying metals, has accumulated since fire was tamed long before
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recorded history. Several of these processes are basic to survival even in prim-
itive societies.

The modern industrialized world produces and transports chemicals on
an unprecedented scale. Key raw materials are natural gas and oil, from
which are derived the gaseous and liquid fuels that energize the factories
and electric power plants, as well as most modes of transportation. Gas and
oil also form the basis for the production of an immense array of chemicals
and plastics, without which modern living is unthinkable. Underlying
almost all production methods in this gigantic industrial enterprise are the
processes of evaporation and condensation, and the mixing and separation
of fluids and solids. Mixing processes precede and separation processes fol-
low the chemical reactions that create new compounds out of a mixture of
reactants.

Processes of mixing and phase separation involving liquids and gases can
be surprisingly complex, especially when these processes occur at elevated
pressures. Even in the middle of the 19th century, while the industrial revo-
lution was in full swing, the basic process of phase separation of a pressurized
fluid mixture was not understood.

The leap in understanding of the phase behavior of fluids achieved by the
school of Van der Waals and Kamerlingh Onnes did not arise without prece-
dent. There were many precursors and essential elements upon which the
Dutch scientists would build. To begin with, there was the concept of fluid
criticality, discovered by Cagniard de la Tour (1822). Only below the critical
temperature can a vapor be condensed to a liquid, or a liquid evaporated.
This was a very important insight. Two coexisting fluid phases, such as a
vapor and a liquid, may become identical at a critical point. In contrast, coex-
isting fluid and solid phases always remain distinct. It took a fair amount of
time before scientists became comfortable with this idea.

Once it was realized that a gas needs to be cooled below its critical tem-
perature before it can be liquefied, the process was set in motion to sequen-
tially liquefy gases of ever-lower critical temperatures. Throughout Europe,
scientists were engaged in this challenge throughout the 19t century. Michael
Faraday, for instance, had determined the critical temperatures of many flu-
ids by the middle of that century.

Thanks principally to the experimental work of Thomas Andrews (1869)
the behavior of a pure fluid around its critical point was discovered.

The involvement of Dutch scientists began when Johannes Diderik Van der
Waals (1873), see also Rowlinson (1988), showed in his doctoral thesis how a
simple model of molecular repulsion and attraction leads to an equation of
state of the form experimentally found by Andrews. By 1880, he derived from
his equation the famous principle of corresponding states.
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Quite a few experiments on the phase separation of pressurized fluid mix-
tures were carried out by the 1880s, mainly in France, but also by Van der
Waals and by Andrews. Before 1890, however, the results were quite mysteri-
ous to the experimenters, because a proper framework for interpretation was
lacking.

It was the American Josiah Willard Gibbs (1873-1878) who laid the theo-
retical foundation for an understanding of the phase separation of fluid mix-
tures. Among European scientists, only James Clerk Maxwell and Van der
Waals quickly grasped the importance of this work. Van der Waals, who in
1877 was appointed a professor of physics at the newly founded University of
Amsterdam, soon made himself quite familiar with Gibbs’s work. Gibbs’s
papers on phase separation of mixtures formed the basis, still firmly in place
today, upon which Van der Waals built his own theory of mixtures, which
was published in 1890.

The unique contribution of Van der Waals was to bring Gibbs’s theory to
life by generalizing the Van der Waals equation to fluid mixtures. Van der
Waals’s former graduate student, the Amsterdam professor of mathematics
Diederik J. Korteweg, played a little known but essential role in developing
the theory of mixtures. The first exciting result was the possibility of coexist-
ence of three fluid phases (two liquids and one vapor) in binary mixtures.
This phenomenon was known experimentally, but it was quite an achieve-
ment to actually derive it from the Van der Waals equation of state. The road
was opened towards an understanding of the phase behavior of pressurized
fluid mixtures on the basis of the molecular dimensions and interactions of
the constituents.

At the venerable University of Leiden, in the meantime, Kamerlingh Onnes
was appointed a professor of physics in 1880. He decided to establish a cryo-
genics laboratory. His primary goal was to liquefy on a large scale the so-called
permanent gases — air constituents, hydrogen, and later, the ultimate challenge
indeed, the noble gas helium, isolated by William Ramsay in 1895. Kamerlingh
Onnes soon realized how Van der Waals’s principle of corresponding states
could be used for estimating unknown critical temperatures of ‘permanent
gases.” By the mid-1880s, Van der Waals and Kamerlingh Onnes began a col-
laboration that lasted till the end of Van der Waals’s life in 1923.

The rapid progress in understanding fluid mixtures was a result of the
collaboration of Van der Waals, the provider of the theoretical framework,
and the experimental group in Leiden. Kamerlingh Onnes’s graduate stu-
dent Johannes Petrus Kuenen, in 1891, was the first in the world to discover
how to make reliable measurements of the properties of compressed fluid
mixtures. In a brief time span, Kuenen discovered several phenomena that
are now integral parts of fluid mixture phase separation technology, such as
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retrograde condensation, critical azeotropy, and various types of binary fluid
phase behavior. Other Leiden researchers, the Belgian visitor Jules Emile
Verschaftelt, as well as Kamerlingh Onnes’s successor-to-be, Willem Hendrik
Keesom, then helped fill in the picture, which reached completion around
1906. The Amsterdam ‘mathematical chemist’, Johannes Jacobus van Laar,
played a not always appreciated but certainly constructive and colorful role
in reaching an understanding of binary fluid phase equilibrium.

Thus, between 1890 and 1906, scientists in Amsterdam and Leiden obtained
a full and deep understanding of the intricacies of phase separation and criti-
cality in fluids and fluid mixtures. This period and process form the focus of
this book.

Throughout this entire period of work on fluid mixtures, which devel-
oped in parallel with the major buildup of large-scale facilities for gas lique-
faction, a feud simmered between Kamerlingh Onnes’s group and experi-
menters throughout Europe. The topic was fluid criticality. A number of
experimentalists in England, France, Italy, and Germany claimed that the
Andrews-Van der Waals picture of fluid criticality was incorrect. For more
than 15 years, while he was building his cryogenic facility and preparing for
the liquefaction of helium, Kamerlingh Onnes and his group took the offen-
sive, repeated the experiments, and pointed out the sources of error in
experiment and reasoning. This epic is narrated in this book, including its
sequel in the 20t century.

The work of Van der Waals has aroused new interest recently, thanks large-
ly to the efforts of John Shipley Rowlinson, who translated Van der Waals’s
doctoral thesis and his paper on fluid mixtures into English (1988). Rowlinson’s
book contains an extensive description of the connections between Van der
Whaals’s work and modern molecular science. Earlier, Rowlinson translated Van
der Waals’s paper on capillarity (1979). Kipnis, Yavelov and Rowlinson (1996)
recently published a biography of Van der Waals, with an exhaustive biblio-
graphy and much biographical detail.

Because of this recent work, the present book does not need to be focused
primarily on Van der Waals. Rather, it will expose the synergy of Amsterdam
and Leiden scientists in those heady days of Dutch science. It will focus on a
number of basic ideas and concepts, and show how they developed from the
vital interactions of theorists and experimentalists, with input from mathe-
matics, physics and chemistry. More than once, the Dutch scientists were far
ahead of their time, with several of their discoveries and insights reinvented
throughout the 20th century.

The book is arranged by topic, in roughly chronological sequence. After
introductory chapters on Van der Waals’s equation of state and the theorem of
corresponding states, fluid mixtures become the principal topic. Van der Waals’s
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theory of mixtures is summarized, and Korteweg’s mathematical work on
plaits (folds) in surfaces is described. Then follow the experimental discov-
eries of the various types of phase behavior in binary fluid mixtures by
Kamerlingh Onnes, Kuenen and Keesom. These were complemented by the
theoretical understanding reached by Van Laar amidst spirited disputes
about matters of priority.

Fluid criticality received much attention from Dutch scientists. The book
describes how Van der Waals invented and calculated critical exponents,
and discovered, to his dismay, that experiment did not confirm his theory.
Verschaffelt pinpointed the problem, and reached insights that then lay dor-
mant for half a century. Kamerlingh Onnes, Kuenen and Keesom waged
a lengthy campaign against persistent literature reports contradicting the
Andrews-Van der Waals’s picture of continuity of states and fluid criticality.

Finally, at one time or another, almost all members of the Dutch School
directed their attention to dilute mixtures near critical points. This is the
only instance where the influence was felt of another famous Nobel prize
winner, Van ’t Hoff, who was not a member of the school of Van der Waals
and Kamerlingh Onnes. Van ’t Hoff’s work set the tone for describing the
general behavior of dilute solutions. Near a critical point, however, dilute
mixtures show unusual behavior, which was elucidated by Korteweg, Keesom,
Verschaffelt and Van Laar.

An effort has been made to link the issues discussed to modern develop-
ments and practical applications. The last chapter sketches some of the paths
along which the work of the Dutch School permeated science and technolo-
gy throughout the world. This chapter also takes note of some profound
early insights that were lost and rediscovered much later.

The book is intended for those interested in the history of science, as well
as for teachers and students of thermodynamics who want to know more
about the origins of their discipline. It should be accessible to beginning
graduate students of physics, chemistry, or engineering with some back-
ground in thermodynamics and physical chemistry. A basic knowledge of cal-
culus is assumed. A few chapters will require more effort than the others.
A summary of the various chapters is given in the second part of the intro-
duction, including some guidance regarding the presence of advanced mate-
rial and passages that may be skipped in a first reading.

1.3 A description of the individual chapters

Chapter 2 presents the background material and terminology that will be
used in the chapters that follow. It is limited to the phase behavior of one-
component fluids. Van der Waals’s equation of state, and the corresponding
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Helmholtz energy are treated, along with the underlying mean-field assump-
tion and its limitations. Criticality is discussed in some depth, and criticality
conditions are given. The Van der Waals picture of phase separation is
described, including the double-tangent construction of coexisting phases.
Concepts such as plaits, tie lines, plait point, connodal (or binodal) and
spinodal, frequently used by the Dutch School, are introduced. The chapter
closes with some remarks about cubic equations, of which the Van der Waals
equation is the prototype. This chapter includes biographical information
about Van der Waals’s life prior to his doctorate.

Chapter 3 discusses the powerful theorem of corresponding states, which
Van der Waals derived from his equation of state, and Kamerlingh Onnes’s gen-
eralization beyond the confines of the Van der Waals equation, based on the
concept of ‘mechanical similarity.” Kamerlingh Onnes also understood that the
principle hinges on the existence of two substance-specific scale factors. The
chapter describes the usefulness of this principle in predicting unknown critical
temperatures for the ‘permanent gases.” A crucial application was the prediction
of the critical temperatures of hydrogen and helium well before these gases were
liquefied. Biographical information on Kamerlingh Onnes is included.

This chapter includes an overview of more than a century of applications
of the principle of corresponding states in gas liquefaction, in science, and in
chemical engineering. Generalizations of the principle to include an addi-
tional scale factor occurred throughout the 20t century. Some of these, such
as the Pitzer ‘acentric factor,” and the quantum parameter of De Boer are dis-
cussed in this chapter.

The book then turns to the topic of fluid mixtures. Chapters 4 and 5 give
the theoretical foundation by Van der Waals and Korteweg. A comprehensive
understanding of binary fluid phase separation was reached by a combination
of theory and experiment, due mainly to work of Kuenen, Korteweg and
Van Laar, as described in Chapters 6 and 7. Chapters 8 and 11 discuss specif-
ic applications to gas-gas equilibria and to dilute mixtures near the solvent
critical point.

Chapter 4 is devoted to Van der Waals’s theory of mixtures, formulated in
1890. It is basic to the chapters that follow. First, a separate section summa-
rizes the underlying concepts, due to Gibbs (1873-1878), which are needed in
order to follow all chapters on fluid mixtures in this book. Concepts such as
limits of stability, chemical potentials, double-tangent planes, tie-lines, and
the phase rule are introduced. It is then shown how Van der Waals used his
equation of state and the principle of corresponding states to construct an
equation of state and Helmholtz energy for binary fluid mixtures. Attention
is given to the criticality conditions for a binary mixture, which derive from
stability considerations for the Helmholtz energy.
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Van der Waals showed that at sufficiently low temperature, the isothermal
Helmholtz energy surface has at least one ‘plait’ or fold, separating a vapor
and a liquid phase. He called this plait the transverse plait. Van der Waals dis-
covered that under certain conditions a second plait might arise, the longitu-
dinal plait, which separates two liquid phases of different compositions and
gives rise to three-phase equilibrium. Pictures are reproduced of demonstra-
tion models built by Van der Waals for isothermal Helmholtz energy surface
with two and three coexisting phases.

Chapter 5 discusses the theory of plaits and plait points by the mathemati-
cian Korteweg, about whom biographical information is included. It is based
on two papers by Korteweg, published alongside Van der Waalss theory of
mixtures in the French-language Archives néerlandaises in 1891. Because the
papers are mathematical in origin and have never been translated into Eng-
lish, they are not widely known. In fact, Korteweg prepared for Van der
Waals the mathematical tools needed to derive practical results from his
equation of state. A plait, in Korteweg’s definition, is a smooth fold (without
sharp edges or creases) arising on a two-dimensional mathematical surface
free of singularities. Such a fold may terminate in a plait point, presently
called a critical point. In the first paper, Korteweg characterized a plait point
by the special form of a Taylor expansion at such a point, and analyzed the
various ways in which a plait point can originate or disappear as a parameter
varies in the analytic representation. In a second paper, Korteweg studied the
way tangent planes to the analytic surface touch in more than one point
when a plait is present, and, when rolled across the surface, trace out conn-
odals or loci of double-tangent points. He classified a variety of plait points,
and worked out how new plaits are born, grow, and interact with existing
plaits as the surface is gradually deformed. Many of the original pen drawings
by Korteweg have been reproduced in Chapter 5. Underlying this work is a
little-known set of three mathematical theorems published by Korteweg in
Dutch. They are introduced in Chapter s along with part of Korteweg’s sec-
ond paper.

The latter half of Korteweg’s second paper on the theory of plaits is an
application to the Van der Waals Helmholtz energy for a binary mixture, and
it is incorporated into Chapter 7 of this book. Although it is impossible to
do full justice to these two major treatises, the papers are described in some
detail, in the hope that this may entice others to study a very interesting but
forgotten chapter in mathematical physics.

Chapter 5 gradually increases in difficulty as it progresses through Korte-
weg’s first paper, but an effort has been made to present the material pictori-
ally, by making use of many of Korteweg’s own pen drawings. It is sensible to
return to parts of Chapter 5 as needed when reading further chapters of the
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book, especially Chapter 7. Better yet, the reader may wish to consult the
systematically and clearly written original papers.

Chapter 6 is devoted to early experiments in fluid mixtures by the Leiden
School. This chapter begins by describing how Kamerlingh Onnes founded a
premier research laboratory by establishing the experimental methods for
accurate measurement and control of temperature and pressure, including
calibration standards. His graduate student Kuenen was able to obtain the
first reliable data on pressurized fluid mixtures. Shortly after, Kuenen discov-
ered and interpreted the phenomenon of retrograde condensation. Next,
Kuenen discovered the phenomenon of critical azeotropy in a mixture with a
minimum in the critical temperature. This chapter contains some biographi-
cal information on Kuenen.

Kamerlingh Onnes, fascinated by the power of Van der Waals’s equation for
mixtures, began to build plaster models representing isothermal Helmholtz
energy and pressure surfaces as functions of volume and composition. He rep-
resented the Van der Waals surface, as well as experimental data fitted with
an empirical equation. These surfaces allowed him to actually perform the
double-tangent construction and locate the connodals. Many of these models
still exist, and a photograph of one of them is reproduced in this chapter.

Chapter 7 is the most substantial chapter in the book. The topic of this
chapter, binary fluid phase diagrams, is fairly complex, and no longer auto-
matically included in thermodynamics texts and courses. It is introduced
from a modern perspective: the classification of all possible types of binary
fluid phase diagrams that derive from Van der Waals’s equation of state for
equal-size molecules. Scott and Van Konynenburg accomplished this classi-
fication when digital computers became available in the 1960s. There are
two parameters in the problem: the relative strength of attraction of the two
components, and the relative strength of the interaction between unlike
components. The introductory part of Chapter 7 is based on the 1980 paper
by Van Konynenburg and Scott, and will be frequently referred to in this
chapter as well as those following it.

The early calculations for a special case of the Van der Waals equation for
mixtures are those by Korteweg. In 1891, he derived all possible phase behav-
iors of Van der Waals’s equation of state for mixtures of two components that
are identical. The only parameter in this symmetric model is the interaction
between the first and second components, which is allowed to vary. The sym-
metry of this model leads to surprisingly complex phase behavior. Many of
Korteweg’s marvelously detailed drawings of isothermal phase equilibria, crit-
ical points and tie lines for the symmetric model in the volume-composition
plane are reproduced. Several of Korteweg’s algebraic results were later redis-
covered by the use of digital computers. The relationship is shown between
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Korteweg’s work and 20t-century studies of phase separation in ternary mix-
tures, as well as the so-called three-state Potts model.

The next topic of the chapter covers the next phase of experimental work
by Kuenen, which he carried out as a physics professor at the University of
Dundee in Scotland. With his genius for choosing interesting systems, he
found the predicted three-phase behavior liquid-liquid-vapor at elevated pres-
sure. He discovered that criticality of one of the liquid phases with respect to
the vapor could be achieved in systems of greatly differing volatility. Around
1900, he found types of phase diagrams hitherto unknown. His systems were
mixtures containing associating components, such as a variety of alcohols,
which he called anomalous systems, expecting that they could not be described
by Van der Waals’s equation.

Kuenen’s findings were an inspiration to the Amsterdam mathematical
chemist Van Laar, about whom some biographical information is included.
Around 1905, Van Laar was able to calculate several possible phase behaviors
for a Van der Waals mixture of equal-size components, which differ in
strength of attraction, but in which the attraction between different compo-
nents is fixed by those between like components. Van Laar found several
types of systems with three-phase equilibria and more than one critical line,
such as had been found experimentally by Kuenen. He thus showed that the
phase behavior of Kuenen’s anomalous systems could be derived from the
Van der Waals equation.

Van Laar also studied how the different types of phase behavior transform
into each other as a parameter characterizing the molecular attractions varies.
He found what is now called the Van Laar point, where three different types
of phase diagrams meet.

Due to the work of Korteweg, Kuenen, and Van Laar, all types of binary-
fluid phase diagrams derivable from the Van der Waals equation were recog-
nized by 1906, in part from experiment, in part from analytic or approximate
numerical calculations, or both.

Chapter 8 describes an interesting new phenomenon that Kamerlingh
Onnes and Keesom discovered in 1906. When trying to dissolve gaseous heli-
um into liquid hydrogen, they found they could not make the gaseous phase
disappear by applying pressure. Using Van der Waals’s original paper on mix-
tures, they were able to explain how this phenomenon was due to the pres-
ence of a longitudinal plait on the Helmholtz energy surface. They termed
this equilibrium gas-gas equilibrium. At high enough pressure, the density of
the helium-rich gas phase became high enough for the gas and liquid phase to
exchange their positions in the tube, the so-called barotropic effect.

A clash erupted with Van Laar, who claimed priority for the discovery of
the longitudinal plait. The chapter describes the nature of the dispute, and
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how it was resolved. This will require familiarity with the work of Van Laar
described in Ch. 7. Ch. 8 includes biographical information about Keesom.

Fluid criticality is the subject of Ch. 9 and 10. Ch. 9 covers fundamental
problems discovered in the 1890s with Van der Waals’s predictions of fluid
property behavior near a critical point. Ch. 10 covers a lengthy period, from
1889 through 1906, of disputes about experiments near critical points, with
flare-ups until the middle of the 20t century. Each of these two chapters is
more or less self-contained and light on mathematical formulae.

Chapter 9 describes the discovery by Verschaffelt that the Van der Waals
equation is fundamentally flawed at the critical point. The starting point was
Van der Waals’s theory of capillarity of 1894, which predicted the way the
surface tension must approach zero at a critical point. In an appendix to the
German version of his paper, Van der Waals introduced the modern concept
of a critical exponent sixty years ahead of the time; he noted that experiment
and theory did not agree. Verschaffelt discovered over the course of several
years that the discrepancy was fundamental. His work was not appreciated,
and only at the very end of his life, in 1955, did scientists begin to regain
interest in this subject. This chapter contains biographical information about
Verschaffelt.

Chapter 10 addresses disputes and confusions that arose when a multitude
of experimenters reported findings of failure of the Andrews-Van der Waals
concept of fluid criticality. The chapter begins by discussing the sources of
experimental error, and why their effects are disproportionally large near
fluid critical points, preparing the reader for the most common pitfalls in
the multitude of experiments discussed. Such claims began in 1880. Kuenen
first pinpointed the principal sources of error in 1892, but reports disproving
the Andrews-Van der Waals view continued to be published in many coun-
tries. Kamerlingh Onnes took these reports personally, and, with Keesom,
spent an enormous amount of effort redoing and invalidating several of
these experiments during the first decade of the 20t century. The chapter
then describes how the same theme of ‘a new experiment disclaiming the
Andrews-Van der Waals view’ recurred during the 20t century.

Chapter 11 connects the topics of criticality and fluid mixtures, and rein-
troduces many of the characters described in this book. This closing chapter
resumes and unites earlier themes, and illustrates once more the synergy of
the Dutch School.

The topic of dilute mixtures near critical points is introduced from a wider
context: that of dilute solutions in general, a topic of great interest among
chemists at the end of the 19th century. This approach permits the introduction
of the Amsterdam professor Van ’t Hoff, who won the first Nobel prize in
chemistry for his contributions to the thermodynamics of dilute solutions.
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Biographical information on Van ’t Hoff is included in the chapter. It was nat-
ural for the Dutch School to enquire if and how dilute-solution laws would be
modified near the critical point of the major component.

Apart from this fundamental interest, there was the question of the effect
of impurities on experiments near the critical point of a one-component
fluid. Most members of the Dutch School worked on aspects of this question
at some time in their lives. Van der Waals was the first to present some fun-
damental thermodynamic identities, while Korteweg, Verschaffelt, Keesom,
and Van Laar developed models, each of them according to his own special
expertise. This chapter epitomizes the synergy of the Dutch School.

Since the properties of dilute mixtures near critical points are relevant to
modern-day interest in supercritical solvents, the chapter has been written
with this application in mind. The chapter introduces a limited number of
mathematical equations, and it does require a modicum of familiarity with
the previous chapters, particularly Ch. 4-7 and 10.

Chapter 12 focuses on the impact of the Dutch school of Van der Waals
and Kamerlingh Onnes. In addition to laying the groundwork for the well
known prowess of Netherlands scientists in the areas of statistical mechanics
and molecular science, the experimental heritage was retained at several of
the Netherlands universities. Early in the 20t century, the work of the
Dutch School was embraced by Russian physical chemistry, and reached
from there to mineralogy, metallurgy and the geosciences. The practical
importance of the work of the Dutch School was gradually rediscovered,
triggered by the growth of 20t-century exploration and processing of petro-
leum and natural gas.
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2. The equation of state of Van der Waals

The Van der Waals equation of state is essential to the work of the Dutch
School described in this book. It was the first mathematical model incorpo-
rating the gas-liquid transition and fluid criticality. Even its shortcomings
have raised profound questions, resulting in deeper insights. Its foundation
on molecular concepts, although not rigorous, affirmed the reality of mole-
cules at a crucial time in history. One of its consequences, the law of corre-
sponding states, would give powerful guidance to experiment. The general-
ization to fluid mixtures would open up a new field of scientific research of
immense practical importance. This chapter begins with a sketch of the his-
torical setting, within which Van der Waals developed his equation of state.
The Van der Waals equation and the corresponding Helmholtz energy are
discussed, and the terminology of the Dutch School encountered throughout
this book is introduced.

2.1 Gas non-ideality in the 19" century

The ideal-gas law, PV = R7, named after Boyle and Gay-Lussac, describes the
relationship between the pressure P, the molar volume V' (which is the
inverse of the molar density), and absolute temperature 7 of a mole of gas.
R represents the molar gas constant, which is the same for all gases. The P-V
isotherm, the relation between P and V at fixed temperature, has the form of
a hyperbola. Robert Boyle proposed this hyperbolic form of the P-V
isotherms in 1662 on the basis of his experiments on the elasticity of air. In
1801/02, Joseph Louis Gay-Lussac demonstrated experimentally that, on
heating at constant pressure, all gases expand at the same rate, the volume
increasing linearly in temperature.

As knowledge about the behavior of gases and liquids increased in the
19th century, it became very obvious that the law of Boyle and Gay-Lussac is
a limiting case, valid only for low pressures and high temperatures, far away
from the region where gases liquefy. Thus, accurate measurements per-
formed by Henry Victor Regnault in the period from 1840 to 1870 showed
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departures from the ideal-gas law for gases even at modest pressures. More
seriously, the law of Boyle and Gay-Lussac could not describe the P-V-T
behavior of liquids, nor the transition from vapor to liquid.

With the development of steam engines during the 18 century, interest
increased in the vapor-liquid phase transition at temperatures above the boil-
ing point. The French engineer and nobleman Charles Cagniard de la Tour
(1777-1859), foreseeing that the pressure might increase rapidly, heated a liquid
that filled about one third of a pressure vessel constructed out of the plugged
barrel of a cannon, to far above the boiling point. A silica sphere, rolling back
and forth in the rocking barrel, made a splashing sound as it crashed through
the liquid-vapor interface. Cagniard de la Tour (1822) noted that the splashing
stopped above a certain temperature, which we presently call the critical tem-
perature, and concluded that the distinction between vapor and liquid disap-
pears at this temperature.

Cagniard de la Tour also heated glass capsules, which were filled partially
with liquid and sealed. He measured the critical temperature, at which the
meniscus disappeared in the center of the cell. By this same method Michael
Faraday in England and Dmitry Ivanovich Mendeleev in Russia determined
the critical temperatures of quite a few fluids by the middle of the 19 century.
By that time it was also appreciated that gases such as ammonia and carbon
dioxide could be liquefied by compression at ambient temperature, while
others such as air, nitrogen and oxygen resisted liquefaction under ambient
temperature conditions, no matter how high the pressure. These gases were
called permanent.

2.2 Andrews and the P-V relation near the critical point

The Irishman Thomas Andrews (1813-1885) (1869) was the first to make a
detailed study of the P-V relation of carbon dioxide along isotherms near the
critical point. The work, carried out in his laboratory in Belfast, made it clear
how the vapor-liquid phase transition takes place, and why there is a critical
point (Fig. 2.1). The pressure-volume diagram from Andrews’s publication
shows that as the temperature increases the liquid phase expands, while the
coexisting gas phase becomes denser due to the increased pressure. Finally,
a temperature is reached at which these two phases become identical. Above
this temperature, which is about 31°C for carbon dioxide, there is no longer
a distinction between liquid and vapor. Andrews called the state point at
which vapor and liquid become identical the critical point. At temperatures
above the critical, the fluid density increases continuously on compression,
without the occurrence of a phase transition. For this phenomenon, Andrews
coined the phrase continuity of states. Van der Waals (1873, 1881) used Andrews’s

14 THE EQUATION OF STATE OF VAN DER WAALS



Figure 2.1 Andrews’s P-V isotherms of carbon
dioxide. These were graphed by Maxwell (1871)
and reproduced in Fig. 8 of the German version
of Van der Waals’s thesis. The isotherms are
labeled by their respective temperatures. The
horizontal sections represent coexistent liquid
and vapor phases. The dashed curve, the conn-
odal or coexistence curve, is the border of the
region of two-phase coexistence.

131°C ~

terminology, and even adopted the title of Andrews’s (1869) Bakerian lecture,
without reference, almost verbatim as the title of his doctoral thesis of 1873.
Van der Waals developed his equation of state independently, but he did com-
pare it with Andrews’s results.

2.3 Van der Waalss background

Kipnis ez al. (1996) published an extensive biography of Van der Waals, from
which the following facts are taken. Johannes Diderik Van der Waals (1837-
1923) was born in Leiden, the oldest of the ten children of a carpenter. As a
child from the working class, he finished his public schooling at the age of
fifteen, after completion of three years of advanced primary education. He
became a teacher’s apprentice in an elementary school. At the age of nine-
teen, while teaching, he began to take courses and examinations that would
improve his qualifications as a teacher. In 1862, he began to attend lectures at
the University of Leiden. For those not qualified to be enrolled as regular
students for lack of the proper college-preparatory schooling, the University
had a provision to take up to four courses a year. Van der Waals studied first
mathematics, then astronomy, and finally physics with Professor Rijke, who
would be thesis advisor to both Van der Waals and Lorentz. When the new
HBs was founded and teacher qualifications were specified in 1864, Van der
Waals, while a director of an elementary school, spent two strenuous years to
study for the required examinations in mathematics and physics. In 1865, he
was appointed a physics teacher at the uBs in Deventer in the east of the
Netherlands, and in 1866, he received such a position in the Hague. Around
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1870, while living in the Hague, he resumed his coursework at the Universi-
ty of Leiden, where he must have been a classmate of Lorentz and Van t
Hoff. After receiving a dispensation from the study of classical languages, he
brilliantly passed the exams in physics and mathematics qualifying for doc-
toral studies. At Leiden University, on June 14, 1873, he defended his doctor-
al thesis on the continuity of the gaseous and liquid state.

2.4 The Van der Waals equation

It is easy to overlook that the origin of the chemical bond and of the (weaker)
intermolecular forces was not elucidated until well after the advent of quan-
tum mechanics in the 20t century. By the late 1800s, however, much empiri-
cal quantitative knowledge had been acquired about chemical reactions, for
instance, the fixed ratio of the volumes of reacting gases in the formation of
a compound. The much weaker intermolecular forces, however, which mani-
fest themselves in phenomena such as the condensation of vapors, surface
tension, and adsorption, had remained elusive. Spearheaded by Mach and
Ostwald, a strong philosophical current that denied the existence of molecules
arose towards the end of the 19t century. Van der Waals’s work affirmed the
reality of molecules and allowed an assessment of their size and attractive
strength.

As is well known, Van der Waals modified the law of Boyle and Gay-Lus-
sac by taking into account the facts that molecules occupy space, and that
they exert an attraction on each other. Van der Waals’s (1873) equation of
state for a mole of gas is given by

P+ alV*)(V-b) = RT, (2.1)

where P and V are the externally measured pressure and volume. The mole-
cules are assumed to have a core in the form of an impenetrable sphere. The
volume they exclude by their mutual repulsions is called the excluded volume
b, while the attraction is incorporated by the coefficient 2. By comparing the
equation of state with experimental data, Van der Waals was able to obtain
estimates for the actual size of molecules and the strength of their mutual
attraction.

The effect of the excluded volume is that the pressure increases more
rapidly with density than given by Boyle’s law. To the surprise of luminaries
such as Maxwell, Van der Waals posits that the excluded volume & equals four
times the volume occupied by the hard spheres. This is indeed the exact result
in the low-density limit, for which there are only binary collisions between the
hard spheres. Each sphere excludes the centers of others from eight times its
volume, while counting doubly must be corrected for. At higher densities,
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however, these exclusion spheres begin to overlap, and the excluded volume
shrinks. This density dependence of the excluded volume is a problem Van der
Woaals wrestled with all his life. In his thesis, however, & is assumed to be con-
stant, so that the volume available to the molecules equals V' - 4.

Van der Waals then introduces a second characteristic of the molecules,
namely their mutual attraction incorporated by the parameter a. This effect
is called cobesion. The result is a reduction of the pressure on the walls to val-
ues lower than those given by Boyle’s law. These forces are universally known
as Van der Waals forces, but the origin of these forces was unknown at the
time. It would not be until the 1930s that the origin and range-dependence
of the Van der Waals forces would begin to be understood.

In the first half of his thesis, Van der Waals starts out with the mathemat-
ical expressions Laplace had derived for the phenomenon of capillarity at the
beginning of the 19 century, under the assumption that the attraction was
short-ranged (see Rowlinson 2002). Van der Waals, however, is not able to
connect Laplace’s expressions with the pressure exerted by the fluid on the
wall of the vessel. Then he makes a bold move (Thesis §36) and calculates the
molecular pressure approximately, assuming that the attractive interactions
on a molecule in the interior of the fluid cancel each other. The only inter-
actions that do not cancel are those exerted by molecules in the bulk fluid on
those in the boundary layer, since the latter have neighbors only on one side.
Van der Waals argues that there is a limited volume within the bulk liquid
near the boundary layer from which molecules exert attraction on those iz
the boundary layer. On average, the force per unit area of the surface from
these molecules must be proportional to the density. On the other hand, the
number of molecules in unit surface of the boundary layer must be propor-
tional to the density as well. This leads to the expression a/V? for the molec-
ular pressure, 2 being a constant characterizing the strength of attraction.
This expression had been derived earlier, but had never been incorporated
into an equation of state (See Rowlinson 1988).

The assumption that the molecular pressure is proportional to the square
of the bulk density was coined a mean-field assumption by later scientists
such as Weiss (1907), who made a similar assumption for the internal field of
a magnet. The mean-field assumption ignores spatial density variations that
may arise as a consequence of the intermolecular forces.

Kamerlingh Onnes (1881, Second Part p. 2) expressed the opinion that the
Van der Waals equation could be valid only if many molecules are present in
the sphere of attraction. Boltzmann (1896-1898) stated explicitly that the
Van der Waals cohesive force decreases slowly over a much longer range than
the average separation of the molecules. As recounted by Kipnis ez a/. (1996,
p. 224), Van der Waals learned about Boltzmann’s statements in 1898, and
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reacted immediately, pointing out that he never made the assumption that
the range of attraction was long, and thought this improbable. Boltzmann,
however, replied, that he could find no foundation for the Van der Waals
equation unless he assumed that the attractive forces were long-ranged. Final-
ly, it was shown by Kac ez al. (1961) that the Van der Waals equation can
be rigorously derived (in one dimension) if each molecule interacts with all
others by means of a weak long-range potential.

If anything was imbedded firmly in Van der Waals’s mind, however, it
was Laplace’s assumption that molecules had to have a short range of inter-
action. He had proof for the short range by taking the ratio of surface ten-
sion to the bulk cohesion 4/Vin liquids for which the values of 2 and & were
known (see his thesis, §9, §66-69, and Rowlinson 1988, 2002). The resulting
length, an estimate for the range of the attractive forces, was found to be
roughly the same as the molecular diameter derived from 4. This conflict
between the condition of long-range forces underlying the mean-field
assumption and the actual short range of attraction is a profound issue, to
be discussed further in Ch. 9.

Above the critical temperature, the P-V isotherms for the Van der Waals
equation behave like those of Andrews shown in Fig. 2.1. Supercritical
isotherms develop a region where they are flatter than Boyle’s hyperbolas.
At the critical point the isotherm has a horizontal inflection point. The
isothermal compressibility K7, which measures the decrease in volume due to
an increase in pressure at constant temperature, is defined as

KT= - (I/V) (aV/aP)T (2.2)

Because the P-V isotherm is horizontal at the critical point, the compress-
ibility becomes infinite at this point. The criticality conditions are:

@PIOV); = 0; @°PIOV?) ;=0 (2.3)

The first criticality condition represents the zero slope of the P-Visotherm at
the critical point. The second one states that the critical isotherm has an
inflection point. If this second condition were not imposed, the critical
isotherm would pass through an extremum so that on one side of the critical
point the pressure would 7ncrease when the gas expands. This is strictly for-
bidden by the requirements of thermodynamic stability.

Below the critical point, the Van der Waals isotherm develops a loop with
a section of negative compressibility (Fig 2.2). Curiously, even before 1873,
James Thomson (1871) had suggested that Andrews’s subcritical experimen-
tal isotherms be drawn as loops without the discontinuities in slope so that
metastable states, known to exist, could be included (see Maxwell 1875a

Ch. VI). The region of negative compressibility being forbidden by the
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P
A
B F
0 S — Figure 2.2 A P-V isotherm according to the
Van der Waals equation. After Fig. 6 of the
German version of Van der Waalss thesis.
Below the critical point, the isotherm devel-
0 ops a loop CDEFG, which is cut off by
\'

means of the Maxwell equal-area rule CG.

stability requirements of thermodynamics, Maxwell (1875a,b) corrected this
feature by the equal-area rule named after him. The horizontal portion of the
isotherm in Fig. 2.2 cuts off the loop in such a way that the areas between the
two sections of the loop and the horizontal line are equal. This equal-area
rule in the P-V plane guarantees that no net work is gained or lost when the
system moves through a closed isothermal cycle, one way along the loop, the
other along the horizontal part of the isotherm. Van der Waals included this
feature in the 1881 German version of his thesis (See Rowlinson 1988).

That the two-parameter equation explained fluid criticality and continuity
of states and was able to qualitatively describe the experiments of Andrews
was a major achievement. Andrews, however, kept his distance from ‘empiri-
cal formulae’ and only sporadically referred to the Van der Waals equation.
Recognition came to Van der Waals gradually, after Maxwell wrote a lauda-
tory but also critical review in Nazure in 1874, and after abstracts of his work
began to appear in German in the Beiblitter of the Annalen der Physik,
beginning in 1877 (See Kipnis e al. 1996, pp. 52-55, 60-63).

In his 1873 doctoral thesis Van der Waals made an effort to test the pre-
dictions of his equation of state with what was experimentally known at that
time about fluids such as hydrogen, carbon dioxide, sulfur dioxide, alcohol,
ether and water. He tried to estimate values of # and 4 for these fluids. Given
the limited accuracy of the experiments at that time, and the inconsistencies
between data of different origins, trends observed in the values of # and & for
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a given substance at different pressures and temperatures could generally be
ignored. The large body of carbon dioxide data by Andrews, however, forced
him to conclude that the excluded volume & decreased substantially with
increase of the density. It did not escape his attention either that there was no
set of values for # and & that was simultaneously consistent with the observed
critical volume, temperature and pressure of the gas.

2.5 The Helmholtz energy according to Van der Waals

The Van der Waals equation is an equation of state, which gives only a partial
description of the thermal properties of a system. Thus, by differentiation, it
gives the inverse compressibility, but not the heat capacity. The Dutch School
prefers to describe fluid properties by means of Gibbs’s y-function, now called
the Helmboltz energy, one of several free energies or thermodynamic potentials
that give a complete description of the thermal properties of a system. Each
free energy has its own set of independent macroscopic variables. When the
system attains equilibrium all free energies reach an extremum at given values
of their respective independent variables.

The Helmholtz energy A(V, 7) for a one-component system has volume
and temperature as independent variables. Other thermodynamic potentials
we will encounter are the energy U(S, V), the entropy S(U, V)) and the Gibbs
energy G(B T). Definitions of these potentials, their derivatives, and their
interrelations, can be found in textbooks on thermodynamics. The chemical
potential plays a major role in the thermodynamics of mixtures. Limiting
ourselves in this chapter to a one-component system, the chemical potential
measures the increase in the total Gibbs energy of the system as a mole of
substance is added at constant pressure and temperature. Therefore, the
chemical potential u(R 7) in a one-component system equals the molar
Gibbs energy.

In equilibrium, for given temperature and volume, the Helmholtz energy
is a minimum, so that internal rearrangements of the system (for instance, by
a movable piston) will lead to an increase of the Helmholtz energy. In the
context of the present book, another face of this minimum principle will play
a crucial role. There are cases that the homogeneous state of the system is not
a true equilibrium state for the given temperature and volume. Then the
Helmholtz energy can be lowered by the system splitting into two phases.
This is why this free energy occupies such a central role in the work on fluid
phase separation by the Dutch School.

The isothermal derivative of the Helmholtz energy with respect to volume
is the negative of the pressure, which is a force per unit area. The Helmholtz
energy is thus analogous to the potential energy of mechanical systems, for
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Figure 2.3 The isothermal Helmholtz energy A as
a function of volume. The Helmholtz energy
develops a loop with two inflection points below
the critical point. The double-tangent construc-

tion cuts off the metastable and unstable parts.
v The tangent points represent coexisting vapor and

liquid phases. After Van der Waals (1890), Fig. 2.

which the first derivative with respect to distance yields the negative of a
force. The second volume derivative yields the inverse compressibility.

(BAIOV) 7= -P; @%Al0V? = (VK (2.4)

Since the pressure is commonly not negative, the Helmholtz energy has a
negative slope if plotted with respect to volume. Since the compressibility
must be positive for thermodynamic stability to prevail, the Helmholtz ener-
gy of stable states must curve upwards as a function of volume.

Van der Waals integrated his equation with respect to volume, to yield a
closed expression for the Helmholtz energy of a one-component system. Save
for a temperature-dependent integration constant, this expression is:

AV, T)=-RTIn (V-b)-alV (2.5)
The criticality conditions in terms of the Helmholtz energy are
(0°AI0V?) ;= 0; (0°A/10V?) ;=0 (2.6)

In the vicinity of a point for which these two derivatives are zero, a curve
becomes very flat but retains its convex shape. At the critical point the A(V)
curve has a finite slope, but its curvature is zero. It does not have an inflec-
tion point, but remains convex, because the third derivative is zero as well.
Below the critical temperature the isothermal A(V) curve develops two inflec-
tion points (see Fig. 2.3). Between these points it is no longer convex. There-
fore, the compressibility is negative between the inflection points, which is
a thermodynamically unstable situation. The isothermal Helmholtz energy
can now be lowered by the system splitting into two phases of different
molar volume. A system composed of these two phases in different propor-
tions follows the double tangent to the curve instead of the loop. The exist-
ence of a double tangent for the isothermal Helmholtz energy implies that
the pressure and chemical potential are the same in coexisting phases. The
construction is the exact equivalent of the Maxwell construction for the
isothermal pressure P(V) in Fig. 2.2.
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2.6 Double tangent, tie line, connodal and spinodal

The double tangent points in Fig. 2.2 were called the connodes by the Dutch
School. Their locus was called the connodal or the binodal. The modern term
is coexistence curve. The three terms will be used interchangeably in this book.
The tie line refers to the line segment connecting the double-tangent points.
It may happen that the length of the tie line shrinks to zero. Then a plair
point is reached, which soon was renamed a critical point.

The locus of the extrema in the pressure-volume isotherms, which is equiv-
alent with the locus of the inflection points in the Helmholtz energy, is called
the spinodal. This word is derived from the Latin word spina, for thorn. (This
word is also the root of the English words spine and spinach. The former is
self-explanatory, the latter derives from the thorny seeds of the old-fashioned
European spinach, which seeds prevented Dutch children from enjoying this
healthy but treacherous green.) Although the isothermal Helmholtz energy is
a perfectly smooth function of volume at the spinodal points, the isothermal
Gibbs energy G(P, 7), or chemical potential y, is not a smooth function of
pressure. It has a cusp as the pressure passes through an extremum at each of
the spinodal points (Fig. 2.4), hence the name of this locus.

The parts of the isotherm between the connodal and the spinodal still obey
local thermodynamic stability in that the pressure rises when the volume is
decreased. They are not stable in the global sense, because a state of lower total
Helmholtz energy can be reached by the system splitting into two phases.
Such locally but not globally stable states are called metastable. The states
inside the spinodal (between the two extrema in the isothermal pressure, or
between the two inflection points in the isothermal Helmholtz energy) violate
thermodynamic stability locally, and are called unszable.

It may well be well worth stressing that the spinodal is a characteristic of
analytic equations of state such as the Van der Waals equation. Any exact sta-
tistical mechanical treatment, such as the Kac model mentioned above, maust
yield the horizontal section in the P-V diagram of Fig. 2.2 instead of the loop,
and the double-tangent instead of the concave section of the A-V diagram in

Figure 2.4 On a below-critical isotherm the chemical
potential p. shows two cusps, b and c, as a function

of pressure p. The cusps are located at the pressure
/ extrema of the Van der Waals loop in Fig. 2.2. After
o Van der Waals (1890), Fig. 1.
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Fig. 2.3. Thus the spinodal is a mathematical construct typical of a certain class
of equations of state, and may not have any meaning in real fluids. Neverthe-
less, during the 20t century, the spinodal has assumed a pseudo-reality of its
own in engineering science, especially in application to phase separation in
polymeric liquids. Only by the latter third of the 20t century scientists began
to come to grips with phenomena such as metastability and instability that
arise so naturally from the Van der Waals model but are at odds with require-
ments of thermodynamic stability.

2.7 Van der Waalss career at the University of Amsterdam.

After Maxwell’s qualified endorsement of his thesis in Nature in 1874,
(Kipnis ez al., p. 52-54) , Van der Waals’s reputation was established. He was
elected to the Royal Netherlands Academy of Arts and Sciences (kNAW) in
1875, and to the Holland Society of Arts and Humanities in 1878. In 1877,
the University of Amsterdam was founded. Van der Waals, the forty-years-
old high-school teacher, was appointed as the first and only professor of
physics. With utter dedication, Van der Waals served the University until
his retirement in 1908. Notwithstanding a crushing teaching load, he pro-
duced an enormous ceuvre, including his major papers on corresponding
states, fluid mixtures, and capillarity. He served as the General Secretary of
KNAW from 1896 to 1912. In 1910, he received the Nobel prize in physics for
his studies of the physical state of liquids and gases. (Kipnis ez al., 1988)

2.8 Cubic equations

The Van der Waals equation is an example of a cubic equation. It can be writ-
ten as a third-degree polynomial in the volume, with coefficients depending
on temperature and pressure. Notwithstanding the shortcomings of the Van
der Waals equation, its cubic form has the advantage that there are at most
three real roots for the volume at given temperature. In the numerical calcula-
tion of phase equilibrium, one simply discards the middle root, for which the
compressibility is negative. Increasing the accuracy of an equation of state by
including higher powers of the volume comes at the expense of the appearance
of multiple roots, which complicates numerical calculations. This is why cubic
equations still enjoy great popularity in the data representations used by the
chemical process industry. Within the framework of the cubic equation, it is
not too difficult to obtain more accuracy than offered by the Van der Waals
equation. Kamerlingh Onnes and coworkers preferred the equation of state
proposed by Clausius in 1881, in which an additional parameter, a constant,
was added to the volume in the attractive term. Including more than two
adjustable parameters is an obvious way of increasing the accuracy. Having the
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attractive parameter depend on the temperature is a much-used device that
conserves the cubic character. Designing better cubic equations has occupied
scientists and engineers for well over a century. Workhorses in the natural-gas
industry are the Redlich-Kwong and Peng-Robinson cubic equations. Hardly
a year passes without the publication of another improved cubic equation
(For a recent review and many references, see Anderko 2000).

2.9 Relation to coming chapters

Concepts and terminology introduced in this chapter will be frequently
encountered. For instance, Chapter 4 generalizes the Van der Waals equation
to binary fluid mixtures. Chapters 4 through 7 use the terminology and build
upon the concepts of thermodynamic stability introduced here. Problems
with the mean-field approximation in relation to the short range of molecu-
lar interactions are discussed in Chapters 9 and 11.
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3. The law of corresponding states —

Van der Waals and Kamerlingh Onnes

3.1 The principle of corresponding states from the Van der Waals equation

Van der Waals (1880a,b) formulated the principle of corresponding states on
the basis of his equation of state. It has proven to be of immense importance
for practical applications and, in various guises, has been in use until the
present day.

The simple form of Van der Waals’s equation, the prototype of the many
cubic equations to follow in the century to come, made it possible for him to
calculate explicitly the coordinates of the critical point. The conditions of
criticality, Eq. (2.3), applied to the Van der Waals equation yield for these

coordinates:
P.=alQ7b), V.=3b, RT.=28al(27b) (.1)
The critical ratio, defined as P.V./RT,, equals 3/8 for the Van der Waals
equation.

Van der Waals then proposes to use the critical parameters themselves as
units of measurement, thus replacing the constants 4, & and R. The resulting
equation of state, in what is called a reduced form, now reads:

(P* + 3/VHBV* - 1) = 8T,
with P* = PIP, V* = VIV, and T* = TIT. (3.2)

This is a truly remarkable result. Equation (3.2) is universal: all characteristics
of individual fluids have disappeared from it or, rather, have been hidden in
the reduction factors. The reduced pressures of two fluids are the same if
the fluids are in corresponding states, that is, at the same reduced volume and
temperature.

In his presentations to the Academy, Van der Waals (1880a,b) deduces
straightforwardly that in reduced coordinates, the vapor pressure curve and
the coexistence curve must be the same (‘fall on top of each other’) for all flu-
ids. He also points out that this principle can be used to predict the vapor
pressure of a substance in a temperature range in which it is not known, by
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comparing the vapor pressure curve in a known range with that of a well-
characterized reference substance. As an example, Van der Waals obtains
crude estimates for then unknown critical pressure and temperature of water
by scaling the water vapor pressure curve in the range of 128 to 201°C to
that of ether. For ether the vapor pressure curve is known all the way up to
the critical point. For water he predicts 7, = 390°C, while the presently
accepted value is 373.9°C — not a bad estimate for an extrapolation of over

150°C.

3.2 Van der Waals tests the principle of corresponding states

With his characteristic thoroughness, Van der Waals then tries to find out
whether saturated vapor volumes of different fluids as functions of temper-
ature indeed fall on top of each other. He consults data from six European
laboratories for a dozen fluids with known covolumes 4. For ether, ethanol,
acetone, and chloroform he expresses the volumes in units of 4 and com-
pares them at two different pressures, which are fixed fractions of the
respective critical pressures. He finds that these reduced volumes agree
within 2%. Carbon tetrachloride and carbon disulfide, however, are found
not to comply.

This particular presentation by Van der Waals (1880a,b) is of interest for
two other reasons. First of all, it contains the first indications of his interest
in applications to fluid mixtures (see Ch. 3.6), a topic that would take anoth-
er ten years to ripen (Ch. 4). Secondly, it contains several experiments Van
der Waals himself carried out on phase separation of a mixture of carbon
dioxide and air at pressures up to 100 bar. These experiments are discussed in
Ch. 4

Like Van der Waals himself, scientists were quick to realize the power of
the principle of corresponding states. As early as the 1880s the limited accu-
racy of the Van der Waals equation was well known. For example, the criti-
cal ratio of common fluids ranges from 0.23 (water) to 0.29 (noble gases),
while the prediction of 3/8 = 0.375 grossly overestimates this value. The
principle of corresponding states, however, frees the scientist from the partic-
ular constraints of the Van der Waals equation. The properties of a fluid can
now be predicted if only its critical parameters are known, simply from
correspondence with the properties of a well characterized reference fluid.
Alternatively, unknown critical properties of a fluid can be predicted if its
properties are known in a region not necessarily close to criticality, based on
the behavior of the reference fluid.

Van der Waals’s tests of the principle of corresponding states for proper-
ties such as the coefficient of expansion gave less than convincing results,
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but, as Van der Waals (1880a,b) points out, the reliability of the existing
experimental results left much to be desired. In his 1913 Nobel lecture, in
hindsight, he recalled his disappointment when he found out that the prin-
ciple of corresponding states had only approximate validity and was thus
not a law of nature.

3.3 Importance of the principle of corresponding states for gas liquefaction

S. Wroblewski made use of the principle in estimating the correct critical
temperature of hydrogen ten years before this gas was liquefied by James
Dewar in 1898. In the early 1900s Kamerlingh Onnes did not know a priori
whether helium could be liquefied at all, so it was essential for him to have
an estimate of its critical temperature. But not until a year before the actual
liquefaction of helium was Kamerlingh Onnes (1907¢) in a position to obtain
an accurate estimate. Measuring and comparing P-V isotherms of hydrogen
and helium in regions around the critical point of hydrogen permitted him,
on the basis of corresponding states, to estimate the helium critical tempera-
ture as 5.3 K. This is only just over 0.1 K above the presently known value
of 5.189 K. He then calculated the dimensions for his liquefier and estimat-
ed how much liquid air and liquid hydrogen he would need in order to pro-
duce liquid helium. He barely made it. Only towards the end of a long, ardu-
ous and nerve-wracking day, July 9, 1908, was a liquid-vapor interface finally
spotted inside the liquefier. This is how Kamerlingh Onnes (1908) described
the achievement in a letter to Van der Whaals, at the occasion of the latter’s
retirement on July 11, 1908:

At the time that the last bottle of liquid hydrogen was coupled [to the liquefier], no
[liquid] helium was visible. [Apparently, however], the apparatus had filled up with
liquid helium during one of the expansions. A little bit later, the interface appeared.
[Translated from the Dutch]

And this is how Kamerlingh Onnes credited Van der Waals:

In what I described to you, your theory has been my guide. To calculate the criti-
cal temperature of a permanent gas from the [P-V] isotherms brings your disserta-
tion to memory in a new way. The calculations were performed entirely on the
basis of the law of corresponding states. Guided by that law, I estimated — even
though I did not put that on paper — to need 20 liters [of hydrogen]. Had T esti-
mated a few liters fewer, the experiment would not have succeeded — had 1 esti-
mated much more, then I would have judged it unwise to proceed, in view of the
available resources. [Translated from the Dutch]
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Figure 3.1 Kamerlingh Onnes (I) and Van der Waals posing by the helium liquefac-
tion apparatus. Copied with permission of the Boerhaave Museum, Leiden.
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3.4 Kamerlingh Onnes and the principle of mechanical similarity

3.4.1 Biographical notes. Heike Kamerlingh Onnes (1853-1926), was the son
of a well-to-do industrialist from whom he inherited his mechanical propen-
sity. He completed his undergraduate studies in physics and mathematics in
his hometown, at the University of Groningen. Before he started his gradu-
ate work in that city in 1873, he spent three semesters with Bunsen and
Kirchhoff in Heidelberg, Germany. By that time he had already won several
competitive prizes. In 1879, he obtained his doctorate in physics magna cum
laude with Prof. R.A. Mees in Groningen. In 1878, he was appointed an
assistant to Johannes Bosscha, Professor of Physics at the Delft Polytechnic
School. Kamerlingh Onnes was appointed to a professorship at the Univer-
sity of Leiden in 1882.

His 42-year tenure at the University would be filled with remarkable dis-
coveries. He established a world-class laboratory, uniquely equipped for cryo-
genic work related to the liquefaction of gases. Details on his work in the
period of 1880 to 1908 will be encountered in many of the chapters to follow.
His crowning achievement was the liquefaction of helium in 1908, which
opened the new field of low-temperature physics.

Kamerlingh Onnes was elected to the Royal Netherlands Academy of Arts
and Sciences as early as 1883, before his 30th birthday. He was elected to the
Dutch Society of Sciences in 1886. He received the Nobel prize in physics in

I913.

3.4.2 Mechanical similarity. Even before Van der Waals’s (1880) presentation
on corresponding states appeared in print, Kamerlingh Onnes had grasped
the idea, and sought a molecular justification (see Kipnis et al. 1996, p. 105).
While still an assistant to Bosscha, he wrote a paper on the foundation of the
principle of corresponding states. In December 1880, Van der Waals present-
ed Kamerlingh Onnes’s (1881) paper to the Academy. This was the beginning
of one of the most fruitful and long-lasting relationships ever between two
scientists.

Kamerlingh Onnes’s (1881) purpose is to demonstrate that the principle of
corresponding states can be derived on the basis of what he calls the principle
of similarity of motion, which he ascribes to Newton. He assumes, with Van
der Whaals, that the molecules are elastic bodies of constant size, which are
subjected to attractive forces only when in the boundary layer near a wall,
since the attractive forces in the interior of the volume are assumed to balance
each other (Ch. 2.4). He realizes that this can be valid only if there is a large
number of molecules within the range of attraction (see the second part of the
1881 paper), an issue that would come up time and again, as mentioned in
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Ch.2.4. Kamerlingh Onnes ascribes the following characteristic parameters to
the molecules of a fluid: the molar mass M, the molecular volume 2, and the
‘absolute molecular attraction’ A. He considered a state in which NV molecules
occupy a volume », and all have the same speed # (no Maxwellian distribu-
tion!). The problem is to express the external pressure p, required to keep the
system of moving particles in balance, as a function of the five parameters.
He solves this problem by deriving a set of scaling relations for M, A, v, u
and p, which pertain if the units of length, mass, and time are changed. Two
fluids are in corresponding states if, by proper scaling of length, time and
mass for each fluid, they can be brought into the same ‘state of motion.” It is
not clearly stated what he means by this, but he must have had in mind an
exact mapping of the molecular motion in one system onto that of another
system if the systems are in corresponding states. A much later interpretation
of Kamerlingh Onnes’s intention, in a book by his former student Kuenen
(1907, pp. 144-147) supports this. In modern terms: suppose a movie is made
of the molecular motions in one fluid. Then, after setting the initial positions
and speed of the molecules, choosing the temperature and volume of a sec-
ond fluid appropriately, and adjusting the film speed, a movie of the molec-
ular motion in a second fluid can be made to be an exact replica of that in
the first fluid.

Certainly this argument, which uses none of the insights of statistical
mechanics, imposes far more stringent conditions on molecular motion than
are necessary for the validity of a law of corresponding states. Moreover,
although Kamerlingh Onnes claims that this derivation follows from mechan-
ics with no input from the Van der Waals equation, this does not appear to be
quite true. First of all, the assumption of a molecular volume ascribed to mol-
ecules considered as elastic hard spheres is one also made in the derivation of
the Van der Waals equation. Kamerlingh Onnes’s argument, however, does
allow for density dependence of the excluded volume. The trickiest part, how-
ever, is the scaling of the ‘absolute molecular attraction’ A. From the way
Kamerlingh Onnes does this, it is clear that he assumes that A/ V? has the
dimension of a pressure. Thus, implicitly, he adopts the attractive term used
by Van der Waals.

None of this criticism diminishes the merit of Kamerlingh Onnes’s
attempt at founding the law of corresponding states on attributes of the
molecular interaction and on molecular mass and motion, instead of on a
particular form of an equation of state. In the last part of his paper, more-
over, Kamerlingh Onnes makes an extremely useful extension of the princi-
ple of mechanical similarity to include viscosity. Kamerlingh Onnes’s quest
would be resumed in the middle of the 20th century, after a deeper under-
standing of intermolecular forces was obtained.
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3.5 Empirical scale factors

Originally, the principle of corresponding states was tested by making fluid
properties dimensionless through the use of either the critical parameters, or
the molar gas constant R and the parameters # and 4. The first method
requires commitment to an unavoidably inaccurate equation of state based on
two molecular parameters. Either method suffers from a loss of accuracy due
to the fact that the reduction parameters are generally far less well known
than the fluid properties to be compared. Kamerlingh Onnes circumvents this
problem by making graphs of measured fluid properties coincide through the
use of two empirical scale factors, a method to be extensively used by him in
subsequent years for pure fluids as well as for fluid mixtures. A set of P-V/
isotherms is plotted on a double logarithmic scale for each of two fluids. By
superimposing and shifting the plots so as to make them interlace, empirical
scale factors are obtained for pressure and volume. Around 1900, Kamerlingh
Onnes and his collaborators used different variants of this method, gener-
alizing it to fluid mixtures, see Chapter 11. As narrated by Kipnis ez al. (1996,
p. 236), in 1896 the French high-pressure expert Emile Amagat, whom we will
encounter in several chapters of this book, devised an ingenious optical pro-
jection method for superimposing grids of P-V isotherms for pairs of fluids.
Amagat noted that the principle did not apply universally, but was valid in
classes of related substances.

An interesting application, again by Kamerlingh Onnes, was the wedding
of the principle of corresponding states to polynomial representations of P-V’
isotherms. In the 1880s the deficiencies of the Van der Waals equation were
quite well known. Kamerlingh Onnes was beginning to produce accurate
P-V data for several fluids in his laboratory, and he did not like the idea of
representing those good data by an inadequate equation of state. Instead,
he experimented with describing the data along isotherms by series expansion
of the PV product in terms of the density. He called the coefficients in the
expansion virial coefficients. The word virial (from the Latin vis, genitive viris,
which means force) is taken from Clausius’s exact virial theorem, which
relates the average kinetic energy of a system of moving molecules to the
average of the inner product of intermolecular force and intermolecular

distance.
The virial expansion, as it is presently used, is given by
PV=RT[1+B(DIV+ DIV + ..] (33)

with the virial coefficients B, C...still functions of temperature. Kamerlingh
Onnes (1901b) used an expression akin to Eq. (3.3). He expanded the prod-

uct PV, retaining only as many terms as he needed for practical purposes,
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and omitting some of the intermediate powers. Thus, in the 1901 paper, he
used the powers 1, 2, 4, 6 and 8. Allowing five adjustable parameters per
isotherm, instead of two molecular parameters for the entire data set, obvi-
ously must lead to a much more accurate representation of the data. This
accuracy, however, comes at a high price: the loss of an underlying molec-
ular model and its predictive power, and the need for additional numerical
interpolation between the representations of the individual experimental
isotherms.

Kamerlingh Onnes (1901b) dealt with these difficulties in the following
way. He used the accurate P-V-T data published by Amagat for the gases
carbon dioxide, nitrogen, oxygen and hydrogen in a range up to a maximum
of 3000 atmospheres. The data were brought into reduced form by using the
known critical pressure and temperature for each of the fluids. Kamerlingh
Onnes represented each of the reduced virial coefficients as a function of
reduced temperature, using four adjustable parameters for each of the five
virials. The result is a 20-term function of reduced and temperature that rep-
resents the entire experimental data set for the four fluids and can be used for
interpolation. For these reference fluids, the representation was shown to be
accurate to a few tenths of a percent at low pressures, increasing to several
percent at the highest pressures. There was a problem with representing states
of carbon dioxide close to saturation. The systematic deviations are chiefly
due to departures from the law of corresponding states, and partly to uncer-
tainties of the critical parameters.

As reliable data for more diverse fluids became available, however, it
became evident that the validity of the law of corresponding states was lim-
ited to fluids that were similar in molecular structure. A big divide, for
instance, occurred between polar and non-polar fluids. Simple non-polar
fluids, such as the noble gases and air constituents, followed the principle
of corresponding states to the extent that departures did not greatly exceed
the then-available experimental accuracy. Polar fluids such as water and the
alcohols displayed what was known, in Van der Waals’s time, as association.
They have an anomalously dense vapor phase, which was ascribed to for-
mation of double molecules. Such substances showed large departures from
the law of corresponding states, if compared with non-polar fluids. The
critical ratio P.V/RT,, for instance, is more than 20% lower for water than
it is for argon. Van der Waals and his contemporaries labeled those fluids
‘anomalous,” and accepted that the Van der Waals equation would not
apply to such fluids.

32 THE LAW OF CORRESPONDING STATES



3.6 The principle of corresponding states as the foundation for a molecular theo-
ry of phase separation of fluid mixtures

In the later part of his first Academy presentation on the law of correspon-
ding states, Van der Waals (1880a) not only speculates about phase separation
of fluid mixtures but also presents some experimental results of compression
of carbon dioxide mixed with air (see Ch. 4.2). Although his theory of mix-
tures would still be a decade in the making, he makes some profound state-
ments in 1880. Thus, he rejects the picture underlying Dalton’s law that the
components of a mixture behave as if the other components are not there.
On the contrary, says Van der Waals, in the homogeneous phase the mixture
behaves as if it is one fluid. He mentions the possibility of describing a mix-
ture of constant composition by means of two constants 2 and & which are
dependent on the composition. This correspondence between a mixture of
constant composition and a pure fluid is the key idea that will lead him to
his 1890 theory of mixtures. Ch. 4 describes Van der Waals’s theory of mix-
tures and the role the law of corresponding states played in its formulation.

3.7 The principle of corresponding states in the 20th century

3.7.1 Two-parameter corresponding states. The principle of corresponding
states, though of limited validity, has been of lasting importance throughout
the 120 years since it was first invented. It makes it possible to estimate the
thermodynamic properties and the viscosity of a fluid over the entire range of
density and temperature on the basis of a few data points (plus the ideal-gas
heat capacity, usually very well known from spectroscopy). Knowledge of the
properties of a well characterized reference substance is a prerequisite.

Fundamentally, the principle is based on the assumption that, in addition
to the universal gas constant, only two properly chosen parameters are need-
ed to make fluid properties dimensionless. Obvious choices for these two
parameters were two of the critical parameters, or two molecular constants 2
and b, an energy and a size parameter not necessarily tied to a particular
equation of state. The Dutch School was well aware that the choice of
parameters is arbitrary, and consequently introduced the idea of experimen-
tal scale factors around 1900. All these two-parameter applications are essen-
tially equivalent, and conversions from empirical to critical or to molecular
scale factors are straightforward. Which choice to make is a matter of expe-
diency, depending on which scale factors are the best characterized, and on
the particular application at hand.

An important new application of the principle of corresponding states
originated from a deepening understanding of intermolecular forces, which
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began in the 1920s. First proposed by Jones (1924) (who later changed his
name to Lennard-Jones), the intermolecular potential ¢(7), with » the dis-
tance between the centers of two molecules, is assumed to be spherically
symmetric. It is composed of a steep repulsion at short distance, and an
attraction over a somewhat larger range. The empirical repulsive term varies
as the inverse of a high power of the distance » between the centers of a pair
of molecules, a repulsion somewhat softer than that between hard spheres.
Values between 9 and 15 have been experimented with, but the value 12 is
used most often for the sake of mathematical simplicity. The attraction varies
as the inverse sixth power of 7, as follows from theoretical considerations:

o(7) = [(7o)'? - (715)°). (3.4)

This equation contains two parameters characteristic of individual sub-
stances, namely the distance ¢ at which the interaction potential changes
sign, and the energy ¢ which represents the depth of the potential well.

As pointed out by De Boer and Michels (1938), Pitzer (1939), and Guggen-
heim (1945), such a description of molecular interaction in terms of a uni-
versal semi-empirical two-parameter intermolecular potential leads, under
certain restrictions, to a principle of corresponding states in terms of the
molecular force field. One such restriction is the additivity assumption: inter-
actions between more than two molecules can be written as the sum of pair
potentials. Another is that the interactions can be described in terms of clas-
sical mechanics, an assumption that is violated for light molecules and at low
temperatures.

In the middle of the 20 century, thermodynamic and viscosity data were
used extensively to determine two-parameter molecular force fields, very
much in the spirit of Van der Waals and Kamerlingh Onnes. Alternatively,
the Lennard-Jones potential was used to predict these properties. An example
is the paper by Rowlinson and Townley (1952) representing to within a few
percent the second virial, viscosity and diffusion coefficients of six pure gases
and thirteen of their binary mixtures on the basis of the Lennard-Jones 6-12
potential.

This method was used until, predictably, it was found that intermolecular
potentials require more than two parameters to be accurately described.
Towards the end of the 20t century, for small molecules, intermolecular
potentials are beginning to be developed from quantum mechanics. These a6
initio potentials are not universal, and the principle of corresponding states
played no role in their development.

3.7.2 Empirical scale factors. This booK’s author used the method of two
empirical scale factors, introduced by Kamerlingh Onnes, when testing the
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(limited) validity of the law of corresponding states for argon and xenon. See
Levelt (1960). Beenakker and Van Eynsbergen (1968) modified the method
by plotting iso-Z lines in the log P, log 7" plane, where Z is the dimension-
less quantity PV/RT. The graphs for two different substances can be brought
into coincidence by linear shifts of the plots. They found that this could be
done to within about 1% for the fluids argon, xenon, nitrogen and methane
and suggested that the method could be used for viscosity as well.

In the spirit of Kamerlingh Onnes (1881), Kestin and collaborators (1972,
1977) showed that two-parameter scaling can be simultaneously applied to
the second virial coefficient as well as to the viscosity and diffusion coeffi-
cients of dilute gases, in which interactions between more than two particles
can be neglected. The gases they studied include the noble gases, non-polar
diatomic gases and many of their mixtures. In the dilute gas, use of the two-
scale-factor principle of corresponding states results in an accuracy approach-
ing that of the best data (0.1%). It was found, however, that the scale factors
calculated from critical parameters differ from those found for the dilute gas
phase, indicating departures from the principle of corresponding states on
the level of 1% in the Z-factor, consistent with conclusions by Levelt (1960)
and by Beenakker and Van Eynsbergen (1968).

3.7.3 Generalized corresponding states — acentric factor. A fruitful idea with use-
ful and sometimes profound ramifications has been the generalization of the
law of corresponding states to more than two parameters. The basic idea is the
following: if additional features are present in the molecular interactions, such
as departures from sphericality, or a dipole moment, then systematic depar-
tures must be expected from corresponding states as defined by the noble
gases. In certain cases, these departures can be represented in terms of a third
parameter. One example has been the so-called acentric factor , introduced
originally as an empirical parameter by Pitzer ez al. (1955) to describe the
departures from ‘noble-gas’ corresponding states that arise when the principle
is applied to larger globular molecules. The Lennard-Jones potential is not
centered on the molecular center, but is shifted outwards. Interactions
between polar molecules involve more complicated non-central potentials.

The acentric factor of a fluid of multi-atomic molecules is seldom known
a priori; in practice, it is estimated from easily accessible properties, such as the
slope of the vapor pressure curve at a given distance from the critical point. Its
value is now known for multitudes of industrial fluids, and correlations based
upon this parameter abound in the chemical processing industry and in com-
mercial data bases. De facto, it functions as a third parameter in cubic equa-
tions applied to fluids composed of multi-atomic, non-spherical or even polar
molecules.
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3.7.4 Quantum-mechanical corresponding states. At the other end of the spec-
trum from empirical to fundamental is the idea that guantum effects must
cause departures from corresponding states. Kamerlingh Onnes and Keesom
had detected appreciable departures from corresponding states in the gas
phase for helium and hydrogen. In footnote 517 of their encyclopedia chap-
ter on the equation of state, Kamerlingh Onnes and Keesom (1912) suggest
that the Planck hypothesis, the quantization of phase space in volumes of size
h, should have implications for the equation of state. Byk (1921) introduced
the dimensionless Planck constant, A = 4/ [(/eTC)”2 M7 (VC/N)IB], as a third
parameter in the dimensionless free energy. Departures from corresponding
states must be expected if the reduced Planck constant is not negligibly small.
Molecules of low molar mass M and low critical temperature, such as the
helium isotopes, hydrogen, deuterium and even neon, do have sizable Planck
constants.

Jan de Boer and Antonius (Teun) Michels (1938), at the physics depart-
ment of the University of Amsterdam, proposed making the Planck constant
dimensionless by means of the molecular parameters ¢, ¢ and the molecular
mass 7. The dimensionless quantum parameter A*, known in the English
literature as the De Boer parameter, is defined as A* =4/ ¢ (me)"?. The De
Boer parameter is small for most gases, but it is greater than unity for heli-
um-3, helium-4, hydrogen, deuterium and tritium, leading to considerable
departures from corresponding states. De Boer (1948a), and De Boer and
Lunbeck (1948¢) ordered many reduced properties of the light gases as func-
tions of A*. In the tradition of Kamerlingh Onnes, De Boer and Lunbeck
(1948b) predicted the critical parameters and the vapor pressure of helium-3
before these properties were measured. In the absence of quantum effects, the
helium isotopes should have the same critical properties; in reality, the criti-
cal temperature of helium-4 equals 5.19 K, whereas that of helium-3 equals
3.32 K. Lunbeck (1951) also estimated the triple point and critical point val-
ues of the hydrogen isotopes HD, HT, DT, and T,.

3.7.5 Chain molecules. A measure of the validity of the principle of correspon-
ding states is the value of the critical compressibility factor Z. = P.V/RT.. For
the heavy noble gases, this factor is close to 0.29. For the helium isotopes, it is
slightly over 0.30. For a series of normal alkanes, Z, decreases from 0.288
(methane) to 0.262 (pentane). The chain length is an obvious candidate for a
generalized principle of corresponding states. Engineering applications abound
— see, for instance, Beret and Prausnitz (1975).
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3.8 Outlook

The principle of corresponding states and its generalizations have provided a
practical foundation for thermodynamic and transport property predictions
in the chemical process industry throughout the 20t century. Over large
ranges in temperature and density, it is accurate to about 1%, but only with-
in a group of related substances, such as the heavy noble gases, or lower-
weight diatomic molecules such as air constituents.

The principle plays a role in several of the following chapters. Foremost,
in the next chapter, is Van der Waals’s generalization of the principle in order
to obtain a theory of fluid mixtures. The Leiden physicists preferred the prin-
ciple to the use of the Van der Waals equation. Thus Verschaffelt neatly
invoked corresponding states to estimate the effects of impurities on critical
behavior, see Ch. 10.16.2 and 11.4.6.
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4. The theory of mixtures — Van der Waals

4.1 Early attempts at understanding mixture phase behavior

Van der Waals’s achievement, the formulation of the theory of mixtures,
must be appreciated within the context of the state of knowledge in the
1880s. For gaseous phases, it was fairly obvious how to generalize Boyle’s law
to mixtures. As early as 1793, John Dalton (1766-1844) had postulated that
the pressure in a volume V' simply equals the sum of the partial pressures: the
ideal-gas pressures P, exerted by each of the components i in the absence of
the others.

P=3Y P =3SunRTIV (4.1)

with 7; the moles of component i. This principle was generally accepted.

In the 19t century the interest in liquid phases was driven by the design
of distillation processes for separation of fluid mixtures. If a liquid mixture
of given mole fraction is brought to the boiling point, the more volatile
components will be enriched in the vapor phase, and the less volatile ones
will remain mostly in the liquid phase. The question was thus what ‘partial
pressure,” in the sense of Dalton’s law, to ascribe to a component in the
vapor phase when the mole fraction of the component in the liquid is
given. Francois Marie Raoult (1830-1901) proposed the law that carries his
name. If a non-volatile, non-ionic solute is added to a solvent, so that its
mole fraction in the liquid is x, then the vapor pressure of the solvent is
lowered by

(Po-P)IPy=x (4.2)

with P the vapor pressure and x the mole fraction of the solvent at the given
temperature.

Thus, the vapor pressure of the solvent is lowered by a fractional amount
equal to the mole fraction of the solute. This is one example of a colligative
property, a dilute-mixture property that is independent of the nature of the
solute. Raoult formulated this law in 1886 on the basis of careful experiments
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by himself and by others, performed since the middle of the 19t century. Van
't Hoff, independently, gave a thermodynamic proof in the same year. Ch.
1.2 will give more detail about Van 't Hoff’s contributions to the topic of
colligative properties.

If Raoult’s law is grossly extrapolated to solute mole fractions from 0 to 1,
it can be applied to mixtures of two liquids — if the two partial vapor pres-
sures are then added according to Dalton’s law, a total vapor pressure results
that interpolates linearly in liquid mole fraction from the vapor pressure of
the first component to that of the second.

Towards the end of the 19th century, however, there was a sufficient
amount of experimental information available to know that Raoult’s law,
although always valid at low mole fraction of any (nonionic) solute, was
seldom valid at all mole fractions, or for all solutes. Departures from lin-
earity of the partial and total vapor pressures were encountered often. Thus,
for a fixed temperature, the system water-alcohol, with which humanity has
had ample experience, was known to have a maximum in the vapor pres-
sure at around 96% alcohol by volume. At this point, vapor and liquid
have the same mole fraction, so that 96% alcohol can be purified no fur-
ther by distillation alone. Such points are called azeotropic — this word is an
early 20th century concoction from the Greek, and means ‘not changing
when boiling.’

The generalization of Raoult’s law to all mole fractions must also fail when
one component is above its critical point. In that case, that particular com-
ponent, when pure, does not exist in two phases, and therefore Aas no vapor
pressure.

Although not universally valid, Dalton’s ideal-gas law for vapor mixtures,
combined with Raoult’s law for vapor pressures of liquid mixtures, formed a
framework for many experimenters trying to understand how mixtures sepa-
rate into two phases. Not knowing how to reconcile the separate treatment of
vapors and liquids with the idea of continuity of states, however, left them
baffled and confused when trying to explain experimental results.

4.2 Andrews, Cailletet, and Van der Waals — the liquefaction of gaseous mixtures

Andrews (1875) performed some early experiments with a mixture of carbon
dioxide and 11% of air by volume. He noted that the presence of air brought
down the critical temperature considerably. Five years later, both Van der
Waals and Cailletet reported similar experiments in this and other mixtures.

In the first of his two Academy presentations on corresponding states, Van
der Waals (1880a) was beginning to think about phase separation of mixtures
(§21 — §25). Contrary to Dalton’s view that each of the components acts in
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the available space as if the other were not there, he strongly argued to con-
sider the mixture as one substance. Thus, the P-V isotherms of air in the
homogeneous region look just like those of a one-component fluid, ‘so that
one could almost forget that air is a mixture.” The values of 2 and & for the
mixture must depend on the mole fraction. This insight is the seed from
which Van der Waals’s theory of mixtures will grow.

Van der Waals then expressed the opinion that for each value of the mole
fraction, the critical conditions should depend on z and 4 in the same way as
is the case for a one-component fluid. This is one place where his intuition
did not serve him well, and a decade passed before he published the correct
way to find the critical point of a mixture. Another statement towards the
end of this paper ‘all substances can mix if the pressure is high enough’ suf-
fered the same fate. In gas-gas equilibrium, for instance, the topic of Ch. 8,
two dense gas phases refuse to mix, no matter how high the pressure.

Van der Waals (1880a) wrestled for several pages with the problem of phase
separation of a mixture, recognizing that this process is quite different in a
mixture than in a one-component fluid because the more volatile component
will be enriched in the vapor phase. He based his comments on experiments
he had performed in his own laboratory on mixtures of carbon dioxide with
air. At room temperature in moderate climates, carbon dioxide is below its
critical point of 31°C, and is readily liquefied when compressed, but the sec-
ond component, air, is far above its critical point. For a mixture of nine parts
carbon dioxide and one part air, Van der Waals found that the critical point
is lowered by about 6°C below that of pure carbon dioxide, which is consis-
tent with the drop in critical temperature noted earlier by Andrews. The mix-
ture began to condense at a pressure close to the vapor pressure of pure CO,,
but it took a pressure of 95 atmospheres to fully liquefy the mixture at con-
stant temperature. The lower the temperature, the higher was the required
pressure. This is in contrast with the vapor-liquid state of a one-component
fluid, for which the vapor pressure remains constant as long as two phases are
present. Also, the vapor phase always disappears at a lower pressure, the lower
the temperature. It is obvious that the condensation of the mixture takes
place in a way quite different from that of a pure fluid.

Louis Paul Cailletet (1832-1913) pioneered the heavy-walled glass tubes
that are named after him. They were filled with a gas, inverted, and dipped
in liquid mercury. Applying external pressure to the mercury led to com-
pression of the gas. The occurrence of a second phase could be directly
observed. Cailletet had already made a name for himself in 1877 by liquefy-
ing the ‘permanent gases’ oxygen and nitrogen in such tubes. After cooling
the tube and rapidly expanding the gas he saw the formation of a mist of
droplets.
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Cailletet (1880a,b) independently reported experiments on the condensa-
tion of mixtures of carbon dioxide and air. The more air was added, the more
pressure was needed to liquefy the mixtures. For instance, Cailletet found
that at ambient temperature a mixture of equal volumes of carbon dioxide
and air resisted condensation at pressures of up to 400 atmospheres. A mix-
ture of five parts carbon dioxide and one part air, on the other hand, pro-
duced a liquid phase under modest compression at temperatures below 20°C.
On further compression of the two-phase system, however, Cailletet noted to
his surprise that at pressures between 150 and 200 atmospheres the meniscus
separating the two phases became hazy and disappeared. It did not reappear
on further compression.

If Cailletet’s homogenized high-pressure phase was now slowly expanded,
a thick mist appeared in the tube and a meniscus was formed. Cailletet
repeated these experiments at temperatures between 5 and 19°C, with essen-
tially the same results. Only the value of the pressure at which the meniscus
reappeared varied, from 132 atmospheres at 5.5°C to 110 atmospheres at
19°C.

One might argue, said Cailletet, that the meniscus had not really disap-
peared, but that it had become invisible because the refractive index of the
compressed air had become equal to that of the condensed carbon dioxide.
In that case, however, the meniscus should become visible again at higher
pressures, beyond the point where the refractive indices of the two phases
cross over, but definitely this did not occur.

Cailletet was of the opinion that the liquid and the gas ‘had dissolved into
one another’ forming a homogeneous phase. This terminology is the same as
used by other scientists of that time for describing a critical-point phase tran-
sition. According to the phase rule of Gibbs (Ch. 4.3), however, a binary
mixture of given mole fraction has one critical point, not a series of critical
points at different temperatures, so Cailletet’s suggestion cannot be correct.

Van der Waals’s (1880a) speculations have a lack of clarity similar to those
of Cailletet. He described the isothermal condensation of his 9:1 CO, — air
mixture as beginning with a liquid phase that is almost pure CO, and a
vapor phase that contains a large fraction of air. As the volume is decreased
‘the liquid accepts more air, while the vapor accepts more CO,. The pressure
increases, and finally the mole fractions of the two parts becomes equal again
and the space is filled homogeneously.” (See §23). This wording appears to
describe a critical-point phase transition, which cannot be the case except by
unlikely accident. Van der Waals also struggled to find an equivalent of the
Maxwell rule: “The theoretical isotherm will in this case not be intersected by
a straight line parallel to the volume axis, but by a curve.” However, he is
clearly not yet able to find the form of this curve.
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In addition, Cailletet and Van der Waals unknowingly experienced exper-
imental problems. Neither scientist appreciated how long it would take for
a fluid mixture to fully equilibrate in a tall tube of the kind they used. Only
around 1890, the first reliable experiments in compressible fluid mixtures
would become available in Kamerlingh Onnes’s laboratory.

Furthermore, there were conceptual problems. Although Van der Waals’s
equation of state had given a molecular basis for understanding Andrews’s
experiments on pure carbon dioxide, it was not adequate to explain the con-
densation of fluid mixtures. Gibbs’s theory, even if known to Cailletet, would
not have helped him understand his experiments in condensing fluid mix-
tures. Although Gibbs’s work was known to Van der Waals, it took him
another ten years to fashion a practical understanding of the condensation of
a mixture from Gibbs’s principles.

Finally, the experimenters could not have known that their choice of a
mixture of carbon dioxide and air was unfortunate: it displays a type of phase
behavior that would not be properly understood until 1905 (Ch. 7, 8).

4.3 Gibbs and the equilibrium of heterogeneous systems

Shortly after Van der Waals (1873) defended his doctoral thesis, Gibbs (1876,
1878) produced his papers on the equilibrium of heterogeneous substances,
including mixtures with both fluid and solid phases. He wrote these papers in
splendid isolation at Yale College, at a time when the young United States
had little or no interest in matters of lofty scientific theory. The more amaz-
ing and awesome is the perfection of Gibbss work. It has required no correc-
tions since it was published, and remains to this day the foundation for the
study of phase separation. The underlying principles are few, and rigorous.

Gibbs’s work is based on the concept of thermodynamic stability. In order
to be stable against separation into two phases, the thermodynamic poten-
tials of a homogeneous phase have to be convex functions of their natural
variables. This implies conditions on the curvature of the surface, which
Gibbs works out for the various thermodynamic potentials.

For a one-component fluid, Gibbs’s own preference is for the U(S, V) sur-
face, with U the energy, V the volume, and S the entropy, and with the dif-
ferential relation U = T dS — P dV. The partial derivative of the U(S, V) sur-
face with respect to S equals the temperature 7" and that with respect to
volume equals the negative of the pressure P. If a tangent plane is construct-
ed at any point on an U(S, V) surface, its intercept with the U-axis, U — TS
+ PV, defines the Gibbs energy G.

Stability at the tangent point requires that the surface must lie above the
tangent plane everywhere. There are two ways this condition can be violated.
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First, the surface may lie below the tangent plane everywhere around the tan-
gent point, or only in certain directions. Then the tangent point is unstable.
Second, the surface, while still locally stable around the tangent point, falls
below the tangent plane somewhere else. The system is now globally unstable,
and will split into two different phases. At a critical point a limit of local sta-
bility is reached.

Below the critical point, an analytic mathematical surface develops a fold,
called a plair (akin to ‘pleat’, not to ‘braid’) by the Dutch School. On an ana-
lytic surface, this plait is entirely smooth, never sharply creased. The U(S, V)
surface has the interesting property that a tangent plane rolling along the sur-
face touches in two points on opposite sides of the plait — these points the
Dutch scientists call connodes. Connodes have the same pressure, temperature
and Gibbs potential, because they share a common tangent plane. The line
connecting these points is called a e line, and the system can lower its ener-
gy U by following the tie line instead of the surface. The system splits into
two coexisting phases of different density, a vapor and a liquid, represented
by the two points where the plane touches.

We recall that the essential concept of equality of the molar Gibbs poten-
tial (which equals the chemical potential in a one-component system) in
coexisting phases had been missing from Van der Waals’s 1873 thesis. In 1877,
after Gibbs’s work had appeared in print, Maxwell introduced implicitly the
equality of the chemical potential in the coexisting phases of a one-compo-
nent fluid by his equal-area rule. This yielded a prescription for cutting off
the unphysical Van der Waals isothermal P-V loop, as discussed in Ch. 2.4
(see Figs. 2.2 and 2.3).

The plait of an analytic mathematical surface is bounded by the locus of
the connodes, which the Dutch scientist call the connodal, or binodal, but
which is presently called the coexistence curve. A plait ends at a point where
the tie line shrinks to zero. Such a point was coined a plait point by Korte-
weg (1891a), but was usually referred to as a critical point shortly after.

Plaits are properties of analytic mathematical surfaces. Since part of the
surface inside the plait is thermodynamically unstable, a plait, strictly speak-
ing, cannot exist in a real fluid, nor could it be the result of an exact theory.
Therefore, the U(S, V) surface of a real fluid will not have a plait, but below
the critical temperature, it will follow the ruled surface formed by the tie
lines connecting the coexisting phases, as traced out by the rolling tangent
plane.

In fluid mixtures, the chemical potential y; of component i is defined as
the derivative of the Gibbs energy of an open system with respect to the
amount 7; of component i, while pressure, temperature, and amounts of the
other components are kept constant. If the system consists of several phases,
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these can be in equilibrium with each other only if, in addition to pressure
and temperature, the chemical potentials y; of each of the components are
equal in the two phases. Properties equal in coexistent phases are sometimes
called field variables, following Griffiths and Wheeler (1970). A homogeneous
phase exists over a range of field variables.

Gibbs introduced the concept of degrees of freedom f, with f the number of
independent variables that can be varied within certain limits without the
homogeneous phase becoming unstable.

Gibbs is the originator of the seemingly simple, but very powerful phase
rule:

f=c-p+2 (4.3)

The rule follows straightforwardly from counting the number of compo-
nents ¢, the number of phases p, the total number of independent variables,
and the number of relations between them (equalities of chemical potentials,
pressure and temperature in coexistent phases). This simple law makes it pos-
sible to grasp and classify the bewildering variety of phase behaviors occur-
ring in mixtures. The following examples illustrate the power of the phase
rule, and serve to introduce a number of concepts and terms encountered in
the rest of the book.

For a one-component fluid, ¢ = 1, a homogeneous phase, p = 1, has two
degrees of freedom, f = 2, for instance pressure and temperature. In two phases,
the fluid has only one degree of freedom: the system is monovariant, so that
the choice of the vapor temperature fixes the vapor pressure. In three phases,
there are no degrees of freedom left, so that the liquid-vapor-solid triple point
is an invariant point. A special point is a critical point. Here, the bivariant
homogeneous phase has to obey two criticality conditions (see Ch. 2.4), and
thus two degrees of freedom are lost, resulting in the invariant critical point.
Alternatively, on the monovariant coexistence curve, the densities of vapor and
liquid must be equal to each other, yielding the invariant critical phase.

For a binary mixture, with ¢ = 2, a homogeneous phase has three degrees of
freedom, a two-phase system has two, and a three-phase system has one. In the
bivariant two-phase system it may happen that the two coexisting phases have
the same mole fractions. As mentioned in Ch. 4.1, this phenomenon goes by
the name of azeotropy. This additional condition makes the azeotropic state of
the two-phase binary mixture monovariant. Another new feature is the possi-
bility that two different liquid phases coexist. These phases, in turn, can
become identical along a liquid-liquid critical line. Liquid-vapor or liquid-lig-
uid criticality imposes two constraints, the two criticality conditions, on the
homogeneous phase; thus, one degree of freedom is left, and a monovariant
critical line results. In a binary mixture, liquid-liquid-vapor, liquid-vapor-solid
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and liquid-liquid-solid equilibria are monovariant. In field space, such three-
phase equilibria take place along triple lines, usually called #hree-phase curves.
For a binary mixture, it is possible for four fluid phases to coexist, resulting in
an invariant quadruple point in field space.

In a ternary mixture, all the above dimensionalities are stepped up by
one unit, so the homogeneous phase has four, two-phase regions have
three, three-phase regions have two, and critical surfaces of various kinds,
such as vapor-liquid(1), liquid(1)-liquid(2), have two degrees of freedom.
Five-phase coexistence is possible at a non-variant quintuple point. In
a ternary mixture, it is possible for three phases to become critical with
respect to each other simultaneously if a vapor-liquid and a liquid-liquid
critical point happen to coincide. Such a point is called a #ricritical point.
Since each critical point counts as a loss of two degrees of freedom start-
ing from a homogeneous phase, a tricritical point in a ternary system is
invariant.

A rich variety of possible phase behaviors in mixtures can be expected on
the basis of the phase rule. Gibbs’s edifice is fundamental, but abstract. In its
grandeur and austerity, it is somewhat forbidding. Its validity is all-encom-
passing, but the path to specific applications is not transparent. Gibbs’s
work, however, was little known or appreciated in Europe (and even less in
America) in the 19 century. The prevalent mode in Europe was that of
experimentation, particularly in France, but also in England and Russia.

4.4 The equation of Van der Waals for fluid mixtures

4.4.1 Historical setting. Maxwell and Van der Waals were among the few
who studied Gibbs’s (1873-1878) papers immediately after they appeared.
Nevertheless, after the formulation of the law of corresponding states in 1880
a decade passed before Van der Waals (1890) published another major piece
of work, his theory of mixtures. The reason for the long delay was that
Van der Waals’s young wife, the mother of his four children, succumbed to
tuberculosis in 1881. For Van der Waals, life had lost all taste, and it took
him many years to overcome his deep depression. In the mid-1880s, how-
ever, Van der Waals began what would become a long relationship with
his later Amsterdam colleague, the chemist Hendrik Willem Bakhuis
Roozeboom (1854-1907), then still a graduate student in Leiden. Van der
Waals was able to explain Bakhuis Roozeboom’s observations of phase
behavior and solid precipitation of gas hydrates on the basis of Gibbs’s phase
rule. See Kipnis et al. (1996), pp. 157-159, for a detailed account. In the
late 1880s, Kamerlingh Onnes’s plan to study fluid mixtures in his new lab-
oratory helped Van der Waals recover his scientific interest.
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We have already mentioned the mystifying experiments on phase behavior
in fluid mixtures that were in great need of an explanation. Most scientists
were not aware of the substance and power of Gibbs’s thermodynamics, but
Van der Waals was, and he had the essential tools: an equation of state incor-
porating molecular size and interaction, and the law of corresponding states.
During the most difficult years of his life, he solved the problem of phase
separation and criticality in fluid mixtures, which, in the words of Kipnis ez
al. (1996), p. 111, had escaped even Maxwell.

4.4.2 Molecular theory of a substance composed of two different species. On this
subject, a substantial paper by Van der Waals appeared in German (1890),
and in French (1891). It was also part of the second German edition of his
thesis, which appeared in two parts around 1900. Rowlinson (1988) included
the paper in the English translation of Van der Waals’s thesis.

Suppose two components, each one characterized by its own pair of Van
der Waals parameters, 4,, b, and a,, b,, respectively, are mixed in a specific
molar ratio x, where x is the mole fraction of the second component. Van der
Waals makes the crucial assumption that the mixture obeys the Van der
Waals equation with a new set of parameters, ,and &,, which depend on the
mole fraction:

(P+aJV)V-b)=RT (4.4)

where V'is the volume occupied by a mole of the mixture.

Thus the mixture at given mole fraction obeys the same two-parameter
Van der Waals equation of state as the two pure components. The pure com-
ponents as well as any mixture of fixed mole fraction obey a law of corre-
sponding states. This simple assumption is presently called a one-fluid model
for a mixture because it describes the mixture as a fictitious single substance.
Obvious as this generalization may seem to us presently, it was a veritable
breakthrough at the time. The Van der Waals mixture model made it possi-
ble to understand the phenomena accompanying the condensation of fluid
mixtures. It inspired the Leiden experimentalists. It would prove itself fully
equal to the task of producing the variety and complexity of fluid-mixture
phase behavior, which would only be explored fully in the fifteen years to
follow (Ch. 6-8, 11).

In order to progress from Eq. (4.4), it is necessary to give a prescription
for the calculation of 4, and &, from the z and & values of the two compo-
nents. In modern terminology, such relations go by the name of mixing
rules. Since these parameters should assume the respective pure-fluid values
at x = 0 and x = 1, quadratic interpolation formulae seem a sensible
assumption:
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(1-%)” 2, + 2x(1x) ay, + x” a,
(1-x)% by + 2x(1-x) by, + x° b, (4.5)

a

X

b,

Van der Waals and his collaborators often replaced the quadratic expression
for & by a simple linear one,

bx = (].’x) bl + X bz (4..6)

which is equivalent to assuming that &, = (4, + 6,)/2; this is the rule of the
arithmetic average for the mixing parameter in the excluded volume. Lorentz
(1881) derived the quadratic equations, Eq. (4.5), from the virial theorem and
found that the arithmetic average of the radii of the unlike molecules should
be used to calculate b,,. The radii are proportional to &', but averaging 4"
complicates the calculations for mixtures. As long as the component mole-
cules do not differ much in size, it is not overly important which form of
combining rule for & is used. As long as the size difference is not extreme, the
complexity of the phase behavior of compressible fluid mixtures arises prin-
cipally from the differences in attraction of the two components and the
mixture. Thus, in general, it is desirable to have flexibility in the choice of a
value of the attractive parameter 4;,, compared to those of the pure compo-
nents. Van der Waals did not commit to a specific combining rule for 4, in
his 1890 paper. Many calculations are simplified, however, if for this mixing
parameter the geometric-mean rule is assumed:

1/2

ay, = (ay-a) (4.7)

Van der Waals noted that this relation yields an important condition for
phase separation in the liquid phase (see Ch. 4.8.2), but found it unnecessar-
ily restrictive. Van Laar, however, used it throughout in his calculations of
binary phase diagrams (Ch. 7.5, 11.4.7). The geometric-mean assumption is
restrictive. For instance, mixtures with unlike #, and #, that have an interac-
tion parameter 4, stronger than the average of 2, and , are excluded by the
geometric-mean assumption.

Having set up his equation of state for the binary mixture, Van der Waals’s
next task was to deduce the conditions for criticality and phase separation.
The reader should not succumb to the temptation to calculate the critical
constants of the mixture from Eq. (4.4) by means of the criticality conditions
of the pure fluid, Eq. (2.3). This does not work, because the mixture has a
means of lowering its free energy that is not available to a pure fluid: it can
separate into two phases that differ not only in density, but also in mole frac-
tion. As the temperature is lowered, the mixture will, in general, separate into
two phases of different mole fraction well before it reaches the point at which
its compressibility would be infinite had it remained homogeneous.
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The next section will outline how Van der Waals went about the task of
finding mixture phase coexistence. It roughly follows Van der Waals’s paper
in the translation and notation of Rowlinson (1988). Van der Waals obtained
the mathematical principles from Gibbs and from the Amsterdam mathe-
matician Korteweg, whose work is the topic of Ch. s.

4.5 Helmboliz energy for a binary Van der Waals mixture

Van der Waals’s task was to construct an appropriate thermodynamic poten-
tial for a binary mixture and find the conditions for phase coexistence, sta-
bility and criticality.

A binary mixture has an additional variable, the mole fraction x. The molar
energy surface is now a function of three variables: U(S, V, x), and the visual-
ly appealing construction of a tangent plane rolling over the U(S, V') surface
no longer applies. Van der Waals proposed to use instead the Helmholtz ener-
gy A(V, x, T). Van der Waals cleverly reduces the problem to one in two inde-
pendent variables by considering the Helmholtz function at fixed tempera-
ture, phase equilibrium conditions requiring equality of temperature in the
first place. The isothermal Helmholtz energy is now a function of V and x
alone and can be visualized as a two-dimensional surface in three-dimension-
al space, analogous to the U(S, V) surface for a one-component fluid.

The form of the molar Helmholtz energy in analogy with Eq. 2.5, is read-
ily obtained by integrating the Van der Waals mixture equation of state with
respect to volume and by adding the Gibbs mixing term:

AV, x, T) =-RTIn (V-b) -a/V+ Rl [xInx+ (1-x)In(1-x)] (4.8)

Since x < 1, the mixing term is always negative, and has its lowest value,
-RT In2, at x = 1/2. Since it lowers the free energy, this term favors mixing,
especially at high temperatures. Eq. (4.8), together with the combining rules
and mixing rules for the mole-fraction dependence of #, and &,, Eq. (4.5),
defines the Helmholtz energy surface of a binary fluid mixture, apart from
some temperature-dependent contributions that do not affect the phase equi-
librium.

What remains to be done is working out a method for finding coexistent
phases and critical points on such a surface.

4.6 Double-tangent plane — coexisting phases

At fixed temperature, the equilibrium conditions for two coexisting phases are
that pressure, as well as the chemical potentials of each of the components,
must be the same in the two phases. These three properties can readily be

THE THEORY OF MIXTURES — VAN DER WAALS 49



derived from the isothermal Helmholtz energy, through the thermodynamic
relationships

(0AIQV), = -P
(0A/0x)y = v - vy
A - VI0AIQV), - x (0A/0x)y = Y1 (4.9)

Consider a point on the isothermal A(V; x) surface. The first two equa-
tions define a tangent plane, with pressure and chemical potential difference
defining the slope of the plane. The third condition defines the intercept of
the tangent plane with the A axis, which equals the chemical potential of the
first component.

If two points on the isothermal A surface have the same pressure and the
same chemical potential difference, their tangent planes are parallel to each
other. If these two planes have the same intercepts with the A axis, the tan-
gent planes must coincide. Thus, equality of pressure, temperature and
chemical potentials is equivalent with the existence of a common tangent
plane, just as in the case of the one-component U(S, V) surface. Likewise, as
the double-tangent plane rolls over the surface, the length of the tie line may
shrink to zero, and the plait ends in a plait point.

4.7 Stability of the mixture A(V, x) surface — the spinodal and the plait point

4.7.1 Taylor expansion. How does one know whether, and if so where, plaits
including regions of instability exist on a mathematical representation of a
thermodynamic surface, such as Van der Waals’s A(V,, x) at fixed temperature?
For the one-component fluid, the (mechanical) stability condition is that the
second derivative of the isothermal Helmholtz energy, (0°A/0V%) = (V K7)™,
must be larger than zero (Ch. 2.5). For A(V; x) a generalization to two vari-
ables is required. For this purpose, a Taylor expansion is performed for the
isothermal Helmholtz energy:

AWV, %) = AV, x) + (BAIOV), (3V) + (0A/0x), (5x) +
+ (1/2)(0°A10VP), (3V)* + (0°AIOVOx) (3V) (3x) + (1/2)(0°A/0x")y (3x ) +

+ (terms cubic in 3V 3x) +... (4.10)

The derivatives are taken at the point Vj, xy, and 8V = V' - V|, 8x = x - x.
For the isothermal Helmholtz energy to be locally stable at V;, x,, it may
not locally intersect the tangent plane in any direction. The tangent plane
is defined by the first three terms on the right side of Eq. (4.10). Thus sta-
bility requires that there may not be any real root if the sum of the next
three terms in Eq. (4.10), those quadratic in 3V and 3x, is set equal to zero.
This is guaranteed if the discriminant of the quadratic part is negative. The
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negative of the discriminant is called the Hessian A. Thus the stability
condition is

H = (0°4/0x), (0*A10 V7)., - (9°AI0Vdx)* > 0 (4.11)

If the Hessian is positive at the tangent point, the surface curves the same
way in all directions, and is said to have positive curvature. The surface, how-
ever, could still be be either concave or convex. The isothermal Helmholtz
energy surface, as required by thermodynamic stability, must be convex. This
requires, in addition, that

(0°A10V%). > 0 (4.12)
(0°A19x°) > 0 (4.13)

The first expression, Eq. (4.14), is that of isothermal mechanical stability:
the isothermal compressibility at constant mole fraction,

Ky, = -(1/V) @VIOP) ;.= (1/V) [(@°Al0V7) 1] (4.14)

must be larger than zero, just as in the one-component fluid. The second
inequality, Eq. (4.13), demands that the isothermal mixture at constant
volume must be materially stable, that is, the Helmholtz energy must be
lower than for nearby states of different mole fraction. In general, neither of
these two conditions is restrictive. The mixture might still fulfill these two
conditions even in the case that Eq. (4.11) is not obeyed and the curvature is

negative.
At a point where the Hessian happens to assumes the value zero:
(0°A10x%), (0°AIDV7), - (0°A10VOx)* = 0 (4.15)

the curvature of the surface changes from positive to negative, so that a limit
of stability is reached. The locus of points on the surface for which the Hes-
sian is zero is called the spinodal. On the spinodal, there are two equal roots
of the quadratic part of the expansion Eq. (4.10). Van der Waals (1890) lim-
its himself to the spinodal condition, Eq. (4.15), and does not discuss the
plait point at all. In the next chapter, we will see that at the plait point of the
binary mixture, a second condition must be obeyed, involving all third par-
tial derivatives of the isothermal Helmholtz energy, just as in the case of the
one-component fluid, Eq. (2.6).

As Gibbs has already shown, these two mixture criticality conditions
assume a more familiar and much simpler, but essentially equivalent form if
written in terms of the molar Gibbs energy G(P, 7, x), namely:

(0°Gl9x%) py = 0
(0°Gl0x") pr= 0 (4.16)
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Eqgs. (4.16), however, were not useful to Van der Waals, because the pres-
sure dependence of the Gibbs energy cannot be derived in closed form from
the Van der Waals equation of state. Thus, the binary-mixture criticality con-
ditions in the following chapter will be more complex ones based on the
quadratic and cubic forms in the Taylor expansion of the Helmholtz energy.

4.7.2 An exact expression for the spinodal. The spinodal plays a major role in
the work of the Dutch school. The reason is simple. The condition for the
spinodal, H = 0, is a local condition that could be evaluated in specific cases
with the mathematical means available at that time. The spinodal signals the
presence of a plait just as well as does the connodal. The connodal, however,
results from a global condition, and only exceptionally can it be calculated in
closed form.

The Appendix, §19 of Van der Waals’s (1890) paper, contains an important
result for the spinodal on the isothermal Helmholtz energy surface. The
expression is a relationship between volume and mole fraction, with the tem-
perature a parameter. It is of the fifth degree in the inverse volume, and con-
tains the first and second mole fraction derivatives of the mixture’s parame-
ters a, and b,. Evaluation of the expression requires a choice of combining
rules for these parameters. The expression simplifies considerably if the sec-
ond mole fraction derivative of either of the interaction parameters would
equal zero, for instance, if 4, is assumed to be a linear function of the mole
fraction.

Without doing exhaustive calculations, Van der Waals was able to draw
gold from this exact result for the spinodal (see Ch. 4.8.2, 4.8.3).

4.8 Plaits on the isothermal Helmboliz energy surface for binary mixtures

4.8.1 The transverse plair. If both pure components are below their respective
critical temperatures, the isothermal Helmholtz energy of each component,
according to the equation of Van der Waals, has two inflection points, see
Fig. 2.3. At sufficiently low temperatures, and when the unlike interaction is
not particularly weak, the isothermal Helmholtz energy of the mixture devel-
ops a vapor-liquid plait beginning at the two sides and running all the way
across the isothermal A(V, x) surface from x = 0 to x = 1. Van der Waals calls
this plait a zransverse plait because it is his custom to consider the volume as
the vertical, the mole fraction as the horizontal axis. By rolling a tangent
plane across the A(V, x) surface, the coexisting phases are found. If one of the
components is above its critical temperature, however, the plait will not run
all the way across the surface, and may end at a plait point somewhere in the
middle of the mole fraction range.
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4.8.2 The longitudinal plait. A most striking implication of the Van der
Waals mixture equation of state is the possibility of an additional phase split
in the liquid phase. Experimenters, who had long since given up hope that
the Van der Waals equation could adequately represent experimental data
regained interest in it because of this power of the mixture equation.

To find out whether this can happen, Van der Waals circumvents the
complex calculations that would be needed in the general case. He limits
himself to the state V' = 4, the close-packed liquid for which the pressure
is infinite, which is the lowest-volume state possible for the mixture of
mole fraction x. Since he has derived an exact expression for the spinodal
(Ch. 4.7.2), he simply asks whether the spinodal has any points in common
with the curve V' = b,. Interestingly, it turns out that this is only possible if
d*b Jdx* = 0. This condition is fulfilled if 4, is a constant or a linear func-
tion of x. For the values of x at which the spinodal meets the curve V' = 4,
an expression quadratic in x results

RTI[x(1 = %)] = d*(a /b )ldx’ (4.17)

Since 4, is at most linear in x, and 4, at most quadratic, the answer will
depend on the value of the parameter #;,. Van der Waals now asks for the
coincidence of the two points of intersection. That gives the x-value and the
temperature at which the plait first enters the physical V-x space at the
boundary V' = b,. Above this temperature, there will be no second plait on
the surface. Van der Waals calls this temperature the critical temperature of
complete miscibility. Complete miscibility of two liquids is possible only if 2;,
does not fall substantially below the average of 2, and 4,. It turns out that the
geometric-mean condition for 4, is the smallest value for 4,,, for which com-
plete miscibility (no second plait) at all temperatures is still possible. This
‘third critical temperature’ of the binary mixture plays an important role in

the work of Korteweg (Ch. 5) and of Van Laar (Ch. 7.5, 8.4 and 11.4.7).

4.8.3 The isothermal Helmholtz energy surface at three-phase coexistence. Van
der Waals (1890) enters into another quite interesting part of the paper in §7.
He discusses the case in which both a transverse and a longitudinal plait are
present on the isothermal Helmholtz surface, and are interfering with each
other. The longitudinal plait has to do with liquid-liquid (or high-density
fluid) phase separation — the alliteration of liguid and longitudinal may help
to keep the reader straight.

Inside each plait there are two branches of the spinodal curve, between
which the surface is unstable. The connodal (also called binodal, or isother-
mal coexistence curve) of the first plait may now cut the two branches of the
spinodal of the longitudinal plait, where the Hessian A equals 0, Eq. (4.15).
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Figure 4.1 An etching of a Helmholtz energy
model for a binary fluid mixture. The isother-
mal Helmholez energy surface A(V; x) is shown
from below, the positive 4 axis pointing into
the plane. The volume axis is vertical, the mole-
fraction axis horizontal. The surface has a trans-
verse vapor-liquid plait, and a longitudinal
liquid-liquid plait at small volumes. The two
plaits intersect, giving rise to three-phase coexis-
tence. Strings spanning the plaits connect coex-
isting vapor-liquid and liquid-liquid phases.
The tiangle of three-phase coexistence is
shown. (A few of the tie lines connect metastable
phases that lie above the triple-tangent plane.)
Copied from Van der Waals (1890), Fig. 3.

Between these two intersections, the liquid states of the first plait are unsta-
ble. Van der Waals’s article contains an etching of a Helmholtz energy surface
with three-phase coexistence (Fig. 4.1). The A axis is perpendicular to the
page, pointing inwards, and thus the surface is shown from below. The ver-
tical axis is the volume, with low-volume liquid states at the bottom and
high-volume gaseous states near the top. The horizontal axis represents the
mole fraction.

A transverse plait runs across the entire surface from left to right. It sepa-
rates a low-volume liquid phase from a high-volume vapor phase at all mole
fractions. On the part of the surface within the plait, the isothermal
Helmholtz energy is higher than it would be in the tangent plane, and there-
fore these states are globally not stable.

A second, longitudinal plait runs more or less vertical, and separates two
phases of different mole fraction in the low-volume liquid region. On the
surface inside this plait the Helmholtz energy is again higher than it would
be in the tangent plane.

A double-tangent plane can be rolled across the transverse plait, coming
from the left, for instance. The strings shown on the surface connect points
on the surface, at which the tangent plane touches as it rolls across the sur-
face. As the tangent plane proceeds from the left, its progression is stopped
when it touches a third point, to the right of the longitudinal plait. The tan-
gent plane now touches one vapor and two liquid states; the heavy black
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Fig. 4.2 A photograph of wooden models of isothermal Helmholtz energy surfaces for
binary fluid mixtures, used by Van der Waals in his lectures. Model (a) shows a partial
transverse plait terminating in a plait point. Model (b) shows a complete transverse
plait. Model (c), represented in Fig. 4.1, shows both a transverse and a longitudinal
plait, leading to three-phase equilibrium. Reprinted from De Boer (1974), with permis-
sion from Elsevier Science.

string indicates where this happens. Three fluid phases coexist at a triple
point. From the three-phase triangle, the tangent plane may either continue
its course along the transverse plait, or may follow the longitudinal plait. In
either case, the tie lines undergo a discontinuous change of direction. This
and two other models, which were made out of wood and used by Van der
Waals in his lectures, were still in existence in 1974, and photographed by De
Boer. See Fig. 4.2.

Van der Waals’s discussion of the interaction of two plaits played a big role
in Kamerlingh Onnes’s decision to start work on fluid mixtures, and inspired
his student Kuenen in the choice of systems he would study (Ch. 6).

4.9 Other significant results. In §6 of the 1890 paper, Van der Waals derives

important exact differential relations for the properties of coexisting phases
on the isothermal Helmholtz surface. By using the three conditions, equality
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of pressure and of the chemical potentials of each of the components, Eq.
(4.9), Van der Waals describes how, in principle, the pressure, volumes and
mole fractions of the isothermal coexisting phases can all be expressed in
terms of one variable, such as the mole fraction of one of the phases. As an
example, Van der Waals derives a useful exact differential relation for the
change of pressure as a function of the mole fraction x of one of the phases,
for instance the gas phase (subscript G):

[AV = Ax (0V5/0xc)p) dP = Ax H™" dxg (4.18)

Here A denotes the difference in the molar volume V or mole fraction x
between coexisting phases, and H is the Hessian, Eq. (4.11). An analogous
expression can be written for the change of mole fraction in the liquid phase.
Van der Waals uses these expressions to deduce the form of the isothermal
Helmbholtz energy surface. He uses only qualitative information, such as, that
the Hessian H is positive for stable phases, that the liquid volume is small with
respect to the vapor volume, and that the vapor volume is only weakly
dependent on the mole fraction. These are sufficient to prove that the vapor
pressure is an extremum when the mole fractions in the two coexisting phases
happen to be the same, the case of azeotropy. Note also that the isothermal
P-x coexistence curve must go through an extremum at the plait point, where
the Hessian is zero.

Van der Waals wisely refrains from actually trying to calculate properties
of coexisting phases, and for good reason. He knew from hard experience
that, even for one-component fluids, these properties cannot be derived
explicitly in closed form from the Van der Waals equation.

Several other aspects of mixture phase separation are treated in this sub-
stantial paper. For instance, S15 is devoted to the alteration of binary-mixture
phase equilibrium in the presence of external forces. Van der Waals gives
explicit results for the density and composition gradients arising in binary
mixtures due to gravitational forces.

4.10 Concluding remarks

Van der Waals’s ideas about stability, the role of tangent planes in defining
phase equilibria, and the use of models of thermodynamic surfaces were not
new. They can be found in Gibbss treatises (1873, 1876, 1878). Thomson
(1871) built a P-V-T space model on the basis of Andrews’s results, and
Maxwell (1875) experimented with a space model of Gibbss U(S, V') surface
of a one-component fluid. (For more detail, see Ch. 6.8). New, however, is
the tool Van der Waals offered for quantitative evaluation of such surfaces
and their plaits for binary fluid mixtures. Ch.5-8 will demonstrate how the
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Dutch School made use of the Van der Waals equation for mixtures in order
to discover the different types of phase equilibria that are to be found in
binary fluid mixtures.

In Van der Waals’s treatise, we see him stepping with confidence across the
free energy landscape, its plaits and tangent planes. An obvious question is
where Van der Waals’s knowledge about plaits on surfaces originated; his
paper gives only the slightest of hints. In Section s, in parentheses, he refers
to the end points of a plait as ‘the tacnodal points of Cayley” and, in a foot-
note, as ‘plait points’ according to Korteweg; no reference to the literature is
given. The German version of the paper has no references to any other sci-
entists either, not even to Gibbs, whose methods and notation Van der Waals
uses extensively. Incomplete referencing, however, is not an exception in the
case of Van der Waals’s publications. The presence of complete references
throughout the English translation of the doctoral thesis and the paper on
mixtures by Rowlinson is due to the diligence of the translator/editor, rather
than to the original author.

The French translation of Van der Waals’s theory of mixtures, published in
Archives néerlandaises (1891), provides a clue as to where Van der Waals’s
knowledge of the theory of plaits may have come from. In the same issue of
the Archives, there are two papers on the theory of plaits by the Dutch math-
ematician Korteweg. These papers form the topic of the next chapter.
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s. The theory of plaits on surfaces — Korteweg

5.1 Kortewegs origins

Diederik Johannes Korteweg (1848-1941) was born and raised in ’s Hertogen-
bosch, in the southern Dutch province of Brabant, one of five sons of a
judge. He carried out his high school studies at a special school preparing for
the military academy. Fascinated by mathematics, however, he chose to study
at the Delft Polytechnic instead, but once there, he quickly became discour-
aged by the technical subjects. Instead, for several years, he took courses of
mathematics and mechanics preparing him to become a high school teacher.
Once he started teaching mathematics and mechanics at a high school in
Brabant, he studied for the diploma that would give him access to university
studies, in a fashion not uncommon among the great scientists of the ‘Sec-
ond Golden Age’ in Holland.

During his years as a teacher, Korteweg began publishing scientific papers,
and also established contact with Van der Waals. Once he passed the univer-
sity admission exam in 1876, he studied mathematics for a year at the Uni-
versity of Utrecht, and then transferred to the newly founded University of
Amsterdam. There his ascent was meteoric. He obtained the doctoraal
(roughly a master’s degree) in January 1878, and, only half a year later,
defended his doctoral thesis with honors. His was the first doctorate granted
by the young university and, for lack of a department of mathematics,
physics professor Van der Waals acted as advisor and bestowed the degree.
The topic of the thesis was the propagation of waves in elastic tubes. His
inspiration came from physiological experiments on propagation of waves in
arteries, caused by the beating heart.

In September 1881, at the age of 34, Korteweg was appointed a profes-
sor of mathematics at the University of Amsterdam. He was elected tot
the Royal Netherlands Academy of Arts and Sciences (kNAW) in 1881, and
to the Holland Society of Sciences and Humanities (HMw) in 1886. He
voluntarily ceded his chair to his brilliant pupil, Luitzen Egbertus Jan
Brouwer, in 1913. See Van Dalen (1999).
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Diederik Johannes Korteweg
Copy of a sketch by the Dutch artist Jan Veth, kindly provided by Bastiaan
Willink, great-grandnephew of Diederik Korteweg.

The title of Korteweg’s inaugural address was ‘Mathematics as an Auxiliary
Discipline,” and the address contained numerous examples of the role of
applied mathematics in solving problems in science and statistics. Korteweg
lived by his conviction that mathematics has an important role to play in sci-
ence, as proved by his work in thermodynamics, kinetic theory and hydro-
dynamics. He is best known for the Korteweg-de Vries paper on the propa-
gation of soliton waves in a channel, which has received strong recognition
during the second half of the 20t century. Korteweg also studied the stress
resulting from the density gradients at an interface between two fluids, which
stress is named after him. A.J. Kox (2000) published a Dutch-language
account of Korteweg’s work at the University of Amsterdam, from which
much of the historical information presented here originates.
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This chapter will describe work by Korteweg that is less known: the math-
ematical foundation of the theory of plaits (folds) on analytic surfaces, and
its application to Van der Waals’s theory of mixtures.

Korteweg was associated with Van der Waals during the years that the lat-
ter was working on the phase separation of binary mixtures. From the begin-
ning, and perhaps encouraged by Van der Waals, Korteweg took an interest
in this topic. In two papers in Archives néerlandaises in 1891, following after
the French translation of Van der Waals’s (1890) paper on mixtures in the
same volume, Korteweg (1891a,b) presented the mathematical tools for
describing the formation of plaits and the coexistence of phases on the free
energy surface.

In many papers by the Dutch School, reference to Kortewegs work is
given, but often only in a perfunctory way. In Van der Waals’s own paper,
for instance, one has to struggle to find Korteweg’s name somewhere in a foot-
note. Nevertheless, it appears that the Dutch contemporaries, such as Van der
Waals and Van Laar, were thoroughly familiar with his work. The work
of thermodynamicists of the next generation, Van der Waalss successor
Kohnstamm (1875-1951), as well as Bakhuis Roozeboom’s pupil Scheffer (1883-
1954), who became a professor at the Delft Polytechnic, gives evidence of con-
siderable familiarity with the work of Korteweg. So does the work of Schreine-
makers (1864-1945), professor of physical chemistry in Leiden. Throughout the
middle and latter parts of the 20t century, however, Korteweg’s work on plaits
appears to have been almost entirely forgotten. The Dutch native Paul Meijer
(1994, 1999), a professor of physics at the Catholic University of America,
deserves much credit for his recent rekindling of interest in Korteweg’s work
on the theory of plaits on surfaces.

In this chapter, we describe Korteweg’s (1889, 1891a) paper on plait
points. We then present the theoretical part of Korteweg’s (1891b) paper on
the general theory of plaits, interwoven with three mathematical theorems
that Korteweg (1890) published in Dutch. The second half of the general
theory of plaits is an application to the Van der Waals equation for mix-
tures, which is presented in Ch. 7.3.

s.2 The shape of analytic surfaces

5.2.1 Kortewegs tools. The discipline that describes the shapes of surfaces is
called differential geometry. Some 19th-century mathematicians who were
experts on this topic were Arthur Cayley (1821-1895), and George Salmon
(1819-1904). The former is cited by Maxwell and Korteweg, while Korteweg
also cites Salmon’s book book, with Fiedler, on the analytic theory of space.
In Maxwell (1871), Ch. XII, for instance, there is a clear, intuitive description
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of the Gibbs U(S, V) surface, the tangent plane touching in more than one
point, and of the coalescing of the two tangent points in what he calls a tac-
nodal point, citing Cayley.

Korteweg honed the tools of differential geometry for the investigation of
plaits and plait points on two-dimensional smooth surfaces in three-dimen-
sional space, by studying the way a tangent plane rolls over the surface. In
addition, he studied the formation and evolution of plaits in the case that the
representation of the surface contains a parameter that is allowed to vary. He
applied the results to the isothermal Helmholtz energy for binary mixtures,
which Van der Waals was developing at the same time (Ch. 4.5). In that case,
the adjustable parameter is usually the temperature. Korteweg’s mathematical
surfaces are graphs zy(x, y) of bivariate functions having convergent Taylor
expansions at every point. Such surfaces have no singularities and will be
called analytic in this book.

A tangent plane rolling over an analytic surface may encounter regions
where it touches in more than one point. As stated in Ch. 2.6, the points on
the surface where a tangent plane touches simultaneously in different points
are called connodes. The line segment that connects the connodes is called #e
line. The locus of connodes traced out when the tangent plane rolls across
the surface is called the connodal or binodal. The part of the surface spanned
by the connodal is called a plaiz, an old-fashioned word for fold (pli in
French, plooi in Dutch, Falte in German). The presence of a plait signals a
change in the curvature of the surface. A plait may end in a plair point,
presently called a critical point, where the length of a tie line shrinks to zero.
The surface being analytic implies that the plait is entirely smooth, free of
sharp edges or creases.

Whereas the theory of local stability on a surface was well developed in
Korteweg’s time, he was the one who developed the differential geometry of
effects that occur non-locally.

s.2.2 Curvature of an analytic surface. To test the curvature of the surface, a
tangent plane is constructed at the point of interest. Imagine this plane
pressed ever so slightly, and parallel to itself, into the surface. Curvature is
related to the shape of the indicatrix, the curve along which the displaced
plane and the surface intersect. If the intersection forms a closed curve on the
tangent plane, such as an ellipse, then the surface must lie above (or below)
the tangent plane in all directions around the tangent point. Such points are
called elliptic points. In elliptic points, the surface is said to have positive cur-
vature, irrespective of whether the surface is concave or convex. As discussed in
Ch. 4.7.1, surfaces representing a stable thermodynamic free energy must be
convex. Korteweg, however, studies the wider class of general analytic surfaces,
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which will, nevertheless, prove to be of great relevance to understanding the
behavior of mathematical representations of thermodynamic free energies.

Surfaces may not have positive curvature at all points. An example is a
pass in a mountain landscape, which has the shape of a saddle. The surface
curves up towards the mountains on the sides, and down towards the valleys
that are connected by the pass. At a saddle point, the tangent plane intersects
the surface in two intersecting lines, and parts of the surface are below the
tangent plane, while others are above it. If this tangent surface is shifted up
or down lightly parallel to itself, the resulting indicatrix consists of the two
branches of a hyperbola, and therefore points in regions that have saddle
shape are called Ayperbolic. At a hyperbolic point, it is said that the surface
has negative curvature. (A thermodynamic free energy surface would be
unstable at such points.)

The transition between an elliptic point and a hyperbolic point is a para-
bolic point, where the curvature is zero. At such a point, the indicatrix consists
of two parallel lines: the ellipse on the surface of positive curvature has been
flattened to two parallel line segments, or, alternatively, the angle of the inter-
secting lines of the tangent plane on the hyperbolic surface has gone to zero.
A locus of parabolic points is called a spinodal (see Ch. 2.6 and Ch. 4.7.2).
The spinodal forms the boundary between regions of opposite curvature.

5.3 On plait points — first part

5.3.1 Overview. Korteweg’s (1889, 1891a) paper on plait points was first pub-
lished in German, predating Van der Waals’s (1890) paper on mixtures. Both
Korteweg’s and Van der Waals’s paper were translated into French, appearing
jointly in Archives néerlandaises of 1891, followed by Kortewegs (1891b)
paper on the general theory of plaits. In this book, we follow the French edi-
tions of the two Korteweg papers. In his paper on plait points, to which we
will refer as pp, Korteweg (1891a) characterizes the points where plaits begin
or end on a two-dimensional surface in three-dimensional space.

In the first part of his paper, Korteweg develops a Taylor expansion of an
analytic mathematical 2-dimensional surface in 3-dimensional space. He
studies its special features at a plait point. He gives pictorial representations
of three types of surfaces containing a plait ending in a plait point. He
derives expressions for the connodal and spinodal, and for the flecnodal,
defined in Ch. 5.3.4, to first and second order around the plait point. He
develops the methods for finding a plait point on a surface. He shows that in
general, depending on the geometry of the surface, there are two types of
plait points, which he calls of the first and of the second kind. If certain con-
ditions prevail between the coefficients of the Taylor expansion at the plait
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point, a double plait point may arise, of which there are again two kinds,
called homogeneous or heterogeneous.

5.3.2 A look at analytic surfaces near plait points. Korteweg’s paper contains a
folded-out figure with pictures of a plait and plait point on three different
two-dimensional surfaces in three-dimensional space. A copy is shown in

Fig. 5.1.

We begin with the two drawings on the left in Fig. 5.1. The left bottom
figure might represent a region around the plait point of Gibbs’s energy sur-
face U(S, V) for a one-component fluid, or Van der Waals’s isothermal
Helmholtz energy surface A(V; x) for a binary fluid mixture, both looked at
from the bottom up. In that application, the vertical axis represents the neg-
ative of U(S, V) or A(V, x). There is a plait ending in a plait point. The
dashed curve through the plait point in the bottom figures helps to indicate
the curvature of the surface. The full curve is the connodal. The spinodal is
the dashed curve crosshatched on the side of the hyperbolic (thermodynam-
ically unstable) region. The surface has positive curvature everywhere except
in the region inside the spinodal. In each of its positions, the double tangent
plane, not shown in the left bottom figure, touches in two connodes, marked
K, and K,.

The figures at the top show projections of points and curves such as the
connodal (heavy full curve) and the spinodal (heavy dashed curve) onto the
double-tangent plane. A tie line in the double-tangent plane connects the
connodes K; and K,. The plait ends in a plait point O where the length of the
tie line shrinks to zero. The somewhat lighter, banana-shaped full curve in the
top left drawing shows what happens if the tangent plane is pushed slightly
into the surface. The resulting curve is not an ellipse, as in other points on the
convex part of the surface, but a curve of higher order. Korteweg sometimes
calls it an indicatrix of the fourth order. The dashed curves in the top drawings
of Fig. 5.1 indicate the median of this special indicatrix.

An analytic surface that has negative curvature could also develop a plait.
In that case, the region inside the spinodal has positive curvature. The center
and right drawings in the bottom row of Fig. 5.1 represent such surfaces. In
those cases, a plane tangent to the surface at the plait point must inzersect the
surface, indicating that the curvature is not positive. If the tangent plane is
pulled up slightly, center, or pushed down slightly, right bottom drawing,
fourth-order indicatrices result which are indicated in the corresponding top
drawings in Fig. 5.1. Unlike the indicatrix at a hyperbolic point, which con-
sists of two branches of a hyperbola, the indicatrix of fourth order consists of
two branches of a higher-order curve.
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At first sight, the middle and right drawings in Fig. 5.1 seem to have noth-
ing to do with free-energy surfaces, since they violate thermodynamic stabil-
ity. For the mathematical representation of the A(V, x) surface given by the
Van de Waals equation for mixtures, however, these types do occur, albeit on
unstable parts of the mathematical surface that are cut off by double- or
triple-tangent-plane constructions. Kortewegs work will show that a new
plait may originate deep inside an unstable region, and develop over quite a
range of a variable parameter before it emerges on the stable part of the sur-
face. Generalizing beyond the thermodynamic constraints permits him, as a
mathematician, to reach a profound insight into the evolution of plaits on
mathematical surfaces that, on their stable parts, represent the behavior of
fluid mixtures.

5.3.3 Taylor expansion of the surface — curvature and stability. Korteweg, in the
footsteps of 19t-century mathematicians interested in mechanical stability,
approximates the surface z)(x, y) by expanding it, at any point chosen as the
origin x = 0, y = 0, in a Taylor series in powers of x and y:

2 2
Zp=ay+ by x+byy+ox +oxyrcy +
dy X v dy Xy v dyxy’ v dyy
vl v dh Xy diy v diy s

e X + oo ey + - (5.1)

Here the coefficients 4; equal first partial derivatives of the function z; cal-
culated at the chosen point x, y, the coefficients ¢ are proportional to second
derivatives of this function, ezc. In work to follow, Korteweg will allow for
these coefficients to be functions of a variable parameter.

In the application to the thermodynamics of binary fluid mixtures, z
might represent the isothermal Helmholtz energy, while x and y represent the
independent variables, composition x and volume y, or two linear combina-
tions of these coordinates. An example is Eq. (4.10) in Ch. 4.7.1, giving the
Taylor expansion of the isothermal Helmholtz energy A(V; x). Although in
that case the expansion is performed at fixed temperature, the coefficients are
to be considered functions of temperature, the variable parameter.

If expanded at a general point, taken as the origin, the surface has positive
curvature at this point if it lies on one side of its tangent plane in all direc-
tions. The tangent plane is represented by the constant and the linear terms
in Eq. (5.1). The distance z between the surface and the tangent plane is then
given to lowest order by

2 2
Z=C X + XY+ C3) + e (5.2)

Since the lowest-order terms in the expansion are of the second degree,
lines through the tangent point in the tangent plane have at least two points
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in common with the surface. It is a bit confusing that Korteweg calls this a
first-order contact. In what follows, we will not use Korteweg’s terminology,
but rather state how many points a tangent line has in common with the
surface.

For z to be larger than zero in all directions, the discriminant of Eq. (5.2),
6‘22 -4 ¢ ¢, must be negative, so that there are no real roots of z = 0, except
for the point x = 0, y = 0. The discriminant being negative is equivalent with
the condition for the Hessian, A > 0, which was introduced and discussed in
Ch. 4.7.1.

At a plait point, however, the surface reaches a limit of stability. As a con-
sequence, a Taylor expansion at a plait point has a distinctly different math-
ematical form than that at other points.

5.3.4 laylor expansion at the plait point — flecnodal. We have seen that
at any point on the surface, a tangent plane can be constructed, and the
distance to the tangent plane written in a polynomial expansion around
the tangent point, starting with the quadratic terms, Eq. (s.2). It is obvi-
ous, however, that the plait point is not like other points on the surface.
It lies on the spinodal, so the Hessian is zero. In addition, it is obtained
as a limit where the length of the tie line in the tangent plane shrinks
to zero. Now the tie line has two points in common with the surface
at each of its tangent points (the connodes). In the tangent plane at the
plait point, therefore, there must be a tangent line that has four points
in common with the surface. Korteweg calls a point on the surface, in
which a line can be drawn in the tangent plane that has four points in
common with the surface, a flecnodal point. He calls the locus of flecnodal
points the flecnodal. The plait point, therefore, must be located on the
flecnodal.

If the common tangent at the plait point is chosen as the y-axis, and the
tangent plane as the reference, then, to lowest order, an expansion of the sur-
face at a plait point has the following form (PP §2, Eq. 4):

z=61x2+d3xy2+85y4--- (5.3)

Korteweg gives the following reasons for this special ordering of the terms.
As usual, the constant and linear terms in Eq. (5.3) are missing because the
surface is defined in reference to the tangent plane. Note that the variables
x and y are special ones, generally different from those arbitrarily chosen in
Eq. (s5.2). Since the y-axis has four-point contact with the surface, the terms
¢5 y’and d; y° are missing, That is, not only the constant and the linear terms
are zero, but also the terms quadratic and cubic in y alone. Moreover ¢, = 0,
since the Hessian H = 4 ¢, c; — ¢, equals zero while ¢; = 0.
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Eq. (5.3) is a quadratic in x and j*. The three terms are of the same order
of magnitude, Korteweg notes, without presenting a full argument why this
is the case. If this is granted, it is easy to see that other terms omitted in Eq.
(5.3) are ‘of higher order’ than the terms listed. Thus ‘x is of order yz.’ This
means that z increases much more slowly in the y direction than in the x
direction. This is fundamentally different from other points on the surface,
where x and y are equivalent, and where the lowest-order expansion of z with
respect to the tangent plane yields a quadratic in both x and y, Eq. (5.2).

5.3.5 Landau expansion. In studies of critical phenomena in the second half of
the 20t century, the analytic expansion of the Helmholtz energy surface at a
critical point is referred to as the Landau expansion, in honor of the great
Russian physicist Lev Davidovitch Landau (1938), who introduced such
expansions both for an isolated critical point and for systems with crystalline
symmetry at a critical line in 1937. In fact, Korteweg introduced the Taylor
expansion for analytic surfaces at plait points as early as 1891, with applica-
bility to the (less symmetric, more general) isothermal Helmholtz energy
A(V;, x) of a binary mixture at any point on a critical line. Expansions of both
the pressure and the Helmholtz energy of one-and two-component fluids
were used expertly in the late 19t and early 20t century by members of the
Dutch School, in particular by Korteweg, Van der Waals and Van Laar.

5.3.6 How to find a plait point on a surface. Suppose the surface is given explic-
itly, such as the Van der Waals equation for mixtures introduced in Ch. 4.4.
The plait point conditions are that this point must be simultaneously located
on the flecnodal and the spinodal. Korteweg gives the following procedure for
finding a plait point (PP Sec. 7). The coordinate system is that used in
Eq. (5.1), Ch. 5.3.3, not the special one used in Eq. (5.3), Ch. 5.3.4. At any
given point x, y on the surface, a tangent plane is drawn, and the question is
asked whether a straight line x = 7y can be drawn in this plane in such a way
that the line has four points in common with the surface. For this to be the
case, the slope 2 of the line must fulfill two conditions simultaneously:

m* 0°z/0x" + 2m 072/ (0xy) + 0°2/0y” = 0 (5.4)
m 0°z10x° + 3 m253z/(0x26y) +3m 63z/(0x0y2) + 63z/6y3 =0 (5.5)

The values of the second and third partial derivatives in Eq. (5.4, 5.5) have
to be calculated at the point under consideration. A point at which there is a
common root 7 of these two equations lies on the flecnodal, and the com-
mon root 7 is the direction of the line that has four-point contact with the
surface at the point in question. The reason is that in this special direction m
both the quadratic and the cubic terms in the Taylor expansion of the surface
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sum to zero, so that the expansion begins with terms of the fourth degree.
For the flecnodal point to also be located on the spinodal, the quadratic
equation, Eq. (5.4), has to have two coinciding roots, so that the discriminant
of Eq. (5.2) equals zero. This condition can be rewritten in terms of two lin-
ear equations for m by a simple algebraic manipulation. In summary, the
plait point conditions for a two-dimensional surface are:

m 0°2/0x" + 02/ (0x0y) = 0
m 8’z (0x0y) + 0°2/0y" = 0
m 8210 + 3 m” 0zl (axzay) +3m 0z (axayz) + 632/6)/3 =0 (5.6)

At a point where the three equations have a common root, the value
of the root determines the direction of the tangent to the binodal at the plait
point in the V-x plane, and therefore also the limiting slope of the tie lines as
the plait point is approached. To calculate the values of second and third
derivatives in Eq. (5.6), the analytic equation defining the surface at the point
in question is used.

Korteweg’s equations still form the standard way of calculating critical
points for a binary mixture if the Helmholtz energy is given. See, for
instance, Rowlinson (1958), Van Konynenburg and Scott (1980), Rowlinson
and Swinton (1982), and Heidemann (1994). Korteweg extensively uses this
set of three simultaneous equations, Eq. (5.6), for calculating critical points
in his subsequent work. They can be found in pp, Egs. 34-36.

5.3.7 Two kinds of plait points. In pp Sec. 3, Korteweg analyzes the special
expansion of the surface at a plait point, Eq. (5.3), a quadratic in x and yz.
Under the assumption that d; # 0 en 4cie5 - dy” # 0, it follows immedi-
ately that there are two kinds of plait points. If the discriminant of Eq.
(5.3) is smaller than zero, then the tangent plane contains an isolated point
with a real tangent, a plait point of the first kind. This is the type of plait
point that is displayed in Fig. 5.1, left drawings, and which has been dis-
cussed in Ch. 5.3.2.

If the discriminant of Eq. (5.3) is larger than zero, as discussed in pp Sec. 4,
then the tangent plane at the plait point intersects the surface, and the plait
point is of the second kind. Thus, if this were a thermodynamic surface, it
would not be stable at the plait point. Since the plait point is a parabolic
point, the two curves along which the tangent plane intersects the surface
must locally have the form of two coinciding parallel lines, and thus they
must touch each other at the plait point. Examples are given in Fig. 5.1, cen-
ter and right drawings. In the center drawing, these two curves are on oppo-
site sides of the tangent in the plait point, and in the right drawings they are
one the same side. The two cases differ in the sign of es/c;.
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The drawings in the top row of Fig. 5.1 show the indicatrices of fourth
order for the three surfaces in the bottom row. The banana-shaped curve in
the top left drawing was already commented on. For the case in the center
column of Fig. 5.1, if the tangent plane is pushed slightly into the surface, the
intersection of the surface with the tangent plane assumes the shape of two
branches, to the left and the right of the Y-axis, indicated by the light full
curves passing through C and D in the drawing at top center. This surface is
hyperbolic outside the spinodal, and elliptic inside it, being convex. In the
case of the drawings in the right column of Fig. 5.1, if the tangent plane is
pulled slightly out of the surface, the intersection has the form of two
branches indicated by light full curves, one above and the other below the X-
axis in the drawing at top right. The surface outside the spinodal is hyper-
bolic. Inside the spinodal the surface is elliptic, but concave, contrary to the
case in the center column of Fig. s.1. In all cases, the connodal points K; and
K, have been indicated.

The essential difference between the plait points of the first and of the sec-
ond kind is threefold. First of all, the fourth-order indicatrix has a different
shape, a closed curve in the first case, but two branches in the second case.
Secondly, the connodal is situated on a convex part of the surface in the first
case, but on a hyperbolic part of the surface in the second case. Thirdly, the
surface bounded by the spinodal is hyperbolic in the first case, elliptic in the
second case.

Korteweg derives the algebraic expressions for the asymptotic shapes of the
connodal, spinodal, and flecnodal to first and second order in y in pp Sec. 3,
Sec. 7-9. Of these, the connodal has the smallest curvature, the spinodal fol-
lows, and the flecnodal has the strongest curvature. For all these curves, the
first-order term is quadratic in y, the second-order term is proportional to y’.

5.3.8 Two kinds of double plait points. We described how Korteweg derived the
conditions for a plait point on an analytic surface. Exceptional cases develop
when the coefficients in Eq. (5.3) have special values. In pp Sec. 10, Korteweg
first sketches the case that 45 = 0, but the discriminant d;° - 4cies # 0.
Korteweg calls this plait point a homogenous double plait point. In the second
part of pp, he shows that it can be considered as the coincidence of two plait
points of the same kind. If; on the other hand, the discriminant of Eq. (5.3),
dy’ — 4 ¢, e5 = 0 but d; # 0, another kind of double plait point arises, which
Korteweg calls a heterogeneous double plair point (pp Sec. 1I). Korteweg shows
that it can be considered as a coincidence of two plait points of different
kinds.

To calculate the flecnodal, spinodal, and connodal, additional terms in the
expansion come into play compared to the simple case, Eq. (5.3), discussed
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before. The net results are that the spinodal and connodal have four points
in common at the origin, whereas they only had two points in common for
the ordinary plait point.

Both types of double plait points play an essential role in the formation
and disappearance of plaits on the surface. They will be frequently encoun-
tered in what follows. The importance of these two types of double plait
points will become apparent as Korteweg begins his study of how plaits orig-
inate on surfaces. An ordinary plait point cannot form by itself on a surface:
plaits are born at double plait points.

5.4 On plait points — second part

5.4.1 Korteweg’s method of continuous transformation of surfaces. In the second
part of pp, Korteweg (1891a) studies what happens to plait under variation
of a parameter defining the surface. When terms such as ‘begins’ ‘moves’,
‘erows, ‘develops’ are used to describe features of the surface, these terms
are short-hand substitutes for the phrase: how does a feature, such as a plait
on the surface, get modified as a parameter changes continuously? Korte-
weg is the creator of the theory of deformations of analytic surfaces. Only
some of the results of his highly technical mathematical treatment will be
summarized here, namely those that are needed for an understanding of the
work of the Dutch School on fluid mixtures presented in this book. In the
application to the isothermal Helmholtz energy, the temperature is natural-
ly used as the parameter that varies, but an interaction parameter in the
model describing the Helmholtz energy will turn out to be another useful
choice.

How does Korteweg’s method of deformations of surfaces work? He
assumes that the coefficients in the Taylor expansion of the surface, Eq. (5.1),
are all functions of the parameter, linear to lowest order. Suppose a value of
the variable parameter is chosen for which there is a special point present
on the surface, for instance, a double plait point. If around such a point
a Taylor expansion is made, with the tangent plane as a reference, it differs
from a Taylor expansion at arbitrary points on the surface as was explained
in Ch. 5.3.4. Now, the parameter is slightly changed, and with it, the shape
of the surface. The question is: how? The way Korteweg answers this ques-
tion is by re-expanding the surface at the original location of the special
point, taking into account the dependence of z on the parameter. The spe-
cial character of the point is spoiled, however, while terms that depend on
the size of the parameter shift appear to all orders of x and y in the expan-
sion, including terms linear and quadratic in x and y. In addition, the neat
classification of terms by order of magnitude, as exemplified in Eq. (5.3), is
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upended, and a very careful new grouping of terms is required. Using the
expansion of this shifted surface and the techniques he already established,
Korteweg can answer questions such as: what happens to a double plait
point as a parameter representing the surface changes? He searches for the
presence of a critical point in the Taylor expansion of the deformed surface,
by means of Eq. (5.6). He finds that a homogeneous or heterogeneous dou-
ble plait point splits into two plait points if the parameter is changed one
way, but that it disappears if the parameter is changed the other way.

s.4.2 The role of homogeneous double plait points in the evolution of plaits. To
make this process less mysterious, we move ahead of the story temporarily,
and show two familiar cases of transition through a homogeneous double
plait point, taken from GTP, Korteweg (1891b). The first case is that of a
closed-loop coexistence curve, Fig. s5.2.

The case on the left, that of a coexistence curve with a lower and an upper
critical point, is quite common in partially miscible binary mixtures of water
and a polar organic. In several cases, the closed-loop coexistence curve has
been shrunk to a double critical point and made to disappear by the applica-
tion of pressure, or by varying the isotopic ratio of water. Closed-loop
coexistence curves are discussed in Ch. 7.5.2.

Figure 5.2 Two cases of a homogenous double plait point just having split into two
plait points of the same kind. From Korteweg (1891b), Figs 7, 8. In the left drawing,
the plait points are of the first kind (one mark on the circle), the region inside the
spinodal is hyperbolic, and the region of positive curvature is outside. In the right
drawing, the plait points are of the second kind (two marks on the circle), the region
inside the spinodal has positive curvature, whereas the outside region is hyperbolic.
The crosshatches on the spinodal indicate the location of the hyperbolic region.
A double-tangent plane can roll over the surface from the lower to the upper critical
point.
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Figure 5.3 Two plait points of the first kind merging into a double plait point, and
disappearing. From Korteweg (1891b), Figs. 9-11.

The second case Korteweg (1891b) considers is that of two plait points
approaching each other and merging, forming an open plait. Fig. 5.3 shows how.

Two critical points of the first kind, each located on a different plait,
approach each other (left), and then coincide (middle) in a homogeneous
double plait point. After that, the connodals separate, exchanging branches
in the process. No critical points remain after passage through the double
plait point (right). The behavior displayed in Fig. 5.3 occurs in gas-gas equi-
libria, the topic of Ch. 8.

A plait point therefore cannot just appear or disappear on a surface as a
parameter is varied. It originates when a double plait point splits. It must merge
with another plait point to form a double plait point before it can disappear.

A discussion of the splitting of a heterogeneous double critical plait point
requires some familiarity with Korteweg’s theorems presented in Ch. 5.5, and
is therefore postponed till Ch. 5.5.4.

The third kind of exceptional point on a surface studied by Korteweg is a
point of osculation (pp Sec. 19). In the Taylor expansion of the surface with
respect to the tangent plane at such a point, all quadratic terms are zero. The
surface intersects the tangent plane in three directions, the roots of the cubic
part of the expansion, one or three of which are real. Since these points play
a minor role in this book, we will not delve deeply into their pecularities. We
just mention that at an osculation point, #hree plait points merge, either one
or three of these being real, and the real ones being of the second kind. After
passing through the merger, the three plait points reappear.

In this paper, Korteweg has assembled the tools necessary for the next task:
the changes in the connodal, spinodal and flecnodal curves that accompany
the formation and disappearance of plait points. This is the subject of his sec-
ond major paper. Korteweg (1891b) based this paper on three facts about plaits
on surfaces that he had published only in Dutch, in the form of three mathe-
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matical exercises. These will be woven into the following sections, in which the
first half of Korteweg’s paper on the general theory of plaits will be discussed.

s.s The general theory of plaits (GTP)

5.5.1 Overview. Korteweg (1890) published, in Dutch, three mathematical exer-
cises, theorems to be proved regarding fundamental relationships between two
branches of a connodal on an analytic surface. In his second major paper, on
the general theory of plaits (referred to as grp), Korteweg (1891b) makes ample
use of these theorems. We have therefore inserted these theorems at the appro-
priate places in the following overview of the content of Grp.

In the first part of grp, Korteweg (1891b) describes, by means of simple
illustrations, what happens to plaits when one, or each, branch of the con-
nodal intersects a spinodal. Next, it discusses the way plaits transform when
double plait points, homogeneous or heterogeneous, appear or disappear,
which is an elaboration of his paper on plait points. The paper then turns to
the various ways tritangent planes, indicating coexistence of three phases, can
arise, and follows up with a section on quadritangent planes.

Presenting the content of GTP in its entirety would heavily tax the reader’s
patience. The topics selected are of immediate relevance to the behavior of
the Van der Waals equation for binary mixtures, a principal topic of this
book. Interspersing TP with the three mathematical theorems and linking it
to applications has required some changes in the order in which Korteweg
(1891b) presents the material.

The last part of GTP is an application to the Van der Waals equation for
binary mixtures, but the discussion of these results has been deferred to Ch. 7.3.

5.5.2 First theorem — directions of tie line and connodals. Korteweg (1890) chal-
lenges his fellow mathematicians in the Netherlands to prove three mathe-
matical theorems regarding the behavior of double-tangent planes rolling
across surfaces containing plaits. He presents one algebraic solution to each
of the exercises, along with a geometric solution provided by others. An Eng-
lish translation of the three theorems follows here.

The theorems posed in the exercises state that the local conditions of the
surface at two connodes determine the direction of the connodal in each point
through mediation by the tie line. Special conditions of the surface at the first
connode affect the course of the branch of the connodal passing through the
second connode.

In what follows, the concept of conjugate directions will play a role. This
concept is valid for all types of conic sections (ellipse, hyperbola or parabo-
la). For the ellipse, it is illustrated in Fig. 5.4. The directions & and ¢ are con-
jugate to each other.
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Figure 5.4 Conjugate directions & and e of a conic section. A set of parallel lines is
drawn in the plane, defining a direction 4. Consider those lines that intersect the
conic section in two point P and Q. Let R be the middle point of the segment with
endpoints P and Q. A geometry theorem states that the locus of points R is a
straight line, which determines a direction e, called the conjugate direction of 4.
The relation between 4 and e is symmetric: 4 is the conjugate direction of e. (There
is one exception, when 4 is the direction of the symmetry axis of a parabola. In that
case the conjugate direction is perpendicular to 4.)

Korteweg’s (1890) first exercise (Problem CXXXVII) posits a conjugate
relationship between the directions of the two branches of the connodal and

that of the tie line. Suppose a plane touches a surface in two points (Fig. s.5).
Then:

The locus of the tangent points of the double-tangent planes of any surface is called
‘the connodal line’ of the surface. Prove that in each point of the connodal line the

Figure 5.5 The relationship between the direction of the tie line and those of the two
branches of the connodal. Around each of the two connodes K, K,, the indicatrix
of the surface is drawn. The directions of both branches of the connodal are conju-
gate to the direction of the tie line.
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tangent to this line, and the tie line to the other tangent point of the same double
tangent plane are conjugate directions of the indicatrix.

Thus, once the local indicatrices of the surface are known at each connode,
the direction of the tie line determines the directions of the two branches of
the connodal.

5.5.3 Second theorem — a connodal forms a cusp. The second exercise (Problem
CXXXVIII) refers to the case that a branch of a connodal passes through a
spinodal (Fig. 5.6).

If A, is a point of intersection of the connodal with the ‘spinodal’, that is, the locus of
points with a parabolic indicatrix [two parallel lines], and if A; is the second tangent
point of the double tangent plane that touches in A,, then A, is a cusp on the connodal.

Thus, a special event on the first branch of the connodal, the passing through
a spinodal, evokes a spectacular response on the second branch, which reverses
its direction.

5.5.4 Application to the evolution of a heterogeneous double plait point. Con-
nodals passing through spinodals are associated with the plait that forms after
a heterogeneous double plait point splits into two plait points of different
kinds. This is illustrated in Fig. 5.7.

A double-tangent plane might begin at the plait point of the first kind.
Rolling over the surface, it must revert its direction in the point marked o,
because the connode at o, lies on the spinodal. When the double-tangent
plane reaches point 4,, which lies on the spinodal, the tangent plane must
reverse course at the connode 4. Finally, it stops being a double-tangent
plane when it reaches the critical point of the second kind.
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Figure 5.6 If a branch of the connodal passes through the spinodal at the one end of
the tie line, then the other branch passes through a cusp at the other end.
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Figure 5.7 A plait formed after the splitting of a
heterogeneous double plait point into two plait
points of different kinds. From Korteweg (1891b),
Fig. 12. A heterogeneous double plait point has
split into two plait points of different kinds by
variation of a parameter in one direction. (If the
parameter would vary in the other direction, the
plait points contract into a heterogeneous double
plait point, which would then disappear). A long
thin connodal is formed. The solid curve is the
connodal, and the dashed curve the spinodal.
The upper plait point is of the second kind, the
corresponding part of the connodal lying on a
part of the surface that has negative curvature as
indicated by the crosshatches on the spinodal.
The lower plait point is of the first kind, and its
connodal lies on a part of the surface that has
positive curvature. Notice that each cusp occurs
at a point where its connode lies on the spinodal,
which is an illustration of the second mathe-
matical exercise.

Although these heterogeneous double plait points always arise on hyper-
bolic (unstable) parts of the surface, they betray their presence through the
formation of accessory plaits such as the one shown in Fig. 5.7. The accesso-
ry plait may eventually protrude onto the elliptic (stable) part of the surface
as it becomes large enough. This is the mechanism by which, starting with a
single plait on a mathematical surface representing a thermodynamic free
energy, an additional plait may appear, as a parameter such as the tempera-
ture varies.

5.5.5 Third theorem — exchange of connectivity of plaits. The third exercise
(Problem CXXXIX) addresses the question of what happens if both conn-
odes lie on the spinodal simultaneously (Fig. 5.8).

Prove that if the tangent points A and A' of the same double-tangent plane both lie
on the spinodal, then the connodal in each of these points has two real or imaginary
branches that are tangent to each other and have the same curvature.

Connodals with two intersecting branches on each side are hard to imag-
ine. Their significance becomes clearer when Korteweg shows, in Fig. 5.9,
what happens if a parameter changes slightly from the value that leads to
Fig. 5.8.
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Figure 5.8 Two connodes A}, A, are simultancously located on the spinodal. Then at
each connode the connodal has two intersecting and touching branches.

An exceptional simultaneous passage of two branches of a connodal
through a spinodal, as shown in Fig. 5.8 and in the middle drawing of Fig.
5.9, may be reached at a particular value of a parameter that continuously
transforms the surface. The top and bottom drawings show what happens
to the middle drawing when this parameter is changed slightly in one or
another direction. The branches of the connodal pull away from each
other in such a way that they become parallel on one side, and form two
cusps on the other side. The cusps occur, according to the second mathe-
matical exercise, for those points p and ¢ whose connodes on the corre-
sponding, now parallel branches lie on the spinodal. Depending on
whether the parameter moves up or down, the cusps appear on one side or
the other.

Note that something quite striking has happened. Two plaits have disen-
gaged themselves from the single plait in the middle drawing. In the top
drawing, the branches on which # and ¢ lie form one plait terminating in
plait points ; and ¢, (not shown). The branches on which 4 and 4 lie form
the other, with plait points 4, and 4. In the bottom drawing, on the other
hand, the branches containing points labeled 2 and & form one plait, which
ends in plait points «, and 4;, while those labeled 4 and ¢ form the other
plait, which ends in plait points 4, and ¢;. Thus, a mechanism exists for
plaits to exchange branches, and for plait points to change connectivity, by
a continuous transformation of the surface from the condition that both
connodes are located on the spinodal.
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Figure 5.9 Two plaits merge and exchange branches by passing through a point
where both connodes lie on the spinodal. From Korteweg (1891b), Figs 4-6. Full
curves are connodals, dashed curves spinodals, and points indicated with the same
letter are connodes connected by a tie line (not shown). The center drawing shows
the two branches, left and right, of one plait, while each branch in turn consists of
two branches. (It should be noted that Korteweg did not accurately draw the mid-
dle figure, which is the equivalent of Fig. 5.8. According to the third mathematical

exercise, the curve a; &, should be mngens to the curve 4, ¢, at the point where they
intersect the spinodal, and likewise for the curves @, b, and 4, ¢,.)
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In Ch. 7 we will see that such exchanges of connectivity of plaits are asso-
ciated with the classification of types of binary fluid phase diagrams occur-
ring in nature as well as in the mathematical representation of the free ener-
gy of the mixture. Korteweg elucidates the underlying mechanisms preceding
such exchanges in a mathematical representation of the thermodynamic sur-
face. The parameter deforming the surface might be the relative strength
between the two components, a parameter that can be made to vary contin-
uously in a mathematical representation.

5.5.6 Triple-tangent planes. Suppose it is possible to construct a tangent plane
that touches the surface in three points. This case was discussed by Van der
Waals, Ch. 4.8, and portrayed in Figs. 4.1 and 4.2c. Fig. 5.10 shows the
arrangement of the connodals in that case.

How can a triple tangent plane disappear, or cease to have three real points
of contact? Surely this happens if two points, say 4, and 4;, coincide. This
means occurrence of a plait point on the corresponding plait, as shown in
Fig. s.11.

The bottom drawing in Fig. s.11 represents the formation of the triple tan-
gent plane displayed in the Van der Waals model of Figs 4.1 and 4.2¢c. Read-
ing Fig. 5.11 from the bottom to the top, we find that the triple-tangent plane
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Figure s.10 A tangent plane touches the surface in three points, #,, 4, and a;. From
Korteweg (1891b), Fig. 20. Points , and a, are connodes of one plait. Likewise for
the other two pairs. Thus, there are three plaits, and through each of the three
points, connodals of two different plaits pass. If the three points are not on a straight
line, and not on a spinodal, then these connodals of different plaits intersect at a
non-zero angle. Considering the indicatrix at one of the points where the triple tan-
gent plane touches, the tangents to the two connodals in this point are conjugate
directions with respect to the tie lines to the other two tangent points (first mathe-
matical exercise). From the condition of triple-tangency at 4;, 4, and 43, the tangent
plane can roll in three different directions.
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Figure s.11 Formation or disappearance of a triple tangent plane. From Korteweg
(1891b), Figs 21-23. In the top drawing, the surface has two plaits, the first running
from left to right, the second approaching from below and ending in a plait point.
As a parameter changes, the plait point of the second plait moves up and touches
one branch of the connodal of the first plait (middle drawing, on the right). The
connode 4, corresponds with the plait point a,. As the second plait intersects the
connodal of the first plait, (bottom drawing), a triple tangent plane develops,
touching in 4, 4, and a;. The lower branch of the first plait now intersects the
spinodal of the second plait. According to the second mathematical exercise, the
upper branch of the first plait must have cusps both at ¢; and 4, the connodes of
the spinodal intersections ¢, and d,. The top branch of the connode of the first
plait thus develops a double point and two cusps as a consequence of events on the
bottom connode that send signals along the respective tie lines.
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Figure s.12 Formation of an accessory plait, and exchange of a principal and an
accessory plait. From Korteweg (1891b), Figs 30-35. The top left figure shows the
connodal (full curve) and spinodal (dashed curve with dashes indicating the region
of negative curvature) of a plait ending in plait point 2,. We call this plait the prin-
cipal plait. Connodes 4, and 4, are indicated. There is one thing special about what
otherwise appears to be an ordinary plait. On the spinodal, a heterogeneous double
plait point has formed, indicated by the cross. In the top right drawing, as a param-
eter is varied, this inhomogeneous double plait point has split, and a thin elongated
accessory plait has formed located in part on the region of negative curvature of the
surface, in the same manner as shown before in Fig. 5.7. Each cusp on the accessory
connodal corresponds to a passage through the spinodal by the other branch of its
connodal, in accord with the second mathematical exercise. Two plait points, one of
the first and one of the second kind, have appeared on the spinodal of the accesso-
ry plait. A double-tangent plane starting in 2, and @, would still end up unencum-
bered in the plait point 4, of the principal plait. A double-tangent plane on the
accessory plate would likewise run independently on the closed loop from the first
to the second plaitpoint. In the middle left drawing, however, the plait point of the
first kind touches the connodal of the principal plait, then pierces it (middle right).
Now the spinodal of the accessory plait intersects the connodal of the principal plait
in two points, one of them marked 72,. As a consequence, the connodal of the prin-
cipal plait must develop two cusps according to the second mathematical exercise,
and a triple tangent plane forms in the same manner as displayed in Fig. 5.10. The
three connodes of the triple tangent plane are ¢, ¢;", and ¢,. A double-tangent plane
that begins to roll on the connodal of the principal plait, starting in 2, and a,, stops
when it touches in the third point. From that position, it can roll further to the plait
point of the principal plait, 4, after a change in direction, but it also has the option
of rolling to the plait point of the accessory plait, &, again after a change in direc-
tion. The connodal of the accessory plait is still a well-defined entity on which a tan-
gent plane can roll independently, just as in the drawing above it.

On further change of the variable parameter, however, something extraordinary
happens: one cusp of the accessory plait meets one cusp of the principal plait in the
point " on the spinodal (bottom, left drawing). This yields the situation displayed
in Fig. 5.9, center drawing. Therefore, the connode " of ' must also lie on a point
of the spinodal where two branches of the connodal touch, according to the third
mathematical exercise. On further change of the parameter, the touching branches
in p” develop into two parallel line segments, while those in p." pull apart, forming
two cusps, precisely as shown in Fig. 5.9.
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may disappear by two of the three tangent points coalescing at a critical point
that then moves off the connodal of the first plait. There are two other ways
in which a triple tangent plane can disappear, which Korteweg says are of less
importance in the case of the Van der Waals equation for mixtures. We will
therefore not describe these here. Those interested should consult Korteweg’s

(1891b) paper.

5.5.7 Accessory plaits. In Section s.5, the formation of an accessory plait from
a heterogeneous double plait point was described. An important incident
happening in the mathematical representation of a thermodynamic surface is
indeed the development of such an accessory plait from inside a principal
plait — the accessory plait grows in size, it then pierces the connodal of the
principal plait, which leads to the formation of a triple tangent plane — and
finally, the accessory and principal plait exchange roles. This entire sequence
of events is shown in Fig. 5.12. This figure is not for the faint-hearted, but it
has been included because it illustrates almost all effects discussed in Ch. s.5.
It does homage to Korteweg’s insight in the behavior of plaits on surfaces,
and to his skill in representing them. Fig. 5.12 is relevant to the discussion of
binary fluid phase equilibria in Ch. 7. It was familiar to practitioners of the
work of the Dutch School, such as Schreinemakers and Scheffer.

A study of the right middle and bottom drawings in Fig. 5.12 reveals that
the original principal and accessory plaits have managed to exchange roles
through the formation of two mathematical double points on the unstable
part of the surface. In the Van der Waals equation for binary mixtures, a pas-
sage through a mathematical double point (MDP) inside the unstable region is
indeed the key to the process of transition from one kind of phase behavior
to another as a model parameter varies. See Ch. 7.2.4, Fig. 7.6, and Ch. 7.5.5.

5.5.8 Quadritangent planes. Korteweg shows how, once a triple tangent plane
exists, this plane may touch a surface in a fourth point if the surface is trans-
formed due to the variation of a parameter. Coexistence of four fluid phases
does indeed occur in the symmetric Van der Waals mixture that Korteweg
investigates in the second and third part of gTp. We will return to this case
in Ch. 7.3.5.

5.6 Assessment and outlook

Van der Waals must have worked on the theory of mixtures between 1881,
when he first mentions some of his early ideas, and 1890, when his paper on
mixtures was published. In his introduction to Grp, Korteweg (1891b) men-
tions as his purpose to study the passage from a state with only a transverse
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plait, to states where two plaits are present on the surface and a tritangent
plane exists. Korteweg refers to Cayley and to the Salmon-Fiedler book as
sources of the discipline of differential geometry. These authors, however,
were no experts in thermodynamics and, though they studied plait points,
they may not have had interest in double tangent planes and connodals. Kor-
teweg himself developed the tools he needed for application to Van der
Waals’s theory of mixtures. The sheer amount of formula manipulation alone
must have taken a long time to complete. Perhaps he was so totally familiar
with differential geometry that he did not even have to struggle with the tool
he handled so deftly, and could just focus on the application.

Admirable craftsmanship went into the composition of the text and the
illustrations, exposing the essence of this quite complex material. The pres-
entation is clear, beginning with a brief summary of the results, followed by
the mathematical treatment, while the detailed calculations and proofs are
left for the last part of each of the papers. A discussion of the reliability of the
work is postponed till Ch. 7.3.6.

Korteweg was the first mathematician to reach a clear understanding of
deformations, the continuous transformations of analytical surfaces as func-
tion of a parameter that varies. The theory of deformations is part of the the-
ory of singularities, under which modern catastrophe theory resides. It would
be interesting to compare Korteweg’s method of continuous transformation
of surfaces with the methodology of catastrophe theory.

In selecting which of the Korteweg’s results to present in this chapter, the
main guideline has been to cover definitions, concepts, theorems and results
that will be encountered in the chapters to follow. Korteweg’s own applica-
tion to the Van der Waals equation for mixtures is found in Ch. 7.3.
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6. Mixture experiments and models —
Kuenen and Kamerlingh Onnes

6.1 The Physics Laboratory at Leiden University

Kamerlingh Onnes received his appointment as a professor of physics at the
University of Leiden in 1882. He chaired the Department of Experimental
Physics until 1923. From the beginning, his goal was to advance scientific
knowledge by careful experimentation. ‘Door meten tot weten’ [Through
measurement to knowledge] was the motto stated in his inaugural speech,
and chiseled in wall of the entrance hall to his laboratory. Kamerlingh
Onnes’s principal goal was to establish a cryogenic laboratory devoted to the
liquefaction of air and its constituents as preparation for the liquefaction of
hydrogen, and later, after it was discovered, of helium. Kamerlingh Onnes
was not one to think small. Large-scale gas liquefaction in a cascade of cycles,
as was the custom in those days, required a gas compressor for each cycle, so
Kamerlingh Onnes purchased massive high-pressure pumps from various
providers in Europe. See Fig. 6.1, and Van Helden (1989).

Kamerlingh Onnes started out at a disadvantage. French scientists, most
prominently Cailletet, had already made their mark in the field by liquefying
air and oxygen, first by rapid expansion of the compressed and cooled gas in
a transient mode in 1882, then by cascade-like cooling in substantial quanti-
ties by 1884. In 1884, there were even rumors, dispelled later, that Cailletet in
France and Wroblewski in Poland had seen a transient liquid hydrogen mist
when expanding the compressed fluid after it was cooled by liquid oxygen.
That was long before James Dewar, a professor of chemistry at the Royal
Institution, liquefied hydrogen by a non-transient method in 1898, winning
the race against Kamerlingh Onnes.

Although it seemingly distracted from his main goal, Van der Waals’s the-
ory of mixtures posed an irresistible challenge to Kamerlingh Onnes, so that,
immediately after Van der Waals’s Academy presentation on the topic in
1889, he decided to test the new theory experimentally. To this effect, facili-
ties would be required for synthesizing gaseous mixtures of well characterized
composition, for observation and precise measurements of phase transitions
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Figure 6.1 A Cailletet pump purchased by Kamerlingh Onnes in 1883. After exten-
sive modification, it was used in the helium cycle of the refrigeration cascade. The
pump is 1.41 m. tall. Copied with permission of the Museum Boerhaave, Leiden.

as functions of pressure and temperature, as well as for careful determination
of the densities of coexisting phases. The measurement of the properties of
cryogenic fluids, as well as the gaseous-mixture work, would require the
establishment of standards of measurement of pressure, temperature and vol-
ume. It was going to be necessary to carry out experiments at elevated pres-
sures, and over substantial temperature ranges. This called out for design and
construction of specialized apparatus that would require the effort of skilled
machinists and glass blowers working in a first-rate machine shop. Thus,
Kamerlingh Onnes founded his famous school for instrument makers, which
assured a steady supply of highly skilled craftsmen to his own laboratory and
to other institutions in the Netherlands for many decades to come.
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Heike Kamerlingh Onnes as a professor at the University of Leiden.
Senaatskamer. Collectie Academisch Historisch Museum, Universiteit Leiden.
Copied with permission.

6.2 Measurement and calibration of pressure

The established leaders in the field of pressure measurement were the French
high-pressure experts Amagat and Cailletet. Although he was impressed and
inspired by the boldness of design and experimentation of the French scien-
tists, Kamerlingh Onnes had no tolerance for what he considered the unreli-
ability of many of the reported results.

Kamerlingh Onnes devoted major effort to the establishment of standards
of measurement. In particular, the standardization of pressure measurement
took great effort. The commercial Bourdon-type pressure gages, in which a
flattened metal tube, wound in a circle or spiral, unwinds under the influence
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of internal pressure, needed calibration. For pressures up to a few atmos-
pheres, comparison with a mercury manometer was feasible. Beyond that,
every researcher had to devise his own pressure scale and calibration. Amagat
was experimenting with dead-weight gages, pistons of well-defined diameter
closely fitting into a matching cylinder filled with oil. The piston is loaded
with a known mass of weights and the oil is pressurized. Once the piston
floats, the pressure generated in the oil is proportional to the ratio of the mass
of the piston plus its load to the area of the piston. The effective area of such
gages cannot be calculated very accurately from their dimensions. Cailletet
and Amagat had calibrated their laboratory pressure gages up to 400 atmos-
pheres with respect to mercury manometers placed in church towers and
mine shafts.

In principle, pressure could be measured by making use of the ideal-gas law,
PV = RT. If an ideal gas is compressed at constant temperature, the volume
decreases in inverse proportion to the pressure. Compression may be carried
out in the Cailletet tube, an inverted glass U tube, dipped in mercury (Ch. 4.2
and Ch. 6.4). The pressure in a test system and that in the Cailletet tube serv-
ing as a reference are compared by means of a U-tube partially filled with mer-
cury. The early work at the Leiden Physics Laboratory used a Cailletet tube
filled with air for pressure calibrations above a few atmospheres.

A serious limitation of this method is that ideal gases do not exist. While
for a gas such as air departures from ideality are small at lower pressures,
deviations invariably get larger when the pressure rises, and exceed a percent
at pressures above fifty atmospheres. One can correct for this non-ideality if
the effect is known. In the early years of his laboratory, Kamerlingh Onnes
used literature data on gas non-ideality at moderate pressures from Regnault,
dating back to 1840-1870, and, more recently, from Amagat (1884), who
measured -V data up to 400 atmospheres in the mid-1880s.

This dependence on French pressure calibration and measurement meth-
ods was not satisfactory to Kamerlingh Onnes, and he proceeded to establish
his own pressure calibration facilities. He designed and built a composite
manometer, consisting of 15 glass tubes each about 3 m high, mounted side
by side on the wall of the laboratory. The pressure generated at the bottom
of each manometer was transferred to the top of the next one through a gas-
filled capillary. By 1898, this apparatus was operational, see Kamerlingh
Onnes (1898). Around 1890, however, when Leiden graduate student Kuenen
started his measurements on mixtures described in this chapter, calibration of
Bourdon gages at the Leiden Laboratory was still done by filling a Cailletet
tube with a near-ideal gas such as air, measuring the change of volume start-
ing at standard conditions, and correcting for gas non-ideality using data
from the French experts.
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The present-day unit of pressure is the newton per square meter (N m’),
or pascal (Pa), a metric unit prescribed by the Systtme International (s).
In this book, this unit is used only if reference is made to modern work.
European researchers mostly used the atmosphere, the pressure exerted by a
column of mercury 76 cm tall at standard conditions of temperature and
acceleration of gravity. One standard atmosphere equals 1.01325 x 10° Pa.
For the historical accounts, we use the units reported in the original papers.

6.3 Thermometry

Thermodynamics provides the scientists with an absolute temperature scale.
The pressure of an ideal gas confined to a constant volume can serve as a real-
ization of the absolute temperature scale. The ratio of the pressure at the tem-
perature of interest, to that at a reference temperature, presently the triple
point of water defined as 273.16 K, equals the ratio of the temperature of
interest to that at the reference point. Such a device is called a gas thermome-
ter. It suffers from the same problem as the gas manometer: ideal gases do not
exist. For the thermometer, the problem is somewhat easier to address than for
the manometer, since gas thermometers can be used at low pressure where
non-idealities are small. At the Leiden Physical Laboratory, a great deal of
effort was invested in gas thermometry. It effectively served as the thermome-
try standards laboratory in the Netherlands for a good part of the 20t century.

Gas thermometers are difficult to operate. The first practical alternative
instrument was the mercury thermometer, which was usually calibrated at
the melting and boiling points of water, defined as 0°C and 100°C, respec-
tively, on what was then called the Celsius scale. A ruler, mounted along the
mercury capillary, was divided into 100 equal parts, each division equaling
1°C of temperature. A high-quality mercury thermometer allowed tempera-
ture resolution to 0.01°C.

The symbol °C used in those days is not precisely equivalent with the
modern symbol used for corresponding SI unit. When the symbol is used in
this book, it refers to the usage of the original work. We have mostly
refrained from converting reported temperatures to the Kelvin scale.

Calibration of a mercury thermometer with respect to the absolute ther-
modynamic scale was, of course, quite another matter. Careful inter-compar-
ison of high-quality, properly calibrated mercury thermometers by Chappuis
(1888) revealed disagreements of the order of 0.1°C in the middle of the
range from 0°C to 100°C.

Improvement of gas thermometry would remain an ongoing task at
the Leiden Laboratory; better P-V data became available, reaching to low
densities; nonideality corrections became more reliable; and the uncertainty
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of realization of the absolute temperature scale decreased. Parallel to this
effort, the design and construction of precise practical devices progressed,
and this became a major task once the temperature range of the laboratory
began to reach to lower and lower temperatures.

At the time that Kuenen started his experiments in Leiden, the mercury
thermometers had been calibrated with respect to a gas thermometer, which
was, again, a variant of the Cailletet tube.

6.4 Measurement of density, and observation of phase separation

The measurement of the density of gases as a function of pressure and the
observation of phase separation took place in a Cailletet tube mentioned
repeatedly. The Leiden Cailletet tubes were constructed of high-quality, con-
stant-bore glass capillary. Ruled markings on the outside of the tube permit-
ted accurate readings of the position of the mercury level. The volume
between subsequent markings were carefully calibrated by weighing the
amount of mercury flowing out of the tube as the level was made to drop
from one marking to the next.

The gas in the tube was compressed by pressurizing the mercury in the
reservoir, so that it mounted in the tube. The volume occupied by the gas
was calculated from the level of the mercury in the tube. Starting at normal
atmospheric pressure, the higher densities were calculated from the change in
volume of the gas. The pressure of the gas equals that of the pressurizing
medium in the mercury reservoir, corrected for the level difference of the
mercury inside and outside the Cailletet tube.

In order to improve its accuracy, Kamerlingh Onnes made the following
changes in the Cailletet tube arrangement (Fig. 6.2). He added a reservoir to
the lower end of the tube, so that the gas was pre-compressed before entering
the tube and would still occupy a volume large enough to be accurately meas-
ured even at the upper pressure limit. The glass reservoir resided in the pres-
surized part of the system, so that the wall did not have to sustain large pres-
sure differences. The Cailletet tube proper was heavy-walled, so that it could
withstand the pressure difference across the wall. It was surrounded by a glass
cylinder, through which a temperature-controlled fluid was pumped. Typical-
ly, this fluid was a vapor generated by a liquid bath boiling at controlled pres-
sure, and thus at a constant temperature. The vapor was re-circulated, and
different liquids were used for reaching different temperature ranges.

The instrument was used for measuring the pressure-volume relation of
the gas at constant temperature, and was also useful for visual observation of
phase separation, and for determining the relative amounts of coexisting

vapor and liquid phases.
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Figure 6.2 Kuenen’s Cailletet-tube arrangement for P-V measurements and observa-
tion of phase separation at constant temperature. The Cailletet tube, dipping into a
pressurized mercury reservoir, is shown on the right. The top part is heated by
means of the vapor of a liquid, which boils in kettle Ke under controlled pressure,
condenses in Ko, and returns to Ke through the O, and B. Copied from Kuenen
(1893b), Plate VII.
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6.5 Kuenen performs the first measurements on gas mixtures

6.5.1 Kuenen’s background. It is hard to overestimate the impact on the Leiden
experimenters of Van der Waals’s theory of mixtures and his model of the inter-
action of a transverse and a longitudinal plait (Ch. 4.8.2). Immediately after the
first Academy presentation was made by Van der Waals in 1889, Kamerlingh
Onnes directed a promising graduate student to begin experimental tests of Van
der Waals’s theory. Johannes Petrus Kuenen (7866-1922) was born in Leiden, the
son and grandson of theology professors. He began his physics studies in Leiden
in 1884. He obtained his doctorate in 1892, earning a gold medal for his thesis.
This gifted experimentalist was the first in the world to produce reliable data for
a number of vapor-liquid binary mixtures. His laboratory results were sent to
Van der Whaals, and, in close consultation between the latter and the Leiden
experimentalists, the results were interpreted. From 1892 onwards, Kuenen pub-
lished a series of discoveries. He is known for his discovery of the phenomenon
of retrograde condensation, but his contributions to the knowledge of binary
fluid phase diagrams were equally fundamental and interesting. In this chapter,
only his Leiden work concerning phase behavior of binary mixtures will be dis-
cussed. His later work on the various phase behaviors of fluid mixtures, per-
formed after he moved to the United Kingdom, is described in Ch. 7.4. Kue-
nen’s careful refutations of controversial studies of the critical point, concurrent
with his early work on mixtures, are covered in Ch. 10.11 and 10.13.

6.5.2 The first reliable experiments on fluid mixture phase separation. The
model surface in Van der Waals’s paper (see Fig. 4.1, 4.2¢), showing three
coexisting phases, provoked the interest of the Leiden experimenters. Liquid-
liquid phase separation was quite well known in the 19® century. As is clear
from his 1893 publications, however, Kuenen’s motivation was to find the
liquid-liquid phase separation in the presence of a pressurized vapor, and to
reach into the region of vapor-liquid criticality in such a system. Several
investigators had already reported seeing an additional liquid phase in a bina-
ry vapor-liquid system with carbon dioxide as one of the components.
Kuenen decided to study the system carbon dioxide-methyl chloride. The
second component has a critical temperature of 141°C, much higher than
that of carbon dioxide, 31°C, but methyl chloride has a lower critical pres-
sure. The choice of carbon dioxide is obvious: it was one of the best charac-
terized fluids with an easily accessible critical point. Kuenen does not mention
what motivated him to choose methyl chloride as the second component, but
the compound was available in the laboratory in large quantities. With its low
boiling point of -90°C, it was used in the first of the refrigeration cycles in the
air liquefaction cascade.
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Johannes Petrus Kuenen as a professor at the University of Leiden.
Senaatskamer. Collectie Academisch Historisch Museum, Universiteit Leiden.
Copied with permission.

The publications on this system, see Kuenen (1892a,b, 1893a,c, 1894c:
Leiden Communications 4, 7, and 13), form a veritable breakthrough in the
understanding of fluid mixture behavior. It must have disappointed Kuenen
(1892a,b) to report a negative result on the first mixture he studied: no three-
phase region. What he did discover, however, more than made up for this
disappointment.

That he did not find three-phase coexistence was related to his conclusion
that all preceding work on vapor-liquid binary mixtures had been unreliable.
None of the earlier experimenters had paid attention to the slowness of equi-
libration in a fluid mixture confined to a tall tube. Equilibration by diffusive
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processes may take days, rather than hours. Kuenen’s simple solution: putting
a piece of iron in the Cailletet tube, and moving it up and down by means
of an external magnet, revolutionized the study of vapor-liquid equilibrium
in fluid mixtures. A mixture, appearing to be in equilibrium, might drop in
pressure by several atmospheres after the stirrer was turned on. If Kuenen
might occasionally observe an additional liquid phase in the mixture, stirring
would make it disappear.

Kuenen also noted the flattening and disappearance of the meniscus,
described by Cailletet and Van der Waals a decade earlier when they com-
pressed two-phase mixtures of air and carbon dioxide to high pressure.
Kuenen explained this right away as a transient effect, caused by the slow
diffusion of material through the interface between two non-equilibrium
phases on their way to a homogeneous state. Kuenen (1893b) discarded ear-
lier reports by Wroblewski, Cailletet and Dewar on the existence of two lig-
uid phases in several binary mixtures with carbon dioxide as one of the
components. He repeated the experiments in his own stirred apparatus,
with negative results.

Kuenen’s (1893¢) doctoral work consisted of measuring the pressure, vol-
ume, and phase split of pure methyl chloride, and of three mixtures of 25, 50
and 75% mole fraction, respectively. In his first publication, Kuenen (1892a)
states as his original purpose to derive from the data the constants for the
Van der Waals equation for the pure components, in order to construct from
them the Van der Waals isothermal Helmholtz-energy surface for the mix-
tures. He quickly gave up that attempt after he found that the Van der Waals
equation was not able to describe the pure-component data satisfactorily,
thus reconfirming the insufficiency of that equation for an accurate descrip-
tion of fluid properties, by then well recognized by the Leiden group.

His inability to formulate a mixture Helmholtz energy set him free to
select a different system of independent variables, more suited for represent-
ing his experimental observations than the volume and concentration used
by Van der Waals. Since pressure and temperature at the phase boundaries
for a mixture of constant composition are the prime observed data, Kuenen
(1894¢) introduced the pressure-temperature diagram, drew the critical line,
and inserted loops of constant composition. Thus, for the first time, phase
diagrams appeared which a modern chemical engineer recognizes immediate-
ly (Fig. 6.3). Also, by that time in Leiden, preference is given to the terms
‘critical point’ and ‘critical line’ over ‘plait point’ and ‘plait point curve.’

The critical line connects the critical points of the two pure components.
Along the critical line, each binary mixture of constant composition has a
unique critical point, according to Gibbs’s phase rule. A compression of a
gaseous mixture at constant temperature occurs along a vertical path in this
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Figure 6.3 The phase behavior of a mixture of carbon dioxide, critical point C,, and
methyl chloride, critical point C,, in a pressure-temperature diagram. The vapor
pressures of the two pure components are shown; so are mixture critical points P on
the critical line connecting C; and C,. The loops are curves of constant composi-
tion. The part of the loop to the right of P is the dew curve, along which the first
drop of liquid forms on compression. The part to the left of P is the bubble curve,
where the last drop of liquid disappears on compression. Between P and R on the
dew curve, the phenomenon of retrograde condensation of the first kind takes place.
Copied from Kuenen (1894¢), Fig. 1.

diagram. Starting at low pressure, the gaseous mixture forms the first drop of
a liquid phase, of different composition, at what is called its dew point. As it
condenses, the liquid level rises and the pressure increases. This is different
from the condensation of a pure component, which progresses at fixed pres-
sure. Finally, the mixture is condensed completely at what is called its bubble
point, the point where the last gas bubble disappears. On further compres-
sion, the mixture forms a homogeneous high-density phase, which may be
called a liquid.

If the experiment is repeated at different temperatures, a dew curve and
a bubble curve are traced out in the P-7 diagram. These two curves do 7oz
represent branches of a coexistence curve. On the constant-composition dew-
bubble curve no two points exist that have the same temperature and pres-
sure. The properties of the liquid and vapor phases along the constant-com-
position dew-bubble curve become equal to each other at the critical point B,
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located on the critical line. At that point, the dew-bubble curve is tangent to
the critical line, as proven by Kuenen (1894c¢). The highest temperature for
which the mixture of fixed overall composition can exist in two phases is, in
this case, higher than the critical point temperature of that mixture. This
maximum temperature is marked by R on one of the loops in Fig. 6.3.

6.6 Kuenen discovers retrograde condensation.

6.6.1 A liquid phase evaporates under pressure. The first new effect that Kue-
nen (1892b) reported and explained qualitatively on the basis of Van der
Waals’s theory of mixtures, is that of retrograde condensation. Kuenen
observed that when he compressed the mixture at a composition between
that at the critical point P and that at the extremum R, a liquid phase would
appear when the dew curve was crossed. On raising the pressure further, the
liquid level would rise, reach a maximum, and then decrease again and dis-
appear. This was simply unheard of in the condensation of a one-component
fluid. On observing Fig. 6.3, it is clear why this happens. The path chosen is
a vertical line running between P and R. All points on the dew-bubble curve
that lie to the right of P are located on the dew curve. Thus, when entering
the two-phase region from the low-pressure side, the mixture is in a dew-
point state where the first drop of liquid forms, while on exiting, it is again
in a dew-point state where the last drop of liquid disappears. Kuenen calls
this retrograde condensation of the first kind.

As Kuenen (1894¢) remarks at the end of Comm. 13, it is also possible for
retrograde evaporation, or retrograde condensation of the second kind, to occur,
in which, on expansion of the liquid, a vapor bubble forms, grows, and then
declines and disappears. This happens when the point R is located on the
bubble side of the dew-bubble curve. Kuenen (1894¢) gives a possible sce-
nario shown here in Fig. 6.4. The two components have almost the same
critical temperature, but very different critical pressures. The top dew-bubble
curve shows retrograde condensation of the first kind, but the bottom one
shows retrograde condensation of the second kind. In practice, the latter hap-
pens far less frequently than retrograde condensation of the first kind.

6.6.2 A controversy with Van der Waals. Although Kuenen, in his publica-
tions, refers to Van der Waals’s theory of mixtures at every occasion, the mas-
ter was not always satisfied with the credit he received. A piqued letter by
Van der Waals (1894a, Oct. 19) to Kamerlingh Onnes takes issue with the
claim that Kuenen discovered the phenomenon of retrograde condensation.
In Van der Waals’s view, for the good reader his theory contained all there is
to know about the behavior of the binodal, and Kuenen’s work, valuable as it
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Figure 6.4 The condition for retrograde condensation of the second kind, in a pres-
sure-temperature diagram. Retrograde evaporation should happen below the tem-
perature extremum v in the plait point curve, in the region between r' and P' on the
bubble curve. Copied from Kuenen (1894c), Fig. 2.

was, merely confirmed it. Although he concedes that he had not worked out
many details in the published paper, he had decided to wait until the Leiden
experiments were finished. He claims that he not only knew about what
Kuenen felicitously calls retrograde condensation, but also had mentioned it
in conversations. He feels Kuenen was not justified in claiming priority.

Kamerlingh Onnes (1894, Oct. 20) answered his friend the next day.
Remarkably, he immediately places a protective shield around his pupil Kue-
nen. He takes full responsibility for any papers originating from his labora-
tory, because they all require his approval:

...so that justice is strictly maintained, and preferably somewhat less, but surely
never more is claimed than what may be considered, in good faith, as original work.
This simplifies matters, the question is not ‘what does Kuenen think he may claim?’

but ‘what may Kuenen, according to my judgment, justly call his own work?’
[Translated from the Dutch.]

A spirited defense of his pupil follows. Kamerlingh Onnes emphasizes that
Kuenen has maintained in all his writings that Van der Waals’s theory opened
the way to the understanding of retrograde condensation. Even though this
theory implies this phenomenon, however, Van der Waals had never stated
this explicitly. Kuenen was the one who first said: ‘something very special
must happen in that region, something that is different from ordinary con-
densation.” Thus, Kamerlingh Onnes goes as far as claiming that Kuenen not
only discovered, but predicted retrograde condensation.
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The formulation of a theory and the application to a specific prediction are two
incomparable entities, but there is room for the one next to the other. The predic-
tion by Kuenen will be viewed as proof of the fertility of your theory. Many others
are sure to follow, whose remarkable character and their deviation from common
intuition, though perhaps obvious, have not been indicated by you, and may like-
wise be rightly called predictions. [Translated from the Dutch.]

Two more pages follow in the same vein, proof of how seriously Kamer-
lingh Onnes took this matter. Kamerlingh Onnes thus pointedly puts Van
der Waals in his place, and finds Kuenen’s claim fully justified. He even
strengthens it from ‘discovery’ to ‘prediction and discovery.’

An answer from Van der Waals (1894b, Oct. 21) was written the next day.
In those days, Dutch mail was sorted in special postal car of the trains that
ran frequently between cities in the West of Holland, facilitating these
prompt responses. Van der Waals readily agrees that, driven by a desire to be
brief, he has been wrong in limiting himself to the main points, but omitting
what he considers issues of less importance. Furthermore, when he thinks
something is clear, he wrongly assumes that just indicating the result is suffi-
cient for others as well. He accepts that he will have to suffer the conse-
quences of his own mistakes in this respect. Nevertheless, he feels somewhat
pained because he had held back nothing in discussions of the behavior of
mixtures with his Leiden friends, including discussions about the relation of
tangent point and plait point. He would have appreciated it if trust had been
answered with trust. Pages follow about the interpretation of the word ‘pre-
dicting’. Ultimately, he states he is not convinced by Kamerlingh Onnes’s
arguments. The letter ends, however, in a conciliatory mode. Kamerlingh
Onnes is invited for dinner at Van der Waals’s home the coming Saturday. A
moving apology ends the letter:

If this letter contain anything that might hurt you, please forgive me — I did not
mean to do so. But when I am engaged in polemics, I feel the need to put matters
sharply. But sharp, meaning correct, may easily deteriorate to sharp, meaning cut-
ting. [Translated from the Dutch.]

6.6.3 Retrograde condensation rediscovered. Since the critical point and the
temperature extremum of a dew-bubble curve in general do not coincide,
there is always a region of retrograde condensation in a fluid mixture, but
it may be so small that it is hard to find. In the natural gas industry, how-
ever, the retrograde region between the critical point and the temperature
extremum R can be huge, because of the presence of admixtures of low
volatility, such as long-chain alkanes. When deep-well gas drilling began in
the 1930s in the United States, crews were often taken by surprise when the
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gas would partially liquefy (or worse, solidify) as the pressure was released.
The story goes that the Dutch native George Uhlenbeck, then a physics
professor at the University of Michigan, reminded the puzzled engineers
of the phenomenon of retrograde condensation, discovered in the Nether-
lands forty years earlier. History repeated itself once more, when gas
drilling began off the coast of Great Britain in the 1960s. Engineers at the
coastal pump station in Bacton, who found their lines blocked when they
reduced the gas pressure, turned for help to John Rowlinson (2001), pro-
fessor at Imperial College, who was able to enlighten them about retro-
grade condensation.

A phase diagram such as that found by Kuenen, with a simple connected
critical line and no indication of an additional phase split in the liquid phase,
is presently called a Type-I phase diagram, in the terminology of Van Kony-
nenburg and Scott (1980) (¢f” Ch. 7.2).

6.7 Kuenen discovers critical azeotropy

For the next system investigated, Kuenen (1895a) had the objective of finding
retrograde condensation of the second kind. In that case (Fig. 6.4), the criti-
cal line in the P-7" diagram must be almost vertical. Thus, two components
of almost the same critical temperature but very different critical pressures
must be mixed. Kuenen’s choice was a mixture of ethane and nitrous oxide,
N,O. In contrast to the first mixture he studies, these two gases have almost
the same critical temperature, but the critical pressure of nitrous oxide is over
70 atmospheres, while that of ethane is just below 50 atmospheres.

Again, Kuenen had a negative result for an unanticipated reason, which
allowed him to make another discovery. It appeared that the critical line went
through a minimum in temperature well below the critical temperatures of
the two components (Fig. 6.5), the first time that such an observation was
made.

In the case of a temperature minimum in the critical line, the mixture will
display azeotropy (Ch. 4.9), which means that in the P-7" diagram there is a
locus of states for which the compositions of vapor and liquid phase are iden-
tical, although the other properties are different. At this locus, the vapor
pressure is a maximum at the given temperature, and therefore the azeotrop-
ic line in the P-T plane lies above the vapor pressure curves of both pure
components. In the mixture studied by Kuenen, the azeotropic locus is
almost independent of temperature, and occurs near a mole fraction of 20%
of ethane (Fig. 6.5). Negative azeotropy, in which the pressure goes through
a minimum, is also thermodynamically possible, although less frequently
encountered than the positive azeotropy found by Kuenen.
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Figure 6.5 Critical azeotropy in the system ethane-nitrous oxide. The critical line
passes through a temperature minimum in P-7 space. The azeotrope ends tangen-
tially to the critical line at B. All dew-bubble curves are quite narrow, compared to
those in non-azeotropic mixtures, such as in Fig. 6.3. Copied from Kuenen (1895),
Fig. 2.

Azeotropy was a known phenomenon at this time. The pressure maxi-
mum, for instance, had been reported by Guthrie and by Konowalow, and is
the reason these mixtures cannot be separated by distillation. Usually, how-
ever, the azeotrope leaves the mixture phase space at one of the edges, x = 0
or x = 1, before it reaches the critical line. Kuenen’s mixture, however, was
the first in which azeotropy had been traced all the way up to the critical
line. He found that the locus ended on the critical line at the azeotropic
point B in Fig. 6.5. After receiving Kuenen’s results, Van der Waals (1895a)
proved that the azeotrope must be parallel to the critical line at this point, as
a general consequence of the thermodynamics of phase coexistence. A few
years later, Van der Waals’s student Quint (1899), trying to find retrograde
condensation of the second kind, studied the system ethane-hydrochloric
acid in Amsterdam, again with negative results. This mixture turned out to
be an azeotropic system very much like that studied by Kuenen.

If there is an azeotrope in the middle of a phase diagram, the difference in
composition between dew and bubble curves remains small over the entire
composition range, compared to composition differences between such curves
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in non-azeotropic mixtures. Compare the widths of the dew-bubble curves in
Figs. 6.3 and 6.5. Narrowness of dew-bubble curves implies that the points P
and R are very close together, precluding detailed study of retrograde behav-
ior. Although Kuenen describes in detail all retrograde phenomena to be
expected theoretically in the case of a divided plait such as that in Fig. 6.5, the
limited experimental resolution did not allow him to observe them.

Kuenen next describes the phenomena in the V-x plane, Fig. 6.6 following
the example of Korteweg (Ch. 5, Ch. 7.3) and Van der Waals (Ch. 4). At
temperatures below the minimum in the critical line, the plait is a transverse
plait running roughly parallel to the x-axis over the full range of composi-
tions. Compressing the mixture at a temperature between that minimum and
the ethane critical point, however, the critical line in Fig. 6.5 is crossed twice.
The starting point is a two-phase system. This ends in a critical point when
the critical line is crossed for the first time. Then, a homogeneous region is
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Figure 6.6 Phase separation in V-x space for a binary azeotropic mixture at increasing
temperature. The transverse plait splits into two parts that recede towards the x = 0,
1 axes as the temperature rises. The compositions of vapor and liquid differ little.
Copied from Kuenen (1895a) Figs 3, 4, s.
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traversed, after which the second part of the plait opens up at a second criti-
cal point. These two critical points approach each other when the tempera-
ture approaches that of the minimum, where they coalesce in a homogeneous
double critical point, and disappear on further decrease of the temperature
(Fig. 6.6). For lower temperatures, the plait runs across the entire surface
uninterruptedly. Kuenen gives reference to Korteweg (1891a,b) who indeed
described this case, as discussed in Ch. 5.4.2, and shown in Fig. 5.3.

6.8 Kamerlingh Onnes builds space models

The thermodynamic free energy of a one-component fluid is a function of two
independent variables; the number of independent variables increases as the
number of components. A two-dimensional representation can have only one
independent variable. So in order to obtain a visual representation of the ther-
modynamic surface, scientists are forced to keep one or more variables con-
stant (sections) or to project invariant points and univariant curves onto a
plane. This makes it difficult to get a good grasp on the spatial relations, and
to figure out how the representation changes as a different set of independent
variables is chosen. In addition, the need to roll tangent planes over such sur-
faces in order to trace out coexistence curves is quite a challenge to the insight.

Even before Gibbs (1873) published his paper on the geometric represen-
tation of thermodynamic surfaces, scientists felt the need for three-dimen-
sional representations of surfaces, which we will call space models. Thus,
James Thomson built a plaster P-V-T" space model representing Andrews’s
data for carbon dioxide. As discussed in Ch. 4.3, Gibbs (1873) described the
properties of what he called the ‘primitive’ (fundamental) U(S, V) surface,
based on Andrews’s data. Maxwell’s (1875, Ch. xi1) graphic description of
Gibbs's U(S, V) surface suggests it existed physically. Maxwell himself built
two plaster U(S, V) models for water, including one solid and two fluid phas-
es, and donated one to Gibbs. See Rowlinson (1988), p. 6.

The Dutch School pioneered the building of space models for thermody-
namic surfaces of binary mixtures. Ch. 4.8 describes the space model that
Van der Waals (1890) constructed to represent the isothermal Helmholtz
energy of a binary mixture that shows a transverse and a longitudinal plait,
and a triple-tangent plane (Fig. 4.1, 4.2¢).

Kamerlingh Onnes began work on constructing such surfaces at the time
that Kuenen wrote his thesis. At the end of his doctoral thesis, Kuenen wres-
tled with the problem of finding an equation that could represent his P-V-7T=x
data in the system carbon dioxide -methyl chloride. Finding the Van der Waals
equation woefully inadequate, he modified it empirically, and made the
parameters temperature-dependent. Instead of using mixing rules for the
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parameters 4, and b,, he calculated these values from the experimental data for
mixtures at the experimental compositions of x = 0, 1/4, 1/2, 3/4, 1. Kamer-
lingh Onnes (1900a) integrated this modified equation, thus obtaining an
expression for the Helmholtz energy, which he denotes by v, following Gibbs.
He then used the equation to calculate the isothermal Helmholtz energy as a
function of volume for a chosen temperature and for the chosen values of the
composition. Carefully drafted charts accompany this paper, clearly revealing
the plait in projections on various planes. Thus, for a chosen temperature
between the temperatures of the two components, he had a space model y(V]
x) constructed in plaster, based on the y(V) and y(x) curves he had calculated
and graphed. If a glass plate covered with ink is rolled over the surface, it will
nicely trace out the connodal. A picture of the model is shown in Fig. 6.7.

Figure 6.7 A plaster model of the Helmholtz energy surface for the system carbon
dioxide — methyl chloride at 100°C, between the critical temperatures of the pure
components, built by Kamerlingh Onnes and Reinganum (1900a). The negative of
the isothermal Helmholtz energy Wy points upwards, the volume runs from front to
back, and the mole fraction of carbon dioxide runs from right to left. A plait extends
from the methyl chloride side, on the right, toward the center part of the surface.
There it ends in a plait point. The connodal (coexistence curve) and several tie lines
are indicated. Copied with the permission of Museum Boerhaave, Leiden.
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Coexisting points are connected by wires. This model is an example of an actu-
al isothermal Helmholtz energy representation of a real mixture.

As more mixture data became available, Kamerlingh Onnes and cowork-
ers constructed several of such surfaces. For educational purposes, they con-
structed plaster Gibbs energy models and equation of state models for pure
fluids as well, based on mathematical formulae for these properties. Some
models include solid phases. The model shown in Fig. 6.7, as well as over a
dozen other models, are part of the collection of the Boerhaave Museum in

Leiden.

6.9 Kuenen moves on

Kuenen served as the conservator of the Leiden physics laboratory from 1893
to 1895. He then left the Netherlands. After a brief postdoctoral stay with
Ramsay in London, he became a professor of physics at the University of
Dundee in Scotland in 1896. In 1906, he returned to Leiden, to a chair in
physics. While at Dundee, he successfully resumed the quest for liquid-vapor
phase equilibrium in the presence of a second liquid phase. The discoveries
he made at the University of Dundee are described in the next chapter.
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7. Fluid phase diagrams — Korteweg, Kuenen,
and Van Laar

7.1 Introduction

This chapter traces the history of the discovery of the different types of phase
behavior that occur in binary fluid mixtures. Theoretical and experimental
investigations took place in the Netherlands between 1890 and 1906, and all
six different types of binary fluid phase diagrams presently recognized were
found in that period. Amazingly, the Van der Waals equation for mixtures
was proved capable of producing all but one of these six types.

A phase diagram displays the regions occupied by the different phases of a
system, the boundaries that separate those regions, and the special points
present in the system, as a function of two independent variables. A practical
choice of variables is that of pressure P and temperature 7, measured direct-
ly in the laboratory. The phase rule (Ch. 4.3) states that for a one-component
system the coexistence curves, be it vapor-liquid, solid-vapor or liquid-vapor,
are monovariant: they are represented by curves in the P-7" phase diagram.
These curves separate regions of phase space occupied by a vapor, liquid or
solid. The critical point as well as triple point(s), are invariant, and are there-
fore points in the phase diagram. A simple P-7 phase diagram is shown in
Fig. 7.1. It reveals, at a glance, what state the system is in at given tempera-
ture and pressure.

liquid Figure 7.1 Phase diagram in P-7 space for the simplest
case of a one component system. The boundaries
between the regions occupied by the solid, liquid and
vapor phase are indicated in a pressure-temperature
diagram. Special invariant points are the triple point
A, where vapor, liquid and solid coexist, and the criti-
cal point O, where vapor and liquid become equal to

T each other.
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As discussed in Ch. 4.3, in a binary mixture all dimensions step up by unity
because of the extra degree of freedom. Therefore, in addition to the charac-
teristic curves and points of the two pure components, monovariant critical
curves, three-phase curves (triple lines) and azeotropes, as well as invariant
quadruple points appear in the P-7 phase diagram of a binary mixture.

Even in the absence of solid phases, binary-mixture phase diagrams are
much more complicated than those for one component. Instead of one basic
type, there are at least six, and several of these types have distinct subtypes
and variants. This chapter describes how scientists learned about binary fluid
phase diagrams.

Gibbs’s principles of heterogeneous equilibrium enabled scientists to
deduce the shape of a phase diagram on the basis of limited experimental
information. The Dutch thermodynamicists excelled in this area, particular-
ly Amsterdam chemist Hendrik Willem Bakhuis Roozeboom (1854-1907). In
189596, as a student in Leiden, he interacted intensively with Van der Waals,
who showed him how Gibbs’s phase rule could be used to interpret his exper-
imental studies of solid precipitation from a number of hydrates, see Kipnis
et al. (1996), pp. 157-159. Bakhuis Roozeboom became a chemistry professor
in Amsterdam in 1896. He founded a school that specialized in fluid — solid
phase equilibria up to high pressures. Well known chemists educated by
Bakhuis Roozeboom, such as E.H. Biichner and EE.C. Scheffer, as well as
his successor A. Smits, followed in his steps in the early part of the 20t cen-
tury. This work was very influential in geology and metallurgy; it falls most-
ly outside the scope of this book, but its history would well merit a separate
study. The work on fluid phase equilibria described in this book is all based
on, or inspired by Van der Waals’s equation of state for binary mixtures.

Around 1900, experiments were carried out in Leiden specifically to inves-
tigate binary fluid phase diagrams that include fluid criticality. We have seen
in Ch. 6 how Kamerlingh Onnes directed his student Kuenen, around 1890,
to begin the investigation of fluid phase equilibria. This chapter will show
how Professor Kuenen discovered two types of previously unknown phase
diagrams in what were believed to be anomalous systems. These systems were
not expected to obey the Van der Waals equation or the theorem of corre-
sponding states because they have at least one associating component.

Van der Waals’s (1890) theory of mixtures (Ch. 4) had already proved the
possibility of predicting both liquid-liquid and liquid-vapor equilibrium.
There was, however, a rather formidable problem when implementing Van
der Waals’s equation for mixtures. The increased number of parameters, two
each for the pure components, and two more for the combining rules for the
interactions between components, makes it difficult to sample the parameter
space economically. Furthermore, because of the mole-fraction-dependence
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of the Van der Waals # and & parameters, the calculation of any thermody-
namic properties quickly becomes quite complicated. Finally, the properties
of coexisting phases usually cannot be obtained analytically.

The Amsterdam mathematician Korteweg (1891b) was the first to attempt
using the Van der Waals mixture equation for calculating phase diagrams. He
designed the simplest mixture model he could think of, a mixture of two
identical components, with the attractive interaction #;, between the two the
only variable parameter. Korteweg derived expressions for the various types
of critical points and for the spinodals of this mixture. This seemingly over-
simplified and unrealistic model would turn out to be fiercely complex as
well. Nevertheless, he worked out the various phase diagrams in great detail.

Van Laar, the ‘mathematical chemist,” made the next attempt to extract
exact results from the Van der Waals equation. Unlike Korteweg, he allowed
the two components to be different, but adopted the geometric-mean rule,
Eq. (4.7), for the interaction parameter ;,. This enabled him to obtain exact
results for the spinodals and for the plait point line. He published close to a
dozen papers on the topic between 1904 and 1906. Van Laar indeed obtained
three principal types of phase diagrams presently known to be obtainable
from the Van der Waals equation, two of which Kuenen discovered in his
experiments. Then the subject rested for more than half a century.

In the 1960s, Robert L. Scott, professor of chemistry at the University of
California in Los Angeles, proposed to his student Van Konynenburg that he
use a new tool, the computer, to explore the phase behavior of the Van der
Waals equation of state for binary mixtures. They exhaustively investigated
the case of constant excluded volume 4. The availability of this global study
makes it possible to place the earlier work within a more comprehensive con-
text. As a consequence, the content, significance and accuracy of the early
work can be appreciated more fully.

The present chapter will therefore not be presented in chronological order.
The experimental results, as well as the two specialized cases studied by Kor-
teweg and by Van Laar, are easier to understand from the perspective of the
work of Van Konynenburg and Scott. Thus, an overview of the K&S work
will be presented first (Ch. 7.2), after which we will return to the period of
1890-1906, to discuss the work of Korteweg (Ch. 7.3), Kuenen (Ch. 7.4), and
Van Laar (Ch. 7.5).

7.2 Van Konynenburg and Scott (K&S) on the Van der Waals mixtures.
7.2.1 Scope of the work. Van Konynenburg and Scott (1980) published the

final results of over a dozen years of work in a comprehensive report con-
taining references to their earlier publications on this topic. We will refer to
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it as K&S. In addition, reference will be made to Scott’s (1987) review, writ-
ten at the occasion of his receiving the Hildebrand Award of the American
Chemical Society.

The starting point for K&S is Van der Waals’s equation of state for mix-
tures introduced in Ch. 4, Eq. (4.4): (P + a/ VOV - b) = RT, with P the
pressure, V' the molar volume, 7 the temperature, R the molar gas constant,
a, the attraction parameter characteristic of the mixture, and 4, the excluded
volume parameter for the mixture at mole fraction x. The quadratic mixing
rules for the mole fraction dependence of these two parameters are given by
Eq. (4.5).

Most, though not all, of the K&S work, just as the early Dutch work, is
done for components of equal excluded volume 4, in which case 4, = b. A few
caveats are in order. For the Van der Waals equation, this choice implies that
the ratio of the critical pressures of the two components equals that of the
critical temperatures. Thus, the less volatile component must have the high-
er critical pressure. Experimentally, there are many counter-examples, for
instance, the mixture of carbon dioxide and methyl chloride Kuenen studied
(Fig. 6.3), for which the second component has a much higher critical tem-
perature than the first, while its critical pressure is lower than that of the first.
Also, the equal-4 case has some mathematical peculiarities. For instance, the
critical azeotrope does not come in tangent to the critical line, such as hap-
pens in experiment (Fig. 6.5), and was proved for the general case by Van der
Waals (1895a). Instead, the critical azeotrope intersects the critical line at a
point where the latter develops a cusp.

For the case of equal 4, K&S characterized the mixture by two parameters,
one of which, ¢, describes the relative difference of the attraction parameters
for the two pure components:

{=(ay - a))/(ay + ay) (7.1)

By its definition, { ranges from -1 to +1. The sign of £ depends on which
component is chosen as the first. Customarily, this is the more volatile com-
ponent, that with the lower critical temperature and the smaller value of 4,
so that { is positive

The other parameter, A, describes how strong, relatively speaking, the
interaction between unlike components is compared to the average of the
interaction parameters for each of the components:

A= (a)-2ap+ a)(a + ay) (7.2)

If the two components have a relatively strong affinity for each other, A is
negative, and the fluids prefer to be mixed unless they are very different from
each other (large ¢). If the interaction between the two components is relatively
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weak, A turns positive, and the tendency for phase separations of several kinds,
the real meat of this chapter, begins to show.

In the footsteps of Van der Waals, Eq. (4.8), K&S integrated the equation
of state to obtain the Helmholtz energy, A(V, x, 7) = -RT'In (V- b) - aJV +
RT [xIn x+ (1-x) In (1 - x)]. Here b, = 6. They then set up the algorithms
for calculating critical lines from Gibbs’s criticality conditions, Eq. (4.16).
This method is fully equivalent to that used by Korteweg, Eq. (5.6), dis-
cussed in Ch. 5.3.6. K&S were able to derive an exact expression for the rela-
tion between volume and mole fraction for critical points. This equation is of
the seventh degree in both volume and mole fraction, and depends on A and
¢ It is listed in K&S Appendix A, along with companion expressions for the
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Figure 7.2 The global phase diagram for the Van der Waals binary mixture for equal
excluded volumes of the components. Reprinted, with permission, from Scott (1987),
Fig. 1. Copyright (1987) American Chemical Society. This figure shows the boundaries
between the various types of phase behavior in the A, C plane. For the equal-4 case, the
diagram is symmetric around the ¢ = 0 axis. Different types of phase behavior are
labeled by Roman numerals. The letter A denotes the presence of azeotropy. On the axis
{ =0, and near it, azeotropy must always occur. The two diagonals in Fig. 7.2 mark the
boundaries of azeotropic regions. The other transitions between the various regions
occur almost always by passage through a tricritical point, a point where three fluid
phases become identical. The solid boundaries marked in Fig. 7.2 represent those choic-
es of A and C that lead to the presence of a tricritical point. An exception is the bound-
ary between Type IV and Type III, which is a line of double critical end points, points
at which a critical line touches a three-phase line. The dashed curve represents the geo-
metric-mean choice for the attractive parameter, Eq. (4.7).

FLUID PHASE DIAGRAMS — KORTEWEG, KUENEN AND VAN LAAR 111



corresponding critical temperatures and pressures. Meijer ez al. (1990) and
Levelt (1995) confirmed these expressions using computer algebra.

For chosen A and Z, K&S numerically solved for the V-x-7-P values along
the critical line(s). Phase boundaries were obtained from the Gibbs condi-
tions for phase coexistence, equality of temperature, pressure and chemical
potentials. All equations were solved numerically by means of a digital com-
puter. The calculations were carried out on a grid of chosen Z, A values.

7.2.2 The global phase diagram. Fig. 7.2 compactly summarizes the phase be-
haviors of the Van der Waals binary mixture equation with constant excluded
volume. This picture is called a global phase diagram, because it represents and
classifies the different phase behaviors that the mixture equation can display,
depending on the values of the two adjustable parameters  and A.

7.2.3 The shield region. Near the { = 0 axis, in the upper part of the diagram,
a small region of very complex phase behavior appears, which is called the
shield region. It is shown enlarged in Fig. 7.3, from K&S (1980).

At the time that the K&S work approached completion, Furman ez 4/.,
(1977), and Das and Griffths (1979) were working on the phase diagram of
the so-called three-state Potts model, investigated earlier by Straley and
Fisher (1973), amongst others (Ch. 7.3.5). This lattice model can be made
to represent either a three-component liquid mixture, or a two-component
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Figure 7.3 The shield region, magnified from Fig. 7.2. Copied, with permission, from
Van Konynenburg and Scott (1980), Fig. 38. Copyright (1980) The Royal Society.
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compressible fluid mixture. Furman ez al. (1977) found a region of complex
phase behavior, such as coexistence of four fluid phases, when the three com-
ponents are not very different from each other. Furman and Griffiths (1978)
then investigated the Van der Waals equation, and found a similar region of
complex phase behavior, the shield region in Fig. 7.3, which occurs near £ = 0,
about halfway up the positive A axis. K&S (1980) confirmed this, and pre-
sented detailed results for the ‘symmetric mixture” of two identical components
(£ =0). It was Korteweg (1891b), however, who sampled the entire region along
the { = 0 axis almost a century earlier, as will be discussed in Ch. 7.3.

7.2.4 The six types of binary fluid phase diagrams. Representing the binary
phase diagrams in the pressure — temperature plane (Fig. 7.4), also from Scott
(1987), clarifies the meaning of the Roman numerals in Fig. 7.2.

The types of phase diagrams I-V can be derived from the Van der Waals
equation, and have all been found experimentally. In addition, many fluid
mixtures have been found to display Type-VI behavior, with a closed-loop
region of liquid-liquid phase separation. Type-VI behavior cannot be derived
from the Van der Waals equation. Van Laar was able to produce it by incor-

T T

Figure 7.4 Six different types of phase behavior found in binary fluid mixtures. Reprint-
ed, with permission, from Scott (1987), Fig. 2. Copyright (1987) American Chemical
Society. Solid lines are the vapor pressure curves of each of the two components. The
dashed curves are three-phase lines; they may end in upper (ucepr) or lower (LcEP) crit-
ical end points. The dotted curves are critical lines. The six types known to exist in
binary fluid mixtures differ from each other in the number of critical lines and the pres-
ence or absence of three-phase lines. They are described in detail below.
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porating an association reaction (Ch. 7.5.2). A close relative of Type VI, in
which the liquid-liquid critical line has two branches running to infinite
pressure, is not shown here. Schneider (1963) discovered it experimentally.

K&S introduced the nomenclature for the types shown in Fig. 7.4, and it
is still in general use. Boltz er al. (1998) recently proposed a less arbitrary,
more informative nomenclature, in which the salient features of the phase
diagram are coded into its label. Here, we use the K&S nomenclature, allow-
ing the reader to connect more easily with existing literature on the topic.

In engineering texts it is common to use the term ‘critical line’ in cases where
a mathematician would use the word ‘curve.” Thus, critical lines, as well as three-
phase lines, are understood to be curves. Only tie lines are straight lines.

The phase diagrams for relatively strong attraction between the compo-
nents are of Type I and Type V, and are located below the A = 0 axis. The
simplest is Type I, for which the mixture critical line connects the critical
points of the two components and no further phase separation occurs. A
variant of this phase diagram, I-A, arises when the components of the mix-
ture are rather alike (small ). See Fig. 7.5, from K&S (1980).

The negative azeotrope AZ lies below the vapor pressure curves of the
pure components, because at given temperature the vapor pressure of the
mixture is lower than that of the two relatively strongly interacting compo-
nents. The critical line passes through a maximum at the azeotropic point.
It is an artifact of the equal-& Van der Waals equation that the critical line
develops a cusp where it meets the azeotrope. Van der Waals proved that in
the general case the azeotrope is tangent to the critical line. Ch. 6.7
describes how Kuenen sought in vain to find this case experimentally. It is
quite rare.

In the Type-V phase diagram, Fig.7.4v, the critical line is interrupted by
a three-phase region limited by a ucer and an rLcEp. If an interaction

1.0

Figure 7.5 Negative azeotropy in a Type-1-A
phase diagram in the reduced pressure-tem-
perature plane. Copied, with permission,
from Van Konynenburg and Scott (1980),
Fig. 5. Copyright (1980) The Royal Society.
The curves labeled 1,2 are the vapor pres-
sures of the two pure components. The sym-
bol AZ indicates the azeotrope

F2
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Figure 7.4 V. The Type-V phase diagram results when the
difference between the two components is larger than in
Type L. A critical line (--+) starting at the first-component
critical point ends in an upper critical end point (UCEP).
If the fraction of second component is increased, it
assembles in another liquid phase, and a region of three-
phase coexistence (---) forms. As the temperature falls,
the two liquid phases become identical at a lower critical
end point (LCEP). A second vapor-liquid critical line
begins at the critical point of the second component, and
ends as a liquid-liquid critical line at the LCEP.

parameter is varied, the three-phase line can be made to shrink and disap-
pear. Type I will return after that. The point of merger of the two critical
points is an (unsymmetrical) tricritical point, at which three phases become
identical, two liquid and one vapor phase. The phase rule forbids its occur-
rence in binary mixtures, except in the symmetric case, £ = 0. In a mathe-
matical representation of binary mixtures in terms of a continuously variable
parameter, however, tricriticality can occur even in the asymmetric binary.
Efremova, a member of Krichevskii’s group, was the first to experimentally
discover an asymmetric tricritical point in a ternary system. See Krichevskii
et al. (1963). Scott, Knobler and coworkers investigated the vicinity of tri-
critical points in quasi-binary systems in considerable detail. For a review,
see Knobler and Scott (1984).

Korteweg’s classification of special critical points, discussed in Ch. s, does
not include the tricritical point, but the possibility of tricriticality is men-
tioned in the text book by Van der Waals and Kohnstamm (1912). Also, Kor-
teweg discovered and recognized what is now called a symmetric tricritical
point in the symmetric Van der Waals model, see Ch. 7.3.5

For positive A, thus for relatively weak interaction between unlike mole-
cules, there is always phase separation in the liquid phase, as well as a three-
phase line where two liquid phases and one vapor phase coexist. All phase
diagrams have a minimum of two critical lines, one of which runs to high
pressures. Types II, III and IV fall in this category, and will be discussed
sequentially, beginning with Type II in Fig. 7.4 IL

In the case of Type II, the vapor-liquid critical line connecting the two
pure-component critical points is still present, but there is also liquid-liquid
phase separation, and liquid-liquid-vapor coexistence. A variant II-A exists
for small ¢ (small difference between the two components.) Here positive
azeotropy occurs: at given temperature, the vapor pressure of the mixture is
above those of the pure components, because the attraction between the
components is relatively weak.
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Figure 7.4 II Type II differs from Type I by the presence
of a liquid-liquid-vapor three-phase line (----) that ends
in an upper critical end point. From the UCEP, as the
pressure is raised, a liquid-liquid critical line (----) devel-
ops, running to lower temperatures while the pressure
increases steeply.

As the difference between the components increases, the critical points of
the two components are no longer connected by a critical line, and Type III
develops (Fig. 7.4 III). Characteristic of Type-III phase behavior is the criti-
cal line running to high pressure from the critical point of the least volatile
component. Variants of Type III have been encountered experimentally. For
instance, the critical line moving to high pressure may have a positive slope,
or it may move through a temperature minimum. Alternatively, in Type III ,
this critical line moves to lower temperatures, through a maximum and a
minimum in pressure, before moving to high pressure. In Type III-HA,
azeotropy is again encountered, but in this case it involves a vapor phase and
one of the two liquid phases. This is called heteroazeotropy. Positive het-
eroazeotropy manifests itself in the three-phase line lying above the vapor
pressure curves of the two components.

The Type-IV phase behavior is the most complex (Fig. 7.4 IV). Type IV
can be viewed as formed from Type III, when the minimum in the criti-
cal curve originating at the second component first touches in a double
critical point, then cuts through the three-phase line, thus forming two
critical end points. It can also be formed from Type II when on its vapor-
liquid critical line a three-phase region with two critical end points opens
after a passage through a tricritical point. Thus, we find Type IV bordered
by Types II and III in the global phase diagram. The small size of the
region allocated to it serves as a warning that it may be rather rare and

Fig. 7.4 1II Type III occurs in regions of Figs. (7.2) and

(7.3) where the attraction between the components is

Y quite weak (largeA). Starting at the critical point of the

first component, we note that saturation of the vapor-

liquid critical mixture occurs at a UCEP, just as in Type

, V. In this case, however, the three-phase line runs down

& to low temperatures and pressures. The liquid-vapor

/ m critical line, starting at the critical point of the second

4 component, moves towards infinite pressure, as the lig-
T uid-liquid critical line does in Type II.
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Figure 7.4 IV In Type IV, the three-phase line consists of
two parts. The upper part terminates in an UCEP and an
LCEP. A second UCEP terminates the lower part of the
three-phase line. There are two critical lines connecting
the components’ critical points with the upper ucer and
the LcEP. A third critical line runs from an UCEP to infi-
nite pressure

hard to find. A few examples have been found experimentally. A variant of
Type 1V, called Type IV*, occupying a region too thin to show in Fig. 7.2,
must separate Types I and III elsewhere in the phase diagram. The regions
II, III, IV and IV* meet at the special point, coined the Van Laar point by
Meijer (1989). See Fig. 7.6. For clarity, the plot grossly exaggerates the size
of the Type IV* region.

It is not always clear how to classify the observed phase behavior of a par-
ticular mixture. The reason is that the appearance of a solid phase may have
cut off part of the fluid phase diagram. Thus, a Type-II diagram might
appear to be of Type I, and a Type-IV diagram might be thought to be of
Type V.

MDP

Figure 7.6 The way four regions of different phase behavior meet at the Van Laar
point. Copied, with permission and minor modification, from Meijer (1989), Fig. 1.
Copyright American Institute of Physics. A schematic view is given of the meeting of
the Type II-IV phase diagrams at the Van Laar point (L) for the equal-6 van der Waals
equation. The following loci are shown. MDP: mathematical double point (primary
and accessory plaits exchange roles); App: a critical line just touches a three-phase line
in a double critical end point; Tr: a three-phase line with two critical end points
shrinks to zero at a tricritical point; gm: locus of the geometric-mean rule 4, =
V(a,4,), used by Van Laar (Ch. 7.5). This plot is not to scale. In reality, the regions of
Type IV and IV* are extremely narrow in extent.
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K&S (1980) also reported some calculations for the case of unlike excluded
volume, b, = 2b,, with linear mole fraction dependence of 4,, their Fig. 40.
The phase diagram is no longer symmetric with respect to £ = 0. The general
appearance of the global phase diagram has not changed much compared to
the constant-4 case. The geometric-mean locus, however, no longer passes
through the point where Types II, III and IV meet. We will come back to this
feature in Ch. 7.5.7. No novel phase behaviors were reported, except for the
fact that in a small region of parameter space systems display both a positive
and a negative azeotrope. Such systems have also been found experimentally.

7.2.5 When were these phase diagrams discovered? Having summarized the pres-
ent-day knowledge of the global phase behavior of the Van der Waals equa-
tion for binary mixtures, we now turn to the historical question: how were
these binary fluid phase diagrams first discovered from the Van der Waals
equation and from experiment?

The first calculations for the case of { = 0 were published by Korteweg in
1891 (Ch. 7.3), producing, in present-day language, Types I-A, II-A and III-A,
and four-phase equilibrium. Kuenen and Robson then made an essential exper-
imental contribution, discovering the Type-III and Type-V phase diagrams
between 1899 and 1903 (Ch. 7.4). Van Laar (1905a) modified the Van der Waals
equation in order to produce Type VI. In 1905 and 1906 he published a
sequence of calculations for the unmodified Van der Waals equation for binary
mixtures under the geometric-mean assumption (Ch. 7.5). He found Types II
and III, and proved the existence of Type IV as an intermediary between Types
IT and III. By 1906, all major types of phase diagrams and several of their vari-
ants had been mapped, and most of them had been found by experiment.

7.3 Korteweg and the Van der Waals symmetric mixture

7.3.1 The model. After developing the general theory of plaits, grp, see Ch. s,
the pioneer Korteweg applied his theory to the Van der Waals equation for
mixtures of two identical components, which he calls the symmetric mixture.
His work is thus confined to the axis £ = 0 in Figs. 7.2 and 7.3. The phase
diagrams he obtains differ from the ones for the asymmetric case, Fig. 7.4, in
that the vapor pressure curves of the two components fall on top of each
other. This implies that all phase diagrams must have a positive or negative
azeotrope, depending on whether the mixture vapor pressure is higher or
lower than that of the two components.

The parameter 4, varies with mole fraction through the quadratic mixing
rule, Eq. (4.5), with 4, a free parameter. Korteweg replaces it by the param-
eter », with
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N = ﬂlz /ﬂl; (% = 1 - A) (7'3)

as a measure of the relative strength of the unlike interaction compared to
that in the pure components.

Perhaps surprisingly, this highly artificial model of a binary mixture dis-
plays quite complex phase behavior, including a four-phase split. Korteweg
(1891b) himself expresses optimism that such systems can be found experi-
mentally. In a footnote, GTP p. 207, he lists quite a few pairs and even triplets
of substances having roughly the same critical pressures and temperatures,
such as nitrogen and carbon monoxide. Four-phase fluid equilibrium has,
however, never been reported in such simple systems. According to Van
Konynenburg and Scott (1980), optical enantiomers may be expected to obey
this model, but up to the present day, no such systems have been studied. In
Ch. 7.3.10, however, examples will be given of the relevance of Korteweg’s
model to phase separation in ternary mixtures.

For the case of » > 1 (negative A in Fig. 7.2), the attraction between com-
ponents is stronger than that characterizing each component, and the mixture
behavior is not very different from that of a pure component. It shows liquid-
vapor phase separation beginning at a temperature slightly above the critical
temperature of the two components.

As soon, however, as the interaction between the two components is
allowed to be weaker than that within each of the components separately, a
richness of phase behavior blossoms. The entire arsenal of behaviors of plait
points and plaits, catalogued by Korteweg (1881b) in the first part of Grp, is
displayed by the symmetric model: homogeneous and heterogeneous double
plait points, an osculation point, accessory plaits, a multiplicity of three-
phase regions, and even four-phase coexistence. The symmetry of the model
adds to the complexity. Events happen that Gibbs’s phase rule would forbid
in non-symmetric binary mixtures. Nevertheless, several features of phase
separation are intuitively clear.

Here, we will work through some of Korteweg’s pictorial examples of phase
separation in the symmetric mixture, being very light on the mathematics.

7.3.2 Kortewegs graphical representations. Throughout the paper, and like Van
der Waals, Korteweg uses molar volume V and mole fraction x as coordi-
nates, but contrary to the usage of Van der Waals, he plots the volume axis
horizontally, to the left, and the x axis vertically. The volume axis begins at
the right, at V' = b, where the pressure becomes infinite both for the pure
components and for the mixture. In every drawing, Korteweg also indicates
the line V'= 34, which represents the critical volume of the pure components.
With Van der Waals, Korteweg calls plaits running more or less parallel to
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the mole fraction axis transverse plaits, and he calls those running more or
less parallel to the volume axis longitudinal plaits. In each region, Korteweg
indicates the curvature of the transverse surface, and therefore its stability. In
blank regions the surface has positive curvature and is convex, and therefore
stable. If the surface is concave, and therefore not thermodynamically stable,
the region is shaded in gray. In the regions indicated in black, the surface has
negative curvature and is always unstable. Black regions are bounded by
spinodals, or they may terminate at the x = 0, x = 1, or V' = b axes.

For each x, or range of values of », Korteweg presents a sequence of
V-x diagram at decreasing temperature. For instance, all pictures labeled A
are for the range 0 < » < 1/9, but they are sequenced in order of descending
temperature.

The plait point locations follow from an equation of the 8 degree in vol-
ume. Without solving it, Korteweg is able to deduce the number and nature
of all plait points in each of the pictures he shows. Because of the model
symmetry, he is also able to calculate the connodal for the longitudinal plait.
Korteweg warns (GTp p. 323) that the pictures are not to scale, and that he
did not calculate numerically the spinodals and connodals because that
would take a lot of work of doubtful utility. Also, the scale would be very
awkward once the gas volumes become very large.

7.3.3 Strong attraction between the two components. For the case » > 1 (A neg-
ative), for which the attraction between the two components is stronger
than that for each of the pure components, the mixture behavior is rather
trivial, says Korteweg, who spends no more than half a page on this case
(cTP Sec. 22). Because of the relatively strong attraction between the two
components, the mixture will have no liquid-liquid phase separation, but as
the temperature decreases, there will be vapor-liquid phase separation like
the two pure components. Also, because of the stronger attraction, the mix-
ture has a higher vapor-liquid critical temperature than the pure compo-
nents. Beginning in the homogeneous region, as the temperature is lowered,
the first sign of a phase split is the appearance of a homogeneous double
plait point of the first kind (Ch. 5.4.2), at x = 1/2 and at a temperature 7,
given by

RTZ = RTI (1 + X) / 2, (7.4)

with 77} = (8/27R) (a,/b) the critical temperature of the pure components.
Obviously, for x larger than 1, the mixture critical temperature is higher than
that of the components, and for x smaller than 1 it is lower.

After the temperature falls below that of this homogeneous double plait
point, the latter splits into two critical points and these two move away from
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x = 1/2 towards smaller and larger x. Between them a vapor-liquid (trans-
verse) plait opens, as in Fig. 5.2. On further lowering of the temperature, the
two plait points reach the x = 0 and x = 1 axes at the critical points of the
two components. The transverse plait now runs over the full range from x =
0 to x = 1. It spans a larger range of volumes as the temperature falls, the lig-
uid phase getting denser, and the vapor phase expanding. At all temperatures
below the critical point, the vapor and liquid phase have the same mole frac-
tion at x = 1/2. This represents negative azeotropy: at fixed temperature the
mixture has a lower vapor pressure than the two components because of the
additional attraction between components. This is therefore a Type-I-A mix-
ture phase diagram of a peculiar type, the pure-component vapor pressure
curves falling on top of each other, and the critical line in P-7 space folding
back on itself at the negative azeotrope, x = 1/2 (see Fig. 7.5). The K&S dia-
gram in Fig. 7.2 confirms Type I-A behavior at negative A near the ¢ = 0 axis.

7.3.4 Weak attraction between the two components — three- and four-phase equi-
libria. As soon as the attraction between the components is weaker than that
in each pure component, that is, » < 1 and A positive, the model begins to
become interesting. At sufficiently low temperature, there is a/ways phase
separation in the liquid phase, and the sooner, the weaker the mutual attrac-
tion of the components. There are three different cases. If 4, is only slightly
less than «, the vapor-liquid plait will form at higher temperature than the
longitudinal plait (Case E). If 4, is much smaller than 4, the longitudinal
plait forms first, at higher temperatures than the transverse plait (Case A). In
both cases, the plaits will interact at low enough temperature, leading to the
three-phase region shown in Fig. 4.1. The third and most interesting case, for
an intermediate range of 4;,/a, is when the two plaits form at roughly the
same temperature and compete (Cases B, C, D). It is in this range that four-
phase equilibrium is found (Case D).

The longitudinal plait begins at the line V'= 4, at infinite pressure (Fig. 7.7).
The temperature at which it starts, 77', is given by

RT\' = (alb) (1 - %) =(27/8) (1 - ») RT; (7.5)

If the attractive interaction between the two components is weak enough,
» small, the dense mixture separates into two phases of different composition
at temperatures well above the critical temperature 77 of the two compo-
nents. Van der Waals (1890) proved the existence of such a plait for the gen-
eral case (Ch. 4.8.2). His expression for the temperature at which the longi-
tudinal plait first begins at V' = 4, Eq. (4.17), reduces to that of Korteweg,
Eq. (7.5), for this special case. From here on, we let Korteweg’s pictures,
Figs. 7.7-7.11, tell their own story.
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Figure 7.7 For weak attraction between unlike components, a longitudinal
plait is always present, and gives rise to a three-phase region and a transverse
plait as the temperature decreases. Copied from Korteweg (1891b), Plate XIII.

Fig A,

a3

Korteweg labels the case of x < 1/9 with the letter A. For this case, near the
top of the K&S diagram, Fig. 7.2, 71" is much larger than 77}, and thus the
longitudinal plait already appears at temperatures too high for the transverse
plait to exist. As the system cools, two accessory plaits form, and finally a full
transverse plait develops.

The fate of the longitudinal plait, marked A}, is quite interesting. As the
temperature falls, it grows to larger volumes. At a certain temperature, the
plait point splits into three plait points, two of the first, and one of the
second kind. Two accessory plaits form, and a three-phase region vapor-
liquid-liquid appears, see A,

The point at which the plait point of the longitudinal plait splits in three
(presently called a symmetric tricritical point) is the last stable plait point of
the longitudinal plait as the temperature falls. As the temperature decreases,
the two stable plait points trace two new critical lines that end at the criti-
cal points of the two components. The tricritical point is therefore also an
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Fig A,

UCEP with respect to the critical lines starting from the two components.
K&S classify this type of phase diagram in Fig. 7.2 and 7.3 as Type III-HA,
but it is considerably more complex than vintage Type III.

Korteweg gives an exact expression for the temperature 75" of the split-
ting-in-three of the plait point of the longitudinal plait as a function of x.
It is important to emphasize that although Korteweg (1891b), in a footnote
on p. 325, recognizes the splitting plait point as one where three critical
points coincide, it is zor listed among the special plait points identified and
described by him.

In A;, the accessory plaits move to the two sides x = 0, x = 1, which they
reach at the critical temperature 7] of the pure components, see A;. At lower
temperatures, the transverse plait, thus formed from the longitudinal plait,
just widens, while the three-phase region persists, see Ay.
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Figure 7.8 The attraction between the components is stronger than in Fig. 7.7,
and the transverse plait forms from the sides x = 0 and x = 1, meeting the
longitudinal plait midway. Copied from Korteweg (1891b), Plate XIV.

In the range of 1/9 < » < 5/13 (0.889 > A > 0.616, labeled B in the
Korteweg drawings), still well above the shield region, accessory plaits have
formed by the longitudinal plait point’s splitting in three, giving rise to two
regions of three-phase coexistence just as in the case of Fig. 7.7. Here, how-
ever, transverse plaits begin at the sides before the accessory plaits have
reached that far, case B;. The formation of an ucer, which is the point at
which the longitudinal critical line ends and two new critical lines begin as
the temperature is lowered, is no different than before, and the phase
diagram is again of Type III-HA.

The budding transverse plaits meet the accessory plaits halfway, case B,.
The pairs of critical points «; and o5, o, and a4 meet in homogeneous criti-
cal double points (Ch. 5.4.2) and disappear. At lower temperatures, the com-
bined transverse-longitudinal plait just widens while the three-phase region
remains, case Bs.
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Figure 7.9 The attraction between the components is almost as large as that
in each component. Copied from Korteweg (1891b), Plate XV.

For » almost unity, case E, the transverse plait forms fully while the longi-
tudinal plait is still small. The transverse plait cuts the spinodal of
the longitudinal plait in two points, and a three-phase region results, as
discussed by Van der Waals (1890), see Ch. 4.8.3 and Figs. 4.1 and 4.2¢, and
by Korteweg, see Ch. 5.5.6 and Fig. s.1o. There still must be positive
azeotropy. This represents Type-II-A phase behavior, just as indicated by
K&sS for the region of small positive A, and for ¢ near 0, see Fig. 7.3.
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Figure 7.10 In the region of 0.534 < » < 0.67, the longitudinal and trans-
verse plaits develop at roughly the same temperature, and meet in a com-
plex fashion in the center of the phase diagram. Copied from Korteweg
(1891b), Plate XIV.

In Dy, the three plaits move towards the center, and each develops two acces-
sory plaits, for a total of six plait points in the stable region. The accessory
plait on the two parts of the transverse plait form from heterogeneous dou-
ble plait points on their spinodals (Ch. 5.5.4 and s.5.7, Figs. 5.7 and s5.12),
while the one on the longitudinal plait is formed as before, by a splitting into
three plait points. As the temperature continues to drop, the plait points
merge in pairs, o; with a3, o, with oy, and a5 with o4, forming homogeneous
double plait points, and then disappear. Afterwards, a stable region of posi-
tive curvature is enclosed inside the unstable region.

In Dy, three three-phase regions, alternating with three two-phase
regions, radiate out from a tiny one-phase region in the center, which is part
of the region of positive curvature that has been separated and pinched off
from the original stable vapor phase. Three additional two-phase regions
exist further from the central region. This figure can form from Dy, in
different ways, depending on the value of x. At a special point, » = 0.565,
the plait points «; and «3 join, snapping the two transverse plaits together;
simultaneously, the pairs a5 and o4, «, and o4 join, which snaps each trans-
verse plait to the longitudinal plait. Above or below this value of %, these
two events are not simultaneous, the order depending on whether » is above
or below the special value.
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Figure 7.11 Formation of a four-phase region. Copied from Korteweg (1891b),
Plate XIV.
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From case GTP Ds, as the temperature drops, the central convex region of the
surface shifts upwards, the small central stable one-phase region shrinks to a
point, the two-phase regions collapse, and the three-phase regions all fall in
the same tangent plane. Only one tangent plane is left, touching the surface
in four points. Two liquid phases of small molar volume and of mole fractions
close to x = 0 and x = 1, coexist with two phases at x = 1/2, one a vapor phase
of large molar volume, the other a phase of intermediate molar volume.

After the system passes through this four-phase point to lower tempera-
tures, the region of positive curvature enclosed inside the spinodal region
pulls up from the tangent plane, and is not longer touched, so only one
three-phase triangle is left, as in other cases such as A4 in Fig. 7.7, Bs in Fig.
7.8, and E in Fig. 7.9. Korteweg also mentions that as the temperature
decreases, the region of positive curvature contracts to an osculation point,
after which the region reappears as concave.

According to Korteweg’s analysis, the characteristic distinguishing what is
presently called the shield region is the occurrence of four-phase coexistence.
Significantly, Korteweg (GTP p. 333) stresses that the occurrence of a quadru-
ple tangent plane is 7o a consequence of the symmetry of the model, and
should still happen even if the two components are not identical. For the Van
der Waals equation, Wei and Scott (1988) have shown that indeed a skewed
shield region occurs even in highly asymmetric binary mixtures. Das and
Griffiths (1979) detected a shield region experimentally, in a five-component
(1) liquid mixture.
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7.3.5 Relevance of Korteweg’s work — ternary mixtures and the three-state Potts
model. The phase separation of three-component mixtures containing both
liquid and solid phases was studied extensively by Bakhuis Roozeboom
and his school in the early years of the 20™ century. This school did not
base its work on mathematical models. They applied Gibbsian thermody-
namics in an intuitive, phenomenological fashion. The third volume of
the Bakhuis-Roozeboom series was published after his death by Schreine-
makers (1913) and devoted entirely to ternary systems. Meijering (1951), at
the Philips Physical Laboratory in the Netherlands, invoking Korteweg,
modeled the Gibbs function of incompressible ternary solid solutions, and
studied the phase behavior of a symmetric mixture of three identical com-
ponents.

Shortly thereafter, statistical physics turned to the study of the three-
dimensional Ising model, which, for the present purpose, may be seen as a
model for phase separation of two components A and B, molecules of each
singly occupying sites on a regular lattice. Only molecules placed on adjacent
lattice sites attract each other. If the attraction between A and B molecules is
weaker the average of the attraction between A-A and B-B pairs, the system
will segregate itself at low temperatures, passing through a consolute critical
point. There is a complete analogy with the criticality of a one-component
compressible system. The lattice gas is an Ising model for which particles and
holes, or empty spaces, are placed on the lattice.

The emphasis of the studies of the Ising model was the peculiar nature of
criticality, departing from the classical picture of Van der Waals and Korte-
weg. This topic is discussed in Ch. 9. Once the criticality of the Ising model
was elucidated, it became of interest to know the nature of criticality in a
three-component mixture. A generalization of the Ising model had been
introduced by Potts in 1951: a lattice point can be occupied by one of n dif-
ferent molecules. The three-state Potts model is a model for the phase behav-
ior of a three-component liquid or solid mixture, and by replacing one of the
components by ‘holes,” it is a model for a binary compressible system such as
the one studied by Korteweg.

The scientists who studied this model began quite naturally by studying
the mean-field version of the three-state Potts model. Here, we limit our-
selves to studies of a special case, the symmetric three-state Potts model. This

Figure 7.12 The correspondence between the passage through the shield region of
the symmetric three-state Potts model, left column, and that of the symmetric Van
der Waals binary fluid mixture. The figures in the right column are from Korteweg
(1891b), Plate XIV. The figures on the left were copied, with permission, from Stra-
ley and Fisher (1973, Fig. 10. Copyright (1973) Institute of Physics.
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is a model for three identical components, the mutual interaction between
components described by one free parameter. Analytic results were obtained
by Straley and Fisher (1973). Das and Griffiths (1979) established the phase
behavior numerically, by means of a digital computer.

The symmetric three-state Potts model is of higher symmetry than the
Korteweg symmetric Van der Waals model, in which only two components
are identical. Nevertheless, the two models show a striking similarity. As was
mentioned in Ch. 7.2.3, the three-state Potts model shows a region of four-
phase coexistence, the shield region. In fact, in the region of values of the free
parameter where such four-phase coexistence is found, the mixture passes
through the same stages as the Korteweg model. This behavior is illustrated
in Fig. 7.12.

The symmetric Van der Waals mixture studied by of Korteweg thus was
the prototype for ternary-mixture phase behavior. The historic sequence,
from 1891 to 1979, is summarized in Fig. 7.13, which shows the analog of
Korteweg’s case of Dy, compared to ternary mixtures studied throughout the
20t century. Note that in contrast to the later researchers, Korteweg includes
the metastable and unstable regions.

7.3.6 Was Korteweg right? Korteweg’s GTP paper suffers from some errors in
the equations. According to Levelt (2001), TP Egs. (17) and (19) are incor-
rect, while several other equations contain typos. There is evidence that these
mistakes have not affected the conclusions about the = 0 case. The observed
phase behaviors agree with those reported by Furman and Griffiths and by
K&sS, and numerical results that can be compared mostly agree.

Translated in terms of K&S variable A (£ 1 - »), Korteweg’s region of
four-phase coexistence region, for = 0, ranges for A from 0.33 to 0.466,
and the special point is at A = 0.435. For the extent of the shield region in
the symmetric system, K&S (1980, p. 528) cite 0.3478 < A < 0.4666, and for
the special point in the center, A = 0.4364. These numerical results were due
to Furman and Griffiths (1978). The agreement is striking. Levelt (2002)
found that the discrepancy in the lower bound is to due to a sign error in the

last term of Eq. 88 in Korteweg (1891Db).

Figure 7.13 Korteweg’s symmetric Van de Waals mixture: a prototype for 20th centu-
ry studies of phase transitions in ternary mixtures. Copied from Korteweg (1891b),
Plate XIV. The picture by Schreinemakers (1913) was copied from his Fig. 9o. The
picture by Meijering (1951b) was copied from his Fig. 26. The picture by Straley and
Fisher (1973) was copied, with permission, from their Fig. 10. Copyright (1973) Insti-
tute of Physics. The picture by Das and Griffiths (1979) was copied, with permis-
sion, from their Fig. 1. Copyright American Institute of Physics.
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7.3.7 Outlook. By choosing to work on the symmetric Van der Waals mixture,
Korteweg may not have anticipated how complex its behavior would turn
out to be. The more respect does his work command. Much of the work was
done analytically. The evolution and merging of plaits was studied exhaus-
tively. The model exemplified the transformations of plaits that Korteweg
(1891b) had catalogued. Azeotropic versions of three of the five types of bina-
ry fluid mixture phase diagrams, namely I, II and III, were found.

It is quite possible that physicists in Amsterdam and Leiden were intimi-
dated by the model’s complexity. After proving the existence of the longitu-
dinal plait in 1890, Van der Waals turned to other aspects of mixture behav-
ior, such as the variation of fluid properties along phase boundary curves.
The Leiden scientists were reluctant to use the Van der Waals mixture equa-
tion anyway because of its lack of accuracy in representing experimental data.
Almost fifteen years passed before Amsterdam chemist Van Laar took up the
binary-mixture Van der Waals equation again and brought it to the point of
applicability in real fluids, as will be described in Ch. 7.5. Van Laar knew
Korteweg’s theory of plaits, but his inspiration came from Kuenen’s new
experimental work.

7.4 Kuenen, in Scotland, discovers new types of phase behavior

7.4.1 Kuenens career. After he received his doctorate in 1892, Kamerlingh
Onnes’s student Kuenen, featured in Ch. 6, served for another two years as
the conservator of the Physics Laboratory, and then assumed a postdoctoral
position at Ramsay’s laboratory in London. He received a professorship at the
physics department of University College, Dundee, Scotland and worked
there from 1895 to 1906, returning to the University of Leiden as a professor
of physics in 1907. Kuenen was elected to the Royal Netherlands Academy of
Arts and Sciences (kNaw) in 1911, and to the Holland Society of Sciences and
Humanities (HMW) in 1915.

7.4.2 Aqueous three-phase mixtures. By the time Kuenen brought his Scottish
laboratory to the operational stage, quite a few researchers were experiment-
ing with three-phase mixtures. Kuenen and Robson (1899) begin their report
with an extensive review of experimental knowledge available at that time.
The simplest way to study a three-phase system was to measure the vapor
pressure of a system of two components only partly miscible in the liquid
phase, so that one vapor phase and two liquid phases coexist from the outset.
A mixture of ether and water was a favorite object of study. Because ether is
so much more volatile than water, however, the vapor pressure of this mix-
ture at ambient temperature is almost the same as that of pure ether
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Konowalow and Bakhuis Roozeboom had reported a few studies of the vapor
pressure of other three-phase systems.

Quite a few reports on the mutual solubility of partially miscible liquids
with water as a component had appeared as well. In many cases it had been
found that on increasing the temperature the mutual solubility increased,
until a so-called consolute critical point was reached where the liquids
became fully miscible. In some cases, the solubility increased when the tem-
perature was lowered, leading to a lower consolute critical point. In the
1890s, this disappearance of the difference between two coexistent liquid
phases was already recognized as being analogous to vapor-liquid criticality.
Scientists in those days generally left the vapor phase out of consideration,
perhaps because they did not expect that the mole fractions of two incom-
pressible liquid phases could depend much on the feeble vapor pressures in
the glass vessels in their laboratories. Kuenen, raised on Gibbsian thermody-
namics, knew well that at given temperature the equilibrium between two
liquid phases is a function of pressure, and therefore not defined unless the
pressure is fixed, or a vapor is present.

7.4.3 Three-phase critical endpoint — heteroazeotropy. Kuenen and Robson
(1899) were looking for cases for which liquid-liquid phase equilibrium can
interfere with gas-liquid criticality. They were the first to suggest that instead
of the difference between two partially miscible liquids disappearing at a con-
solute point, one of the liquid phases might become critical with respect to a
vapor phase.

Kuenen and Robson (1899) made use of a modified Cailletet apparatus
provided with a stirrer. They used mercury-in-glass thermometers. Pressures
up to 3 atmospheres were measured on an open mercury manometer. For
higher pressures, they used air pressure manometers described in Ch. 6.1.
Their first measurements concerned the then-popular system ether-water,
which has two liquid layers. At all temperatures studied, they found that the
mixture had a vapor pressure higher than that of the two components, an
example of positive heteroazeotropy. The vapor composition is between that
of the two liquid phases and becomes equal to that of one of the
liquid phases at the azeotropic point. The authors pursued the three-phase
region up to 201°C, at which temperature the vapor and one liquid phase
became critical in the presence of the second liquid phase. This critical end
point occurred close to the critical temperature of pure ether, but at slightly
higher pressure. No liquid-liquid consolute point was found in this experi-
ment. The vapor-liquid critical point of the aqueous phase was out of reach,
both because of the pressure limitations of the apparatus, and because of the
destructive action of the fluid on the glass tube at the higher temperatures.
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Ethane. z. Alcohol.

Figure 7.14 The phase behavior of the system
ethane-ethanol in a V-x diagram at a chosen
temperature. Copied from Kuenen and
Robson (1899), Fig. 6. The triangle repre-
sents the three-phase region. In P, two
phases of different molar volume but almost
the same mole fraction, mostly ethane,
become critical at a vapor-liquid critical
point. The connodal ¢-Pi-b is part of a
transverse plait, which runs from the vapor-
. liquid state of pure ethanol, interrupted by

. the three-phase region, to terminate at P;. In
P,, two phases of almost the same small
Y molar volume (high density) but different
mole fraction become identical at a liquid-
liquid critical point. The connodal b-P,-a is
thus part of a longitudinal plait.

7.4.4 Mixtures of ethane and alcohols — discovery of Type V. Next, Kuenen and
Robson (1899) initiated a systematic study of phase behavior of ethane mixed
with members of the homologous series of alcohols: methanol, ethanol, iso-
propanol and butanol. Alcohols were known to associate in the vapor phase,
and were therefore not expected to fit in with the Van der Waals equation.
For the ethane-methanol system, the authors always found two liquid phas-
es, not only above ambient temperature but even down to -78°C, the tem-
perature of dry ice (solid carbon dioxide at atmospheric pressure). This sys-
tem does not display azeotropy. Thus, the mole fraction in the vapor is
always outside that in the two liquid phases, the vapor pressure at the three-
phase line is between those of the pure components, and three-phase coexist-
ence appears to reach down to very low temperatures.

In the ethane-ethanol system at fixed temperature, the authors again
found a region of three-phase coexistence. At fixed temperature, the V=x dia-
gram looks as shown in Fig. 7.14.

Contrary to the ethane-methanol system, the three-phase region in P-7°
space is bounded by rwo critical end points. The three-phase line begins at a
liquid-liquid consolute point on the ethane-rich side at 31.9°C, a lower crit-
ical endpoint (Lcep). The three-phase line ends at a vapor-liquid critical
point on the ethane-rich side at 40.7°C, an upper critical end point (Ucep).
The latter lies well above the critical temperature of pure ethane, 32°C
according to the authors.
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In the next system, ethane and propanol, the miscibility of the two com-
ponents in the liquid phase is improved even further, and the three-phase
region spans only a few degrees in temperature, from 38.7 to 41.7°C. In this
case, the authors measured a large stretch of the critical line beginning at the
lower critical end point and moving to the critical point of the second com-
ponent (Fig. 7.15).

This phase diagram, discovered experimentally by Kuenen and Robson,
is currently called a Type-V phase diagram in the terminology of K&S.
Note that one critical line begins at a liquid-liquid critical end point, Cs,
and ends at a vapor-liquid critical point, C,. This feature is a beautiful
illustration of the principle of continuity of states. Liquid-liquid and lig-
uid-vapor phase transitions in fluid mixtures are not sharply distinct.
Along the right branch of the critical line in Fig. 7.15, the character of the
phase transition changes continuously, from a difference mostly in density
at the critical point of the less volatile component to a mostly composi-
tional difference between the phases near the lower critical end point.
Within the framework of the Van der Waals equation, however, there is an
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Figure 7.15 The phase behavior of a mixture of ethane and propyl alcohol (propanol)
represented in the pressure-temperature plane. Copied from Kuenen and Robson
(1899), Fig. 8. C, is the critical point of pure ethane, C, that of pure propanol. A
critical line runs from C; to the upper critical end point C,. Another critical line
runs from C, to the lower critical end point C;. A three-phase line begins in the lig-
uid-liquid critical end point C; and ends in the vapor-liquid critical end point Cg.
From Kuenen and Robson (1899), Fig. 8, p. 199.
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underlying competition between two plaits, which is played out on the
metastable and unstable parts of the free energy surface in the temperature
region where the three-phase line occurs. Near the top of the three-phase
line in Fig. 7.15, the principal plait is a vapor-liquid plait, but a closed-loop
accessory liquid-liquid plait has just protruded into the stable region. Near
the bottom of the three-phase line, the situation is reversed. As the tem-
perature is lowered, the plaits have exchanged roles at a mathematical dou-
ble point, and the liquid-liquid plait is now the dominant one, exactly as
portrayed by Korteweg, Fig. 5.12. See also Meijer (1999). This interpreta-
tion, however, was not given by Kuenen at that particular time, because his
approach was entirely experimental. It is Van Laar who would make this
connection (Ch. 7.5).

7.4.5 Ethane and methanol — Tjpe 111. Kuenen’s next coup was the experi-
mental discovery of yet another type of phase diagram, currently called Type
II1. Kuenen (1903) went back to the mixture of methanol and ethane, which
apparently had only an upper, but no lower bound for the three-phase line.
He posed the question of what would happen to the critical line emerging
from the critical point of methanol, if it had nowhere to connect to on the
three-phase line. In 1903, Kuenen’s apparatus had been improved to the point
that he could start his measurements at the methanol critical point of 240°C.
Also, he could reach much higher pressures, well above 150 atmospheres.
Kuenen thus measured a sizeable portion of the critical line starting at the
methanol critical point (Fig. 7.16).

This is the Type-11I,, phase diagram mentioned in Sec. 7.2, for which
the critical line originating from the critical point of the less volatile com-
ponent moves to lower temperatures, with a maximum and minimum in
pressure.

In other variants of Type-III behavior, discovered later, the critical line
moves to higher pressures immediately, with or without a minimum in
temperature. It is therefore possible for this critical line to move to tem-
peratures higher than the critical temperatures of the two components.
Thus, certain fluid mixture with very weak attraction between unlike
components can unmix at temperatures well above the critical tempera-
tures of the individual components. As mentioned on several occasions,
Van der Waals (1890) and Korteweg (1891b) noticed this possibility when
they discovered the existence of the longitudinal plait even above the
critical temperatures of the two components (Fig. 7.7, A;). Nevertheless,
forty years would pass until, for the first time, Krichevskii and Tsiklis
(1941) measured binary mixture phase separation above the critical tem-
peratures of both components in the system ammonia-nitrogen. This
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Figure 7.16 The critical line of the system ethane-methanol starting at the methanol
critical point. Copied from Kuenen (1903), Fig. 1. This critical line has the following
features. In anthropomorphic terms not due to Kuenen, it moves to lower tempera-
tures. On the way, it passes through a high maximum in pressure, well above the
critical pressures of either component. It then descends towards the critical point of
ethane, but ‘discovers’ that the critical point is already connected to another critical
line. It reconsiders, turns around, and departs for infinite pressure. Copied from
Kuenen (1903), Fig. 1, p. 641.

phenomenon is called gas-gas phase separation, and is pursued further in
Ch. 8.

Kuenen thus discovered experimentally two new types of phase behavior,
Type V and Type III, both with three-phase coexistence.

From the beginning, Kuenen refrained from calculating the phase behav-
ior from Van der Waals’s theory of mixtures. His stated reason was that he
found the Van der Waals equation too crude even to describe the behavior of
the pure components, let alone the mixtures with associating components
that he was studying.

It is obvious that the model of a phase diagram with three-phase
coexistence, present in Van der Waals’s (1890) paper on mixtures, had
been very inspirational to the Leiden experimenters, leading them to
the discovery of new types of three-phase coexistence. No equivalent,
however, existed of Korteweg’s treatment of the symmetric Van der Waals
mixture that could generate from theory the phase diagrams found by
Kuenen in real mixtures. Theoretical chemist Van Laar would accept this
challenge.
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7.5 Van Laar calculates the global phase behavior of the Van der Waals mixture

7.5.1 Qverview — biographical notes. An English-language biography by Van
Emmerik (1991) details the difficult life of Johannes Jacobus van Laar (1860-
1938), who was orphaned at an early age. Before he had finished high school,
where he had excelled in chemistry, Van Laar’s guardian uncle sent him to
the Royal Naval Institute, where he received extensive training in mathe-
matics. After a few years of life on board ship as a naval officer, Van Laar
convinced his uncle that he should resign from the Navy, and he was hon-
orably discharged in 1881. Encouraged by a personal encounter with Van
't Hoff, he began taking classes at the University of Amsterdam. He studied
physics, chemistry and mathematics in 1881-1882, but was not allowed to
take examinations because of his insufficient high school preparation. He
adored Van der Waals, considered himself as his pupil, and yearned to be
part of the inner circle of the University faculty. Thanks to a recommenda-
tion by Van der Waals and his credentials in mathematics as a former naval
officer, Van Laar obtained a teaching position at a uHBs in Middelburg in
1883. There he taught mathematics until 1895 and fathered five children.
Feeling very isolated on this island far south of Amsterdam, he taught
briefly in Utrecht and then fell ill, leaving the family to subsist on a pension
amounting to roughly 1/3 of his Middelburg salary. Despite these difficult
circumstances, he published half a dozen textbooks on high school- and col-
lege-level mathematics, chemistry and thermodynamics between 1887 and
1904. He was repeatedly refused an academic teaching position in Utrecht
because he lacked a doctorate. Finally, in 1898, he was admitted as an
unsalaried lecturer of mathematical chemistry at the University of Amster-
dam. By that time, his relation with Van der Waals began to deteriorate, and
he was passed over for several paid positions in the next ten years, due to
opposition by Van der Waals. Van Laar departed for Switzerland in 1911,
where he spent the rest of his life. He was elected to the Holland Society of
Sciences and Humanities, HMW, in 1910. He was granted his first doctorate
— an honorary one — from the University of Groningen in 1914. In 1929, for
his contributions to the theory of phase equilibria, Van Laar was honored by
his native country with the prestigious Bakhuis Roozeboom medal. One
year later, at the age of seventy, he was elected to the Royal Netherlands
Academy of Arts and Sciences (kNaw).

Van Laar published profusely on the thermodynamics of fluids and solids.
He made original contributions to the theory of electrolytes. Here, we will
review several of about a dozen publications written between 1905 and 1906,
in which he proved that the phase diagrams, which had been experimentally
found for binary mixtures with at least one anomalous (associating) compo-
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Johannes Jacobus van Laar in 1910.
Copied with permission of the Boerhaave Museum, Leiden.

nent, could be derived from the Van der Waals equation. This work was car-
ried out in three steps.

First, Van Laar (1905a) considered the phase behavior of a binary partially
miscible liquid, with water one of the components. He introduced associa-
tion into an approximate Van der Waals equation, and was the first to pro-
duce closed-loop coexistence curves from an equation of state.

Next, using the magical intuition about phase diagrams then flourishing
amongst the chemists in Amsterdam, Van Laar (190sb) sketched out the phase
diagrams for the Type III- and Type V-cases studied by Kuenen, in a variety
of coordinates. He speculated about the form of the transition between Type
IT and Type III, which we presently call Type IV.

Then, in a sequence of four communications to the Proceedings of the Royal
Netherlands Academy, Van Laar (1905¢, 1905d, 1905f, 19062) systematically
worked out the phase behavior of the Van der Waals equation for equal exclud-
ed volume of the components and the mixture, under the geometric-mean
assumption for the attraction. He derived exact, relatively simple equations for
the spinodal and the critical line. He showed that the critical line crosses over
itself at a special point in the phase diagram, later coined the Van Laar point by
Meijer (1989), and gave exact results for the coordinates of this point.
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In a major paper in the Archives of the Teyler Museum, in French, Van
Laar (1906a) summarized his results, added some proofs omitted earlier, and
generalized to unequal excluded volume. Finally, he proved the existence of
the Type IV phase diagram.

Many of Van Laar’s papers, including some of the ones discussed here,
have appeared in multiple languages. In those cases, given the availability of
a full bibliography by Van Emmerik (1991), we cite only the English version,
usually published in the Proceedings of the Royal Netherlands Academy of
Arts and Sciences.

Van Laar was not allowed to make his own presentations at the Academy,
as he was not a member. Van der Waals presented his earlier papers, until
about 1903, when their relationship soured. Bakhuis Roozeboom sided with
Van Laar and avoided contact with Van der Waals after that time, see Van
Emmerik (1991), p. 32. Two professors at the University of Leiden, physicist
Lorentz and chemist Schreinemakers, also volunteered to present Van Laar’s

papers.

7.5.2 Partial miscibility in associating mixtures — ‘especially water.” Korteweg and
Van der Waals derived liquid-liquid phase separation from a molecular model
and found that separation always occurs if the attractive interaction of the
unlike partners is weaker than the average of that in each of the components.
This model, however, could not explain the Jower critical consolute points
observed in many aqueous mixtures, such as triethylamine and water. Van
Laar (1905a) presents a modification of the Van der Waals equation that can
give lower critical points, and even closed-loop coexistence curves (Type VI in
Fig. 7.4). He begins with an approximation made earlier by Van der Waals to
obtain an expression for the Gibbs energy suitable for liquid mixtures near
close packing, where pressure effects on the volume are minimal. Van Laar
now reasons on the basis of the observation that the molar volume of liquid
water increases anomalously as the temperature drops below 4°C. He ascribes
this phenomenon to association of water molecules, which he assumes are
forming pairs that have a much larger excluded volume than twice that of a
single molecule.

Van Laar interpolates for the degree of dissociation between full associa-
tion at low temperatures and no association at high temperature, and calcu-
lates the effect on the Gibbs energy. The result is a rich set of binary phase
diagrams, shown in Fig. 7.17, including one in which a plait is beginning at
a homogeneous double critical point, and one that has a closed-loop coexis-
tence curve.

Van Laar thus invoked the additional mechanism of association, to obtain
closed-loop liquid-liquid phase separation from a Van der Waals-like equation
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Figure 7.17 T-x phase diagram for binary liquid mixtures with an associating com-
ponent. Copied from Van Laar (1905a), Figs. 1-7. Depending on the functional form
of the temperature dependence of the degree of association, different types of liquid-
liquid phase separation result. The top left drawing shows an ordinary longitudinal
plait. Above it, however, a homogeneous double plait point B,C has appeared. As
the temperature dependence of the association constant is modified, the homo-
geneous double plait point splits and a region of closed-loop phase coexistence
develops (top middle drawing). Further modification of the temperature dependence
of association gives rise to the other phase behaviors displayed.

of mixtures. This reinforced the notion of a division into ‘normal’ and
‘anomalous’” substances, which had guided Kuenen’s choice of experimental
systems worthy of study. Whether the Van der Waals equation by itself could
actually produce the different types found experimentally, away from the
pristine starting point of Kortewegs mixture of identical components, still
remained an open question.

7.5.3 “The different forms and transformations.” Van Laar (1905b) sketches out
how he believes the full phase diagrams resulting from experiments must
look. He demonstrates deep insight by remarking that the evolution of phase
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diagrams in incompressible anomalous liquid mixtures due to changing the
degree of association might likewise be achieved by changing the pressure in
compressible fluid mixtures.

Van Laar classifies the phase diagrams found experimentally in three types,
using different Roman numerals than K&S. We preferably use the K&S ter-
minology here, but will add (vL) to the Roman numeral when referring to
Van Laar’s types. The three types postulated by Van Laar, which he claims are
in agreement with Kuenen’s data, are shown in Fig. 7.18.

This same paper presents an opportunity to admire Van Laars (1905b)
mastery of drawing fluid phase diagrams. Fig. 7.19 shows a dazzling render-
ing of a Type-III phase diagram in P-7-x space. Van Laar states in a footnote
that he first saw this diagram in a presentation by Biichner, a graduate stu-
dent of Bakhuis Roozeboom, who had not published it. The P-x sections
shown, however, are from Van Laar’s own hand.

Van Laar’s (1905b) last page raises the question of whether, following the
classification of a multiplicity of phenomena, a still farther synthesis, a high-
er unity, could be achieved. Since all fluid phases are following from one
equation of state, he claims it should be possible to classify the different
phase diagrams solely on the basis of the critical temperatures and critical
pressures of the two components. This is what he sets out to do.

B 4

Figure 7.18 Three different types of binary-mixture phase diagrams. Copied from
Van Laar (1905b), Figs. 13a-c. The left figure we recognize as Type III,,,. Van Laar cor-
rectly compares it with Kuenen’s plot for the ethane-methanol mixture, our Fig.
7.16. The right one is an odd-looking Type II. The middle figure shows a speculative
intermediary between Type II and Type III, and is a correct Type-1V phase diagram.
Van Laar compares its upper portion (unjustifiably, as we will see) with Kuenen’s
plot for the system ethane-propanol, our Fig. 7.15.
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Figure 7.19 P-T-x diagram for a Type-III, binary mixture. Copied from Van Laar
(1905b), Fig. 4. The vapor pressure curve of the first component, D, runs to the
critical point C;. That of the second component, D,, runs to the critical point C,.
A short piece of critical line runs from C; to M, the critical end point. Three phases,
1, 2 and 3, of different composition exist to the left of the critical line C;M.
A critical line starting at C, runs to lower temperatures, passing through a maximum
and a minimum in pressure before moving to high pressure.

7.5.4 ‘An exact expression.” Van Laar (1905¢) decides to renounce all forms
of approximations he made in his earlier paper on liquid-liquid immisci-
bility, when he created an approximate Gibbs energy. In the first in a
sequence of four papers, Van Laar (1905¢) derives explicit, closed-form
expressions for the isothermal spinodal curves in V-x space, and for the
critical line in 7, V, x space for the geometric-mean Van der Waals mixture
equation. He assumes that the excluded volume interpolates linearly
between those of the two pure components. Usually, but not always, & is
considered a constant.
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Instead of using the Helmholtz energy and finding the spinodal from set-
ting the Hessian equal to zero, Van Laar makes a point of using the Gibbs
energy, for which the criticality conditions have a simpler form, Eq. (4.16).
His first exact result, obtained for linear dependence of 4 on composition, is
a closed-form expression for the temperature of the spinodal in terms of vol-
ume and mole fraction. For each temperature, then, the V-x projection of the
spinodal is determined. At this point, Van Laar gives reference to Van der
Waals’s (1890) paper on mixtures, which indeed gives an implicit expression
for the 7-V-x relation of the spinodal in Appendix L. It is not immediately
transparent that it would reduce to Van Laar’s simpler expression under the
geometric-mean rule. See, however, Ch. 7.5.s.

Following Van der Waals and Korteweg, and giving credit to the former,
he introduces the third critical temperature 75, at which a longitudinal plait
first appears on the surface at V= &; this happens for x = 1/2 if the excluded
volumes are the same, but favors the component with the smallest excluded
volume if this is not the case. Van Laar labels it as C,. Next, after extensive
formula manipulation, Van Laar obtains an algebraic equation for the pro-
jection of the plait point curve (critical line) onto the V-x plane, an expres-
sion of the fourth degree in volume and in mole fraction. The plait point
temperature as function of volume and mole fraction is then obtained from
the expression for the spinodal. It is of the fifth degree in volume and quad-
ratic in mole fraction.

7.5.5 Van Laar finds a singularity in the plait point curve. Van Laar (1905d)
belatedly checks the earlier, implicit expression for the spinodal in Van der
Waals’s (1890) paper on mixtures. Indeed, it agrees with his own expression
after the mole fraction derivatives of the mixture parameters occurring in Van
der Waals’s paper are duly calculated for the geometric-mean assumption.
But Van Laar strenuously defends priority for his equation for the projection
of the plait point curve on the V-x plane. Van der Waals produced only an
approximate rule for its shape, he writes, while Korteweg’s expression is
much more complicated. The semi-deferential, semi-aggressive tone of the
introduction to the paper is a sign that Van Laar is under stress.

Curiously, Van Laar expresses the opinion that his equation is so much sim-
pler because he started from the Gibbs free energy. This cannot be true, how-
ever, since the Helmholtz and Gibbs energy are equivalent alternatives. Recent
work by Meijer ez al. (1993), and by Levelt (1995), using computer algebra,
proves that the simplicity results from the exclusive use of Van Laar’s geomet-
ric-mean rule. Van Laar (1905a) considers this rule ‘approximately exact.’

The fascinating and profound part of this paper begins in the second sec-
tion, and is, from now on, restricted to the case of equal excluded volume for
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the components and the mixture, and, as always, to the geometric-mean rule
for a,,. The equations for the temperature of the spinodal and the plait point
curves’ projections on the V-x plane then simplify to the point that Van Laar
can calculate them.

Van Laar uses the third critical temperature 7j as the unit for his temper-
ature scale, and introduces the parameter ¢:

o =Va, INa, - Va,) (7.6)

This parameter represents an alternative way of expressing the difference
between the two components, instead of the parameter { used by K&S. The
smaller ¢, the larger the difference between the two components.

In terms of ¢, the ratio of 7, the critical temperatures of the two compo-
nents to the third critical temperature is given by

T\ T, = (16/27) o Tyl Ty = (16/27)(1 + °) (7.7)

Van Laar now calculates the projection of the plait point curve onto the
V-x plane for two characteristic values: ¢ = 1 (2,/a, = 1/4), and ¢ = 2 (a,/a,
= 4/9). Especially for the case of ¢ = 1, the second component is extremely
volatile, with a critical temperature only 1/4 of that of the first component.
Eq. (7.7) shows that in the case of ¢ = 1, the ‘third critical temperature’ T} is
between the critical temperatures of the components, while in the case of ¢
= 2 it is lower than those of the components. The results of Van Laar’s calcu-
lation of the plait point line are shown in Fig. 7.20.

Van Laar (1905d) thus has discovered that in the physically accessible
region the plait point curve shows two branches. For the smaller ¢ (large
difference between the two components), one branch connects C, and C,,
the other connects C, and the point A at zero temperature, for which V=4
at x = o. For the larger ¢ (the substances becoming more alike), C; connects
with C,, and C; connects with A. Under the geometric-mean assumption
of the Van der Waals equation for equal excluded volumes, there are thus
naturally two classes of phase diagrams, depending on whether C; connects
with C,, or not.

Fig. 7.21 shows the critical lines projected onto the V-x plane, according to
the symbolic calculations by Levelt (2001). They agree in detail with Van
Laar’s (1905d) calculations.

The next question is how the transition between the two cases arises. Van
Laar (1905d) derives from his equation for the plait point curve an analytic
solution for the location of the transition point, where the two curves
exchange connectivity. In terms of ¢ and x, he presents the exact value:
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Figure 7.20 Projections of critical lines onto the V-x and P-T planes for two values of
the parameter ¢. Copied from Van Laar (1905d), Figs. 1, 1a, 2, 2a. The two diagrams
on the left are V-x diagrams, the critical volume 34 being at the bottom, and the
close-packed volume 4 at the top. The plait point curves are indicated by (xxx). The
full curves drawn in the diagrams are isothermal spinodals, and they are labeled by
the ratio 777;. C, and C, mark the critical point of the pure components, C, is the
critical point as the longitudinal plait enters the diagram at V'= 4. The two diagrams
on the right are the corresponding projections of the plait point curves onto the P-
T plane.

For ¢ = 1, ay/a; = 1/4, the case of large difference between the components, the
pure-component critical points are not connected. The critical line from C, to A
touches a spinodal at R;. Thus along the plait point line starting at C;, the temper-
ature first rises, and then falls, as can be seen from the temperature labels on the
spinodals. This causes a cusp in the critical line in the corresponding P-7" diagram,
displayed below it, claims Van Laar, crediting Korteweg. We recognize this diagram
as being of Type III, but note that the unstable part of the critical line is shown in
this plot, rather than the three-phase line cutting it off. The critical line from C, ends
in Cy at V' = b, at infinite pressure, and at a temperature between the critical tem-
peratures of the two pure components. The wiggle between C and D is real: the plait
point curve passes through a temperature minimum before it reaches C,.

In the case of ¢ = 2, ay/a; = 4/9, with the two components not as different as in
the previous case, the critical points of the pure components are connected. The cusp
in the liquid-liquid critical line in the corresponding P-7 diagram arises from the fact
that the curve A-C; touches a spinodal in R,. This diagram is of Type II.

Figure 7.21 Computer-algebra results for the cases ¢ = 1 (left) and ¢ = 2 (right), by
Levelt (2001). The agreement with Van Laar’s results in Fig. 7.20 is excellent.
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o = (1/2)(-1 +V2 + V6) (= 1.432) (7.8)
x = (1/2){1 = (1/2)(V6 - V2)} (= 0.2412)

This corresponds with a ratio of 2.887 for the critical temperatures of the
two components. Van Laar calls this point a double point. Following Meijer
et al. (1990), we call it a crossing point. Van Laar’s sketch of the V-x diagram
at ¢ = 1.432 is presented in Fig. 7.22, left drawing.

Van Laar’s calculation of the point of intersection is exact. It is obvious,
however, that Van Laar’s sketch of the phase diagram for the case of the
crossing point, center of Fig. 7.22, is just that, a sketch. He did not calcu-
late the critical lines for this value of ¢. Although his value for the mole
fraction at the crossing point is correct, it is not plotted in the right place.
Also, the plot suggests that the two branches are tangent to each other at
the crossing point. The computer-generated plots (right) show that this is
not the case.

Meijer et al. (1993) showed that in a larger space the critical line segments
in the physically accessible region of Van Laar’s V-x plots are part of a single
curve, which intersects itself as found by Van Laar. Meijer has proposed to
call it the Van Laar point. Strictly speaking, however, he defined the Van Laar
point as the intersection of the curves Tr, aApp, and mMpp in Fig. 7.6. Only in
the case of the Van der Waals equation for equal excluded volumes does the
geometric-mean curve for the attraction happen to pass through this special
point. In hindsight, Van Laar had an uncanny intuition and an incredible
amount of good fortune by assuming the geometric-mean rule, thus being
able to locate the transition point that now carries his name.

As mentioned earlier, computer algebra calculations by Meijer et al. (1993)
and by Levelt (1995) have confirmed the exact result for the Van Laar point.
The numerical result of K&S closely agrees with the exact results from Van

Laar, Meijer and Levelt, confirming the accuracy of the numerical work of
K&S.

7.5.6 The case of unequal excluded volumes. In a tour-de-force calculation, the
intrepid Van Laar (1905f) undertakes the problem of calculating the spinodal
curve in the case of unequal excluded volumes, be it still under the geomet-
ric-mean condition for the attraction. He derives a general equation for the
crossing point, and confirms that for the case of equal excluded volumes it
reduces to the result obtained previously. Then he treats a second case, in
which the two components have the same critical pressure, which implies
that @,/6," = a,/b,". He finds that the crossing point still exists, but it shifts
to an extreme ratio of the critical temperatures of the two components,
namely almost 10. It is located on the line V' = 4,, and at a very small value
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Figure 7.22 Exchange of branches of the critical curves in the V-x plane, by Van
Laar (1905d), Fig. 4, left, and by Levelt (2001), right. Left: Van Laar (1905d) shows
that the two branches of the critical curve intersect and exchange connectivity at
the special point ¢ = 1.432. Right: computer algebra results by Levelt, for ¢ =
1.42, ¢ = 1.432, and ¢ = 1.44, from top to bottom.
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of x. It seems therefore of little practical interest. For the time being, we just
file this result. It will be of relevance in the following section.

7.5.7 The existence of Type IV, In a paper of over so pages, Van Laar (1906a)
summarizes earlier results and then goes into considerably more detail. Refer-
ring to work by Korteweg (1891) that we discussed in Ch. 5.5.7, he shows how
an accessory plait is formed from a heterogeneous double plait point in the
unstable region, protrudes into the stable region, and exchanges roles with
the principal plait by passage through an Mpr (Figs. 5.12 and 7.6). Then he
returns to K&S Type IV, which he had postulated to occur if the plait point
line from C; to C, touches a spinodal twice, in R; and R’

He investigates whether that can be the case for the Van der Waals mix-
ture, under the geometric-mean rule for attraction and for equal excluded
volumes. After setting up the conditions for such touching, he finds, after
lengthy calculation, that the only place this could happen is at the
crossing point! But this is mathematically a pathological case. Van Laar
concludes:

the spinodal can only touch the curve AC; in R,....[K&S Type II]), and a contact
in both R, and R,' cannot happen, so that....[K&S Type IV] will be impossible for
mixtures of normal substances when 3 = 0 (b, = b,) [Translated from the French; ital-
ics by Van Laar].

This result is in complete agreement with the K&S global phase diagram
(Fig. 7.2), which shows that the geometric-mean curve passes through the
Van Laar point, which terminates the Type-IV region.

Then, he works on the case discussed in Ch. 7.5.6: the critical pressure
ratio equal to unity, the excluded volumes unequal, under the geometric-
mean rule. He finds that for values of ¢ falling between the double-point
value and a certain maximum value Q, there will be two points R; and R’
on the branch from C; to C,, where the spinodal touches the plait point
curve.

The possibility of a contact between the spinodal and the plait point curve — and that
twice, as....[present Fig. 7.23] demands — and therefore #he possibilizy of....|[K&S Type
IV for the case TU= 1, is hereby proved. [Translated from the French; italics by Van
Laar]

In the maximum value Q, the two contact points R, and R," in Fig. 7.23
coincide and the critical line touches the three-phase line in an actual double
critical end point, AP in Fig. 7.6, so that a transition occurs from K&S Type
II to K&S Type IV. Van Laar gives the precise conditions under which this
transition takes place.
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The second transition, from (metastable) K&S Type IV to Type 1I,
now occurs by passage through a mathematical double point in the unsta-
ble region, Mpr in Fig. 7.6, for which Van Laar finds the conditions as
well.

These two transitions take place for large size ratios of the components,
between 4.4 and 9.9, and for a very low mole fraction of the less volatile
component, x = 0.01, but at distinctly different temperatures and molar vol-
umes.

K&S (1980) also report some results on the asymmetric-size case &, = 2 b,,
and for linear mole-fraction dependence of 4. They find that the geometric-
mean line no longer passes through the Van Laar point, but traverses region
IV. Van Laar recorded a similar traversing of region IV in the first decade of
the 20" century, be it for different asymmetric-size cases.
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Figure 7.23 The formation of Type IV. Copied from Van Laar (1905d), Fig. 3, 3a. Van
Laar makes the assumption that the critical line connecting the critical points C;
and C, of the two pure components touches an isothermal spinodal twice, in the
points R; and R,’, respectively. In each of these points, the critical line thus passes
through an extremum in temperature. In a P-7 diagram (right), this results in two
cusps. The part of the critical line between R; and R, is not stable. A three-phase
line (not shown) cuts off the metastable and unstable parts of the critical line. The
critical line connecting C, and A touches a spinodal once, and therefore has one

cusp in the P-T diagram, and another unstable part cut off by a three-phase line (not
shown).
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7.5.8 An assessment. It is easy to criticize Van Laar’s work as myopic and to
disregard it because it is so unappetizingly presented. Myopic, because of his
single-minded pursuit of the geometric-mean case, with little attention given
to Van der Waals’s more general results. Poorly presented, because he does
not set out his goals, nor does he state the major results before throwing him-
self into the calculations, in acute contrast to Korteweg’s didactic style.

It is, however, undeniable that Van Laar obtained very important insights
on the basis of this felicitous choice of the geometric-mean case. Concentrat-
ing on this case allowed him to obtain practical results by the very limited
computational means available a century ago. In the process, he obtained
profound insight into the different phase behaviors in binary mixtures of
unlike components, and a fundamental understanding of how the transitions
between the cases of Type II, III and IV take place.

It was a major achievement of Van Laar to demonstrate that the Van der
Waals equation for normal (non-associating) compounds is perfectly capable
of producing the kind of phase diagrams observed in experiment, with the
exception of Type VI. This was contrary to the prevailing opinion that mix-
tures with an associating component, such as those studied by Kuenen, were
outside the purview of the Van der Waals equation.

Given the state of discredit of the Van der Waals equation at that time,
one would have expected Van der Waals to be very happy with this demon-
stration of the power and relevance of his mixture equation. Unfortunate-
ly, this was not the case. It was Lorentz who presented the Van Laar
(1905d) paper on the shape of the plait point curve to the Royal Nether-
lands Academy.
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8. Barotropic effect and gas-gas equilibria —
Kamerlingh Onnes, Keesom, and Van Laar

8.1 Historical setting — Keesom

The Physics Laboratory in Leiden entered the 20t century in fine shape.
Although the laboratory had lost the race for the liquefaction of hydrogen to
Dewar in 1898, the technical advances made by Dewar, and in particular the
invention of the double-walled, silver-plated vacuum glass that carries his
name, were quickly incorporated into the instrumentation of the Leiden lab-
oratory. Air and hydrogen liquefiers were under construction as an essential
step towards the ultimate goal: the liquefaction of helium.

Once liquid hydrogen and a supply of pure helium gas became available
by 1906, Kamerlingh Onnes and his group started preparing to take PVT
data on hydrogen and helium at cryogenic temperatures, so that, with guid-
ance from the law of corresponding states, an estimate could be made of the
critical temperature of helium. While working with helium at liquid-hydro-
gen temperatures, Kamerlingh Onnes made a curious discovery. A vivid
account of the discovery can be found in Kipnis (1996), p. 154-155. Here, we
have followed the original papers and elaborate on the interpretation of the
effect.

In this chapter, we meet a new player, destined to become the world’s lead-
ing authority on the properties of helium at cryogenic temperatures. Willem
Hendrik Keesom (1876-1956), a farmer’s son from the island of Texel, began
his physics studies at the University of Amsterdam and was a brilliant student.
In 1904, he obtained his doctorate in Leiden with Kamerlingh Onnes. He
held a research assistant position at the laboratory, where he was deeply
involved in the preparations for the liquefaction of helium. From 1917 to 1923,
he taught at the veterinary school in Utrecht. In 1923, he received a chair of
experimental physics at Leiden University, and he succeeded Kamerlingh
Onnes as the director of the Physics Laboratory. He was the first to solidify
helium under pressure, in 1926. Over a period of time, he discovered evidence
of a phase transition occurring in liquid helium at 2.19 K. In 1932, he meas-
ured, with Clusius, the lambda-shaped heat capacity anomaly of helium near
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this superfluid phase transition. Keesom was elected to the Royal Netherlands
Academy of Arts and Sciences (kNaw) in 1924, and to the Holland Society of
Sciences and Humanities (HMW) in 1937.

Keesom’s early work, in the time period covered in this book, concentrat-
ed on topics related to phase separation in fluid mixtures.

8.2 A gas that sinks in a liquid

8.2.1 A curious experiment. Kamerlingh Onnes (1906a) presented a two-page
communication in the November Academy session about a strange phenom-
enon that he had observed. He was motivated by the following considera-
tion. Suppose one pressurizes a system composed of a perfect gas and an
incompressible liquid with negligible vapor pressure, and that the gas does
not dissolve in the liquid. By pressurizing the system, it should be possible to
increase the density of the gas enough to exceed the density of the liquid. If,
initially, the gas was at the top of the vessel, it would end up at the bottom
after enough pressure is applied.

Kamerlingh Onnes found such a system in fluids available to him: liquid
hydrogen and compressed helium. He immersed a sturdy glass cell into a
bath of boiling liquid hydrogen. The boiling point of hydrogen, 20 K, is far
below the hydrogen critical point of 33 K, but far above the critical point of
helium, which we presently know to be at 5.3 K. Kamerlingh Onnes filled
the cell with a mixture of 6 parts hydrogen and 1 part helium. The system
split into two phases, the liquid phase being mostly hydrogen and the vapor
phase mostly helium. Kamerlingh Onnes then compressed the mixture. He
noted that at 49 atmospheres, the gas phase sank and formed a large bubble
at the bottom of the cell. Reducing the pressure to 32 atmospheres, he saw
the bubble rise again. It was always clear which phase was the gas phase since
the volume of the bubble decreased considerably with pressure, while the vol-
ume of the liquid was insensitive to pressure. Kamerlingh Onnes increased
the pressure to 60 atmospheres, but the two phases remained.

Intuitively, the explanation of the sinking of the gas phase was relatively
straightforward. The molecular weight of helium is twice that of hydrogen.
By compressing the gas phase, consisting mostly of helium, one can make it
denser than the liquid phase, mostly hydrogen.

Kamerlingh Onnes and Keesom (1906b), in the next Academy session,
coined the term barotropy for the inversion of the phases. This paper is
mostly descriptive. It speculates on the form of the isothermal transverse
V-x plait in unit-mass coordinates, which must have a tie line parallel to the
x-axis at the barotropic point, where the volumes per unit mass of the two
phases are equal. At low enough temperature, however, when the plait runs
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across the entire surface, the tie line must become parallel to the volume axis
again at x = 1, so the system should re-invert at a second barotropic point.
Thus, the authors are thinking mostly in terms of a transverse plait,
although occasionally one finds an allusion to possible interference by a lon-
gitudinal plait.

The paper ends with an interesting question: what if the experiment
would be done at a temperature where a solid phase appears? Would the solid
phase, preponderantly hydrogen, float on top as the pressure increases?
Schouten and Van den Bergh (1986) finally answered this question by study-
ing a mixture of helium and hydrogen in a diamond anvil cell suitable for
cryogenic work. Two diamonds, whose faces are separated by a gasket that
forms the cell, are squeezed together, and high pressure is thus generated.
The cell is the size of the head of a pin, and is observed under a microscope.
Under appropriate conditions, the scientists observed three coexisting phases:
a gas bubble, mostly helium, at the bottom; a mixed liquid phase, mostly
hydrogen; and a tiny crystal of solid hydrogen floating at the top.

8.2.2 Azeotropy and barotropy. One could maintain that barotropy is just a
curiosity, since a happenstance equality of mass density in two coexisting fluid
phases does not seem to have any special physical significance. The chemical
engineer who samples the wrong phase from a still because the phases have
inadvertently switched positions might, however, be of a different opinion.

Van der Waals (1907) took an immediate interest in this discovery. His
paper, presented in December, 1906, begins as follows ‘Kamerlingh Onnes’
startling experiment, in which a gas was obtained that sinks in a liquid....” He
obviously did not consider it just a curiosity. On the contrary, he produced an
elegant argument juxtaposing the cases of azeotropy and that of the sinking of
a gas in a liquid. In the case of azeotropy, the two phases have the same mole
fraction but different densities. The tie line is therefore parallel to the volume
axis in the isothermal V-x plane, and so is the tangent at an azeotropic critical
point. In the case of inversion of the phases, the two phases have the same
mass density although molar density and mole fraction are different. If, there-
fore, mass units instead of molar units are used for volume and concentration,
then at the inversion point the tie line is parallel to the mass fraction-axis, and
so is the tangent at a plait point. The thermodynamic relations of the case of
azeotropy, which Van der Waals (1890) developed earlier in his theory of mix-
tures, can be simply converted to those for the case of phase inversion by
exchanging the volume and concentration variables.

No one will deny the significance of azeotropy in the case of fluid mix-
ture behavior (see, for instance, Ch. 4.9, Ch. 5, Ch. 6.7, Ch. 7.2, Ch. 7.3,
Ch. 7.4.3), nor its importance in the practice of distillation. Van der Waals
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(1907) treated the two phenomena, azeotropy and phase inversion, on the
same footing and thus gave azeotropy and barotropy equal fundamental sig-
nificance. In the process, he developed the conditions for criticality of phas-
es that have equal mass density.

8.2.3 Quantifying the barotropic effect. The Leiden researchers had a strong
incentive to pursue this matter more deeply. Kamerlingh Onnes (1906a)
mentions that even the sign of the parameter « for helium is unknown, and
might even be negative, prohibiting liquefaction. From the paper by Kamer-
lingh Onnes and Keesom (1906Db) it is clear that in December 1906, less than
two years before the actual liquefaction of helium, they still did not have a
reliable estimate of the helium critical temperature. If they could model the
observed barotropic effect, that might give them an estimate. A paper by
Keesom (1906) follows in the same session, in which such a model is pre-
sented. Interestingly, for this purpose the Leiden investigators, for the first
time, turn to the Van der Waals equation for mixtures. To begin with, Kee-
som reformulates the Van der Waals equation for binary mixtures in terms of
mass, instead of molar variables. In order to model the system helium-hydro-
gen, he chooses the molar mass ratio as 2, and assumes that the molar criti-
cal volume of helium is 1/4 that of hydrogen. For this parameter choice, the
Van der Waals equation predicts that there is a barotropic point on the gas-
liquid plait around the boiling temperature of hydrogen, if the critical tem-
perature of helium would equal 1/20 that of hydrogen (roughly 1.5 K). A
discouraging result indeed! Note, however, that this is a result applying to a
transverse plait. At various instances, Kamerlingh Onnes and Keesom, how-
ever, do caution that a longitudinal plait might be present.

Keesom (1907) tries to find conditions for a barotropic plait point for the
Van der Waals equation that give agreement with the observations of
barotropy in the helium-hydrogen mixture. This study still limits itself to a
transverse plait, but reference to possible interference with a longitudinal
plait is frequent. What values to use for the # and & parameters turns out to
be a difficult question. In a 1 1/2 page footnote, Keesom struggles to find
and & parameters suitable for describing known hydrogen and helium prop-
erties, while giving results compatible with the barotropic experiment, in an
effort to estimate the critical temperature of helium.

As in his previous paper, Keesom begins with an excluded volume for heli-
um that is 1/4 of that of hydrogen per mole (1/8 per unit mass), but also
tries a value twice as large. What to choose for the value of # for helium is
unclear. Keesom expects that the cohesion of helium is very small, and real-
izes that in that case Van der Waals’s mixture equation would give rise to a
longitudinal plait. Another unknown in the problem is the composition
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dependence of the excluded volume for helium-hydrogen. Even with that
many adjustable parameters, it is not possible to make sense of the meager
experimental evidence under the hypothesis that there is a transverse liquid-
vapor plait. Upper bounds for the helium critical temperature in the paper
range from 1/175 to 1/4 of the critical temperature of hydrogen, rendering
them useless. In writing this paper, however, Keesom is gradually acquiring
the insight that the presence of a longitudinal plait must be considered. Fur-
ther work with Kamerlingh Onnes elucidates what the nature might be of
the phase diagram helium-hydrogen (Sec. 8.3).

A final remark about barotropy: this is a phenomenon more general than
that of ‘a gas sinking in a liquid.” If two liquid phases of almost the same
mass density but of different compressibility coexist, a change of pressure can
easily lead to phase inversion, to no one’s surprise. Historically, however, this
feature was first discovered in the more spectacular case of ‘a gas sinking in a
liquid’ and was connected with phase separation in the gas phase.

A reliable value for the critical temperature of helium would be obtained
later in 1907, after the first P-V-T data for helium at temperatures around 20 K
became available. Using the law of corresponding states and mapping the
helium isotherms onto those of hydrogen, Kamerlingh Onnes (1907¢)
obtained an estimate of 5.3 to 6 K for the critical temperature of helium. As
narrated in Sec. 3.3, this estimate enabled the designing and dimensioning of
a helium liquefaction apparatus; helium was first liquefied on July 9, 1908.

8.3 Gus-gas separation

The Leiden work now takes a different turn. In the next few papers, Kamer-
lingh Onnes and Keesom (1907a, 1907¢; Comm.Leiden Suppl. 15) elaborate
on the idea of a mixture in which one component has no cohesion, and
investigate the phase behavior of a Van der Waals mixture with 2, = 4;, = 0.
That is, the second component exerts no attractive interactions whatsoever,
but does have a finite excluded volume. Here subscript 1 refers to the com-
ponent representing hydrogen, and 2 refers to the component without cohe-
sion, representing helium. In the K&S global phase diagram for equal
excluded volumes, Fig. 7.2, this case would correspond with £ =1, A = 1. It
does fulfill the geometric-mean condition for the attraction.

Contrary to the experiences of Korteweg (Ch. 5, Ch. 7.3) and Van Laar
(Ch. 7.5), who ended up with complex models requiring extensive formula
manipulations, the two Leiden scientists invented a model that they could
handle readily. It shows some interesting physics. There is at most one plait
on the isothermal Helmholtz energy surface, a plait that is neither purely
transverse, nor purely longitudinal. The second component has no critical
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point, so no plait can begin or end there. The two coexisting phases can be
considered to both being gas phases, since they may occur above the critical
temperatures of both components. In the spring of 1907, the two scientists
reached a full understanding of the behavior of the gas-gas plait for the Van
der Waals binary mixture.

The 19072 paper begins on a provocative note. First of all, there is a three-
line footnote referring to the Van Laar (1905¢,d) paper that contain the exact
expression for the plait point curve, as discussed in Ch. 7.5.4. The footnote
states:

Van Laar treated the projection of the plaitpoint curve on the v, x plane for such a
mixture, without, however, further investigating the form of the spinodal curve and
of the plait.

This is a rather grievous understatement of the work of Van Laar, who will
not take this remark lightly (see below). The Leiden authors further ignore
Van Laar’s work, and base themselves solely on the Van der Waals (1890) mix-
ture paper.

In the second paragraph Kamerlingh Onnes and Keesom (1907a) state:

Two different phases may be in equilibrium which must both be considered as gasphases.
Then the two substances which are the components of these mixtures are not misci-
ble in all proportions even in the gas state.

The italics are theirs. Here we see two good advertisers at work: this sen-
tence is bound to catch the eye of the reader.

Another footnote on the first page refers to an Academy paper by Van der
Waals (1894d). In this brief paper (in Dutch) Van der Waals indeed postulates
that there might be a longitudinal plait on the Helmholtz-energy surface at
temperatures exceeding the critical temperatures of the two components, so
that there is no transverse plait on the surface. He expects that this could
happen when ‘the mixing takes a lot of energy’ presumably because the cohe-
sion between unlike components is much weaker than that of each of the
components. For Van der Waals’s description of the birth and growth of the
longitudinal plait, the reader might refer to a picture from Korteweg’s work
for the symmetric case, see Fig. 7.7 (TP A,). This plait moves into the surface
from the ‘side of the small volumes’, V = b,, where the pressure is infinite.
Once formed, well above the critical temperature of the components the plait
proceeds into the V-x plane towards the larger volumes as the temperature is
lowered. It begins at the temperature at which the plait point appears on the
line V'= b,. We recall that this ‘third critical temperature’ was introduced ear-
lier by Van der Waals (1890) in his Appendix, as well as by Korteweg (1891b).
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Figure 8.1 The gas-gas plait for a binary mixture, one component having no cohe-
sion. Copied from Kamerlingh Onnes and Keesom (1907a), Plate I, Fig. 1. Several
isothermal spinodals are indicated, each labeled with its value of the reduced tem-
perature = = 7/Tj,. The plait starts at K, and moves into the Vax surface as the
temperature drops. The plait point leaves the surface at X, the critical point of the
component that does have cohesion.

Van Laar (1905b, 1905d) used it extensively in his analysis of the various types
of phase diagrams, as discussed in Ch. 7.5.4.

In their treatment of the case where one component has a non-zero exclud-
ed volume but no cohesion, the two Leiden scientists begin with their version
of the Van der Waals equation in mass units, for a molar mass ratio of 2 and
a molar volume ratio of 1/4 between the first and second component. Only
the first component has a nonzero value of 4, and the quadratic mixing rule,
Eq. (4.5), is used to calculate a,. The value of &, is linearly interpolated
between the excluded volumes of the two components. They use the Van der
Waals (1890) expression for the spinodal, substitute the chosen values for the
parameters, and obtain a relation cubic in volume and mass fraction, and lin-
ear in temperature. They solve this equation numerically and obtain the spin-
odals shown in Fig. 8.1 for a variety of temperatures. The result is a plait run-
ning at an angle through the V-x plane. The plait point begins at X,,, their
symbol for the third critical temperature, which in this case equals 1.30 on a
reduced scale, and ends at the critical temperature of the first component.
The plait moves into the plane as the temperature falls. Once the plait point
reaches the critical point of the first component, it leaves the surface, and
only an open plait is left. Fig. 8.2 shows the progression of the plait in P-x
coordinates.
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Figure 8.2 A schematic of the gas-gas plait in the pressure-mass fraction plane. The
plait moves to the pure-component critical point as the temperature decreases.
Dashed curve: projection of the critical line. Full curves: isothermal connodals.
Copied from Kamerlingh Onnes and Keesom (1907a), Plate 1 Figs. 3-5.

On the open plait near the critical point of the first component, the two
coexisting phases differ in density, and it is still sensible to distinguish a vapor
and a liquid phase, even though the temperature may be above the critical
temperature of the only component that has a critical point. Near the third
critical temperature, however, the phases are both near the close-packed state
and differ mostly in mass fraction. The character of the plait thus changes
from mostly transverse at the first component’s critical point to mostly longi-
tudinal near the close-packed state.

Our Leiden heroes, however, spend many pages arguing that both phases
should be called gas phases. At first they use the following criterion: the
name gas or liquid is appropriate only if the particular phase can be con-
nected without a phase transition along an isobar or isopleth (curve of con-
stant concentration) to another phase for which the designation gas or liquid
is clear. The authors seem to get trapped in convoluted semantics, but final-
ly propose another criterion: that the plait must occur at temperatures above
the critical temperatures of both components. The term gas-gas equilibrium
is indeed still in use for this case.

In the last part of the paper, presented on March 30, 1907, the authors
relax the condition of zero cohesion, and just make the cohesion a,, very
small. They decline to discuss the complications induced by the presence of
the additional critical point for the weakly cohesive second component,
referring to Van Laar (1906a, 1906b) in a footnote, but without any discus-
sion of the quoted work. They then discover that the gas-gas plait may split,
one part coming in from the critical point of the first component, the other
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Figure 8.3 The gas-gas plait in the case that one component has small, but nonzero
cohesion. Isothermal spinodals are shown, each labeled with the value of v = 77 TKl‘
Plaits now enter from X, and K, and meet at a homogeneous double plait point as
the temperature decreases. Copied from Kamerlingh Onnes and Keesom (1907a),
Plate II.

part from the line V' = 4,. As the temperature decreases, the two plaits meet
in a homogeneous double plait point, at a temperature minimum, Fig. 8.3.
They calculate the conditions for the minimum in terms of the interaction
parameters of the two components. They do cite Korteweg in connection
with the meeting of the two plaits in a homogeneous double plait point.
What is missing from this paper is a connection with previous work by Kue-
nen, as well as by Van Laar, discussed in Ch. 7, on systems that have a plait
point curve running to high pressures. Although Van Laar’s (1906a, b) work
is cited, it is brushed aside as not relevant to a component with feeble
attraction. Shortly after, the authors will receive a forceful reminder of this
omission.

8.4 Matters of priority — Van Laar, Kamerlingh Onnes and Keesom

A pained reaction by Van Laar (1907a) was presented to the Academy by
Lorentz one month after the second of the Kamerlingh Onnes and Keesom
(1907a) papers had been communicated. Van Laar wrote the bulk of his
paper after he had read the February 23, 1907 presentation (§1-§6), but
before he read that of March 30 (§7). Van Laar must have hastily composed
this 13-page paper. The large number of typos and aggrieved tone, in addition
to the content, point to considerable mental anguish on the part of the
author.
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In a footnote, Van Laar criticizes the use of the term gas-gas equilibrium
for two obviously quite dense phases. He proposes to use Van der Waals’s
term ‘fluid phases.” Van Laar has a point, but history will not be on his side.

Van Laar reminds Keesom that if the cohesion of the second component
is weak, the phase diagram is more complicated than the single simple plait
the Leiden scientists show, because the volatile component now has a critical
point, with a three-phase region nearby.

In the first few pages, Van Laar claims priority regarding the plait
described by Kamerlingh Onnes and Keesom (1907a). Keesom’s application,
with @, = a;, = 0, is indeed a special case of Van Laar’s geometric-mean Van
der Waals mixture model, so Van Laar’s point seems well taken. In a foot-
note, Van Laar refers to half a dozen papers from his hand, written in 1905
and 1906. Several of these were discussed in Ch. 7.5.

We recall how Van Laar showed that the two parts of the V-x projection
of the plait point line exchange connectivity at a special condition of the
interaction parameters (Ch. 7.5.5). If the critical temperature ratio is larger
than that corresponding to what we now call the Van Laar point, a plait
point curve will run from the plait point of the least volatile component, C,,
to the ‘third critical point’ G, at V' = b,, resulting in what we presently call a
Type-1l1 phase diagram (Fig. 7.4). Van Laar himself was fully aware, and
mentions again here, that the experimental systems water-ether and ethane-
methanol are of this type. He also showed that this feature persists, even
when the excluded volumes are unequal. The peculiar limiting case of one
component with zero cohesion and therefore no critical point, he writes, may
have led to failure on Kamerlingh Onnes’s and Keesom’s part to connect with
Kuenen’s and Van Laar’s vL Type-1, presently called Type-III phase behavior.

Van Laar is very insistent on a particular aspect of the plait: will this plait
run from Cjto C,, (or from K, to K, in Fig. 8.1), as discussed by Keesom?
Or could it start as two plaits moving from each end towards each other
and meeting in a double plait point somewhere in the middle of the V-x
plane? If the latter is the case, the plait point curve from K to X,, (from
C, to () must pass through a temperature minimum. This minimum,
where the two parts of the plait meet, is clearly visible in Van Laar (1905d),
Fig 1, reproduced in this book in Fig. 7.19. See the two isothermal spinodals
join barely below C, in the top left figure, for ¢ = 1. Van Laar (1905¢) also
specified conditions on the ratios of critical pressures and critical tempera-
tures of the two components for the minimum to occur. Unfortunately, the
precise location of the minimum, topic of a paper Van Laar (1906a) had
submitted to Archives Teyler, was not yet in print when the Kamerlingh
Onnes and Keesom (1907a) paper appeared (although the Leiden scientists
did cite it, but considered it not relevant). So, in a rush, Van Laar (1907a)
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summarizes the Archives Teyler paper in seven or eight pages of dense for-
mulae and calculations.

Van Laar (1907b) added an appendix to his paper after he read the March 30
presentation of Kamerlingh Onnes and Keesom (1907a). For the more general
case that a,, is small but not zero, the Leiden authors indeed discovered that
there is a minimum in the plait point curve, and derived an expression for it.
This obliterates part of Van Laar’s criticism in the body of his paper. Van Laar
(1907b), however, demonstrates in his Appendix that he derived this identical
expression a year earlier, see Van Laar (1905g), and mentions that Verschaffelt
(1906a) confirmed this result shortly after.

A reply by Kamerlingh Onnes and Keesom (1907¢) was not long in com-
ing. Half the first page of their paper is occupied by lengthy footnotes dis-
puting Van Laar’s criticisms. They do not agree with his objection to the
terminology gas-gas. They feel they did sufficient justice to Van Laar’s work
on the three-phase equilibrium in the VL Type-I phase diagram by citing
a reference to his papers in the last part of their criticized paper. For the ‘crit-
ical point of complete miscibility’ (Van Laar’s third critical temperature)
they credit Van der Waals (1890). Then they point out that Van Laar treated
only one case of a gas-gas line, namely that with a minimum in temperature.
In a lengthy discussion demonstrating their familiarity with Korteweg’s the-
ory of plaits, they argue that there are several cases with no minimum in the
plait, one of which having been discovered by themselves, but overlooked by
Van Laar.

In a remarkably meek reply, Van Laar (1907b) concedes the points made
by Kamerlingh Onnes and Keesom, and generously acknowledges (in a foot-
note in the English version of the Proceedings) the priority of Kamerlingh
Onnes and Keesom in recognizing different ways the plait may run to the
third critical point. Half a page of errata to his preceding paper appears at the
end of this paper. These do not refer to typos, but to issues of substance
resulting from Van Laar’s haste in producing the 1907a paper.

The last paper in the sequence by Kamerlingh Onnes and Keesom (1907d)
combines the two themes: barotropy, and mixtures in which one component
has only feeble cohesion. It is a very detailed investigation of the kinds of
plaits that show barotropy. We will not discuss this paper here, but only
mention that constructive references to Van Laar’s work are now plentiful
and generous, giving Van Laar credit where credit was clearly due.

8.5 Measuring gas-gas equilibria

According to their own principles, Kamerlingh Onnes and Keesom had not
measured gas-gas separation. This term refers to the case that the plait exists
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above the critical temperatures of both components. The Leiden scientists,
however, measured the phase separation in the helium-hydrogen system at
the hydrogen boiling point, well below the critical point of hydrogen but far
above that of helium.

It is common for the critical line to move through a minimum tempera-
ture for systems that display this kind of separation. Consequently, a high
pressure is needed to then bring the mixture critical temperature to higher
values than the critical temperature of the least volatile component.

Krichevskii and Tsiklis (1941) first measured gas-gas separation in the sys-
tem nitrogen-ammonia. It took a pressure of over 9500 atmospheres to bring
the mixture critical temperature above the ammonia critical temperature.

8.6 A case study of the workings of the Dutch School

The short episode, less than a year, in which the phenomenon of barotropy
was discovered, explained, and generalized to gas-gas equilibrium, provides
an interesting example of the mode of operation of the Dutch School.
Kamerlingh Onnes himself performed the innovative experiment: compress-
ing a mixture of two components of very different volatility, hydrogen and
helium. To explain the existence of a plait persisting to high pressures,
Kamerlingh Onnes and Keesom used the 1890 paper by Van der Waals in a
straightforward and effective way. In the process, they intruded on territory
recently occupied by Van Laar. Van Laar then overreacted, writing a substan-
tial paper before he had completely read the Leiden scientists’s paper. Kamer-
lingh Onnes and Keesom were in good command of all issues, and had
indeed found variants of what they called the gas-gas plait that Van Laar had
overlooked. The episode ended in harmony, and on a rare conciliatory note
by Van Laar. This episode had a high level of intellectual intensity, as evi-
denced by the large number of academy presentations in such a short time
span.

Amidst all this commotion, what was Van der Waals’s role? Apparently, his
only contribution was the very nice paper on the analogy of azeotropy and
barotropy, which we discussed. Throughout these stormy discussions about
the plait running to infinite pressure, while his name was invoked repeated-
ly, Van der Waals plowed away at a five-part series of substantial papers on
the theory of binary mixtures and stayed out of the fray.
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9. Ciriticality, capillarity, and critical exponents:
Verschaffelt and Van der Waals

In the development of the theory of plaits on surfaces, the prominent role of
the critical point was evident right from the beginning. Korteweg’s (1891a)
paper on plait points is based on the special form of the Taylor expansion of the
surface at such a point (Ch. 5.3.4). The assumption of analyticity of the math-
ematical representation of a thermodynamic surface was as natural and obvious
to the Dutch School as the use of Gibbsian thermodynamics. The second half
of the 20t century, however, witnessed essential progress in the understanding
of criticality in fluids and solids, magnets and model systems. Surprisingly,
however, modern theory was found to be in profound disagreement with the
predictions of mean-field theories such as that of Van der Waals for fluids, or
that of Curie and Weiss for magnetism. The question this chapter answers is:
did no one notice early on that something was profoundly amiss?

At least two scientists did notice. Van der Waals (1894), in his work on
capillarity, found a discrepancy between his theoretical prediction and the
experimental behavior of surface tension. Verschaffelt pinpointed the origin
of the discrepancy while working on his doctoral thesis with Kamerlingh
Onnes. This happened around 1900, a full half century ahead of the devel-
opment of modern theory. Since this topic is somewhat specialized, it
requires an introduction, which will be followed by a discussion of Van der
Waals’s contribution, and by the story of Verschaffelt’s detective work. Bio-
graphical material about Verschaffelt is added at appropriate spots in the nar-
rative. The chapter is based on Levelt Sengers (1976).

9.1 Characterization of critical behavior

9.1.1 What happens at a critical point? Any experimentalist observing a fluid such
as carbon dioxide near its critical point is immediately struck by the appearance
of the fluid. When a transparent homogeneous fluid is cooled to within a few
tenths of a degree from criticality, the fluid becomes opaque, so that it looks like
a thick mist. Then, a meniscus forms near the center of the cell, and the mist
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clears after the temperature drops a few more tenths of a degree. This phenom-
enon is called critical opalescence, and it was quite familiar to experimentalists in
the 19t century. The opaqueness is caused by strong variations in the refractive
index in the cell over distances comparable to the wavelength of light. These are,
in turn, due to variations in the fluid density. The wavelength of light is of the
order of 1000 molecular diameters, and thus these fluctuations occur on a
mesoscopic scale far exceeding molecular dimensions. Clearly there is another
length scale in the system. The average radius of the fluctuations is called the
correlation length. The closer to the critical point, the longer the correlation
length. It becomes infinite at the critical point. There is a reason for the emer-
gence of these correlated regions. In the words of Benjamin Widom, a forerun-
ner of the revival of interest in criticality of fluids and major contributor to the
field ever since: ‘the system is practicing to split into two phases’ by forming
microscopic regions that will become vapor and liquid after the system is cooled
through the critical point. Thermodynamically, the compressibility of the sys-
tem is becoming very large, and therefore, the energy cost of making a density
fluctuation is far less than it would be far from the critical point.

Van der Waals’s equation of state was the first formulation of a critical-point
phase transition in terms of a molecular model of hard spheres with a range of
mutual attraction. The Van der Waals attractive term, however, is proportional
to the bulk density. Thus, there is no allowance for the existence of the fluctu-
ations that make the near environment of a molecule different from the bulk.

Einstein was the first to propose an explanation of critical opalescence in
terms of the fluid compressibility in the early 20t century, but his result was
correct only for the scattering intensity in the forward direction, while over-
estimating it in all other directions. Two Dutch physicists at the University of
Groningen, Professor Leonard Ornstein (1914) and his graduate student Frits
Zernike (a future Nobel-prize winner), formulated a theory of critical opales-
cence that accounted at the mean-field level for the angle-dependence of crit-
ical light scattering due to the long-distance correlation of density fluctua-
tions. Their work provided a key contribution to the theory of liquids
developed during the 20t century.

Criticality is so interesting because the presence of these long-range fluctua-
tions has strong consequences for the behavior of thermodynamic and trans-
port properties. In near-critical systems, the effects of fluctuations are domi-
nant, and the molecular peculiarities, size, shape, and interactions, are in the
background. This leads to great similarity in criticality of diverse systems, far
exceeding the class of fluids and fluid mixtures: binary alloys, certain magnetic
systems, and statistical-mechanical models. All behave similarly near a critical
point as long as the independent and dependent variables are chosen properly.
Modern theory calls this similarity in behavior critical point universality.
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9.1.2 Power laws and critical exponents. As we have seen in Ch. s, the mathe-
matician Korteweg (1891a) provided the foundation for the description of
criticality in fluid mixtures.

For a one-component fluid, the procedure is simpler. The Helmholtz
energy A(V,T') is expanded, its second and third derivatives with respect to
volume being equal to zero, while there is nothing special about the temper-
ature dependence. A double-tangent is drawn, as shown in Fig. 2.3. It is then
found that close to the critical point the connodal or binodal (presently
called coexistence curve) is a parabola, see Fig. 9.1. Thus, when the tempera-
ture 7 approaches the critical temperature, the density difference between the
two phases 7, disappears as (7 - 7)"*. The P-V relation on the critical
isotherm is a cubic, the pressure difference with the critical pressure disap-
pearing as the third power of the density difference, see Fig. 9.1. Since the
compressibility becomes infinite at the critical point, the inverse compress-
ibility at the critical density has to approach the value of zero proportional to
(T- 7). All these facts were quite well known to the Dutch School.

Presently, these expressions of critical behavior in terms of a power of the
distance from the critical point along a specified path go by the name of
power laws. The exponents characterizing the asymptotic behavior of the
coexistence curve (3), the critical isotherm (), and the inverse compressibil-
ity (y) are called critical exponents. They assume the values 8 = 1/2, 3 = 3, and
v = 1, respectively, for equations of state analytic at the critical point, as long
as only two volume derivatives of the pressure are equal to zero at this point.

critical isotherm

connodal

P

Figure 9.1 The connodal (coexistence curve) and the critical isotherm in the pressure
(P) — density (p) plane. For the Van der Waals equation and other analytic equations
of state, the coexistence curve is a parabola and the critical isotherm is a cubic.
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The special form of the power laws is not just a mathematical consequence
of the form of the Van der Waals equation. They must hold true for any
Helmholtz-energy formulation for which a Taylor expansion exists at the criti-
cal point and for which only the second and third derivatives are equal to zero.

The Van der Waals equation served as a model for the Curie-Weiss theory
of ferromagnetism, and the curve of spontaneous magnetization as a function
of temperature shows the same parabolic shape at the Curie point as the fluid
coexistence curve. Because the Curie-Weiss theory assumes that each magnet-
ic spin finds itself in the average field of all spins, this theory, and a fortiori all
theories that assume analyticity at the critical point, are called mean-field the-
ories. Alternatively, they are denoted as ‘classical,” which only refers to their
venerable analytical basis, not to a contrast with quantum mechanics.

9.1.3 Modern theory of criticality. Onsager’s (1944) solution of the two-dimen-
sional Ising model marks the beginning of the modern era. This is a model
for magnetic spins placed on a lattice. These spins interact solely through
nearest-neighbor forces. At low temperatures, all spins are lined up either ‘up’
or ‘down’ and the system is fully magnetized. As the temperature increases,
spins start flipping out of order and the spontaneous magnetization dimin-
ishes. The more spins flip, the more disordered the system becomes and the
easier it is for the next ones to flip. Finally, on average 50% of the spins point
up and 50% point down, and the spontaneous magnetization has disap-
peared. For Onsager, solving this problem required a mathematical tour de
force. The rewards were great. To the amazement of the scientific world, the
model produced a heat capacity (which is proportional to the second tem-
perature derivative of the Helmholtz energy) that becomes infinite at the crit-
ical point logarithmically. This is something an analytic theory could never
do — second derivatives of analytic functions just do not diverge. The exper-
imental discovery of the divergence of the isochoric heat capacity of argon by
Alexander Voronel and his group, see Bagatskii ez /. (1962), was an impor-
tant factor in rekindling physicists” interest in fluid criticality.

The modern study of criticality came to full bloom in the 1960s, when sci-
entists began to investigate the critical behavior of the three-dimensional
Ising model and its lattice-gas variant. The latter is a simple model for a
vapor-liquid phase transition, with lattice sites occupied by molecules or
‘holes’ (empty sites). It was found that the coexistence curve of the three-
dimensional model was roughly cubic in shape:

o1 - oy = B(T.-T)%, (9.1)

with o the liquid, g, the vapor density, and B a substance-dependent co-
efficient called a critical amplitude. The best modern value of the critical
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exponent 5 for the three-dimensional Ising model equals 0.326, substantial-
ly different from the value 1/2 for a classical or mean-field theory. The best
values for fluids agree with this Ising-model value to within their uncertain-
ty, a triumph of the modern principle of critical-point universality.

When the news of the (almost) cubic coexistence curve for the Ising model
sank in, scientists remembered a paper by Guggenheim (1945). Guggenheim
had analyzed the experimental coexistence curves of several noble gases and
found that they were cubic in shape. To this day, the myth is perpetuated that
Guggenheim discovered the cubic coexistence curve. Guggenheim rediscov-
ered it and also produced a very convincing plot, reconfirming the adage that
a picture is worth a thousand words. The original discovery, however, was
made half a century earlier in the Netherlands.

The difference between a parabolic and a cubic coexistence curve is both
obvious and of fundamental importance. In appearance, a cubic curve is
much flatter than a parabola. Fundamentally, a Helmholtz energy that is ana-
lytic at the critical point cannot possibly give a cubic coexistence curve.

9.1.4 How to measure a coexistence curve. To find out the asymptotic shape of
a coexistence curve, an experimenter needs to be able to measure accurately
the densities of coexisting phases as a function of temperature as close to the
critical point as possible. Simultaneous density measurement in coexisting
phases is not easy to arrange. In the 19® century, an alternative method was
developed which is still in use. Densities are measured on each side of the
coexistence curve independently. The measured densities of vapor or liquid
are plotted as a function of temperature, and an interpolation is made for the
true coexisting density values at a chosen temperatures.

The procedure is as follows. A glass cell of known volume is partially
filled with a known amount of liquid. The cell is sealed and heated. The
temperature is noted at which the meniscus, the interface between coexist-
ing phases, reaches the top or the bottom of the cell. At the temperature at
which the meniscus is one the verge of exiting, the cell is filled with a
homogeneous fluid of known density, and thus a density value on the
coexistence curve is obtained. In the first case, the meniscus reaching the
top, the cell is overfilled: it runs out of vapor before the critical point is
reached, and a density-temperature value on the liquid side of the coexis-
tence curve is obtained. In the second case, the cell is underfilled, and one
obtains a point on the vapor side. It is also possible (and even easier than
one might think) to fill the cell in such a way that the meniscus remains
near the center of the cell, where it flattens, and finally disappears at the
critical point. This is a standard method of measuring the critical temper-
ature of a fluid.
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The reader should appreciate that as the temperature rises in the sealed
glass vessel filled with a vapor-liquid system, so does the pressure. Typically,
critical pressures range from 35 to 50 atmospheres, posing a risk to the glass
container. Carbon dioxide, with a critical pressure of 72 atmospheres, and
water, with a critical pressure of 220 atmospheres, clearly present an even
more serious challenge and risk to experimenters. These difficulties, however,
did not discourage the intrepid early investigators of fluid criticality in
Europe.

Near the end of the 19t century, it became possible to measure coexisting
densities with sufficient accuracy, and one would think that one scientist or
another might test the shape of the coexistence curve and find the Van der
Waals theory wanting. In fact, history took a more tortuous path.

9.2 Van der Waals develops the theory of capillarity

Presently, the use of critical exponents for characterizing the behavior of
experimental data on approach to criticality is widespread. Van der Waals
(1894c) used this tool in the modern sense in the course of his work on the
theory of capillarity in the early 1890s. See Levelt Sengers (1976). Rowlinson
(1979) translated Van der Waals’s (1894c) article into English. Here we touch
on the subject of Van der Waals’s theory of capillarity only lightly, because of
the availability of a book on this topic by Rowlinson and Widom (1982).

Van der Waals’s paper on capillarity was a seminal piece of work. Laplace,
who presented the first rigorous treatment of the shape of an interface, had
treated the interface as being infinitely sharp. Although Poisson, Maxwell
and Fuchs were aware that this could not be the case, Van der Waals was the
first to incorporate a smooth density variation through the interface in a rig-
orous fashion. The loop of his equation of state provided him with inspira-
tion and opportunity. In Van der Waals’s theory of capillarity, an interfacial
term representing the cost of creating a gradient in density is added to the
Helmholtz energy of the system. Van der Waals assumed that this cost, to
lowest order, would be proportional to the square of the density gradient.
Had it been linear, the term would change sign with the direction of the gra-
dient, which is unphysical.

Van der Waals then calculated the density profile by minimizing the sur-
face free energy. He found that the local free energy and the square-gradient
term, integrated over the height of the interface, contributed equal amounts
to the surface free energy, so that the surface free energy density, or surface
tension, equals twice the contribution from the square gradient term. Van
der Waals thus knew the form of the Helmholtz energy, including the square-
gradient term, everywhere including the vicinity of a critical point. It was

170 CRITICAL EXPONENTS — VERSCHAFFELT AND VAN DER WAALS



very important to him to find out what his theory would predict for the
behavior of the capillary rise and the surface tension near this point. At the
critical point both quantities must be zero, because the difference between
the two phases has disappeared.

The standard theory, in which a sharp interface is assumed, was known to
give a surface tension approaching zero as the first power of the temperature
difference with the critical temperature. Assuming a continuous variation of
the density through the interface might give a different exponent. Van der
Waals (1894¢) carefully did the analysis. He found that the capillary rise itself
goes to zero with the first power of the temperature difference with critical,
the density difference with the power 1/2 and thus the surface tension goes
to zero with the power 3/2.

Modern theory obtains the exponents for the capillary rise and the surface
tension by considering that near a critical point the thickness of the interface
cannot be less than the correlation length £, which itself is known to grow
according to a critical exponent v

cO(T-T1)” (9.2)

where v equals 0.5 in classical theory. The correlation length thus diverges
more slowly than the compressibility, with an exponent only about half as
large as the exponent v.

A simple argument yields the critical exponents of the surface tension and
the capillary rise in terms of those of the coexistence curve and the correla-
tion length. First, since the surface tension is proportional to the product of
the capillary rise and the density difference between the coexisting phases,
the surface tension critical exponent must equal the sum of the density and
the capillary rise critical exponents. We saw that the surface free energy
equals twice the energy stored in the density gradient, averaged over the
thickness of the interface. The gradient, however, can be estimated from the
density difference divided by the thickness of the interface, or (g - p,)/ .
Integrating the square of the gradient over the thickness of the interface
yields a surface free energy density, or surface tension, which must be pro-
portional to £ [(g) - p,)/ £)%, or (pr - pv)z/ £. This yields a surface tension criti-
cal exponent of 28 + v, and therefore a capillary rise critical exponent of 8 +
v. In mean-field theory, the first exponent equals 3/2, and the second equals
unity. Both the capillary rise and the surface tension thus approach the value
zero at the critical point. For the surface tension ¢ we have:

o O(T - T)*" (9.3)

For a proper understanding of what follows, we provide the non-classical
values of these two exponents, which follow from v = 0.62 and £ = 0.326.
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The result is a value of 1.27 for the surface tension exponent, much lower
than the classical value of 1.5. For the capillary rise, the value of 0.97 is
found, almost indistinguishable from the mean-field value of 1.

9.3 De Vries measures the capillary rise near a critical point.

Kamerlingh Onnes knew of Van der Waals’s new work on capillarity prior to
publication. In the early 1890s, Kamerlingh Onnes assigned his graduate stu-
dent De Vries the measurement of capillary rise in ether. Capillary rise is
larger the finer the capillary. For small surface tensions, such as near a criti-
cal point, fine capillaries are used. Measuring the capillary rise requires care-
ful determination of the diameter of the capillary and close temperature con-
trol. The coexisting densities must be measured separately in order to obtain
the surface tension from the capillary rise.

De Vries took six data points in the range of -100°C to +160°C, the crit-
ical point of ether being around 194°C. He notes that the plot of the capil-
lary rise versus temperature is not completely linear, as predicted by classical
theory, but slightly curved, turning its concave side to the temperature axis,
indicating a critical exponent slightly less than unity. The plot of surface ten-
sion, however, curves with its convex side towards the temperature axis, indi-
cating a critical exponent larger than unity, which differs from the sharp-
interface theories, but is consistent with Van der Waals’s theoretical
prediction. Kamerlingh Onnes presented De Vriess (1893) results at the
Academy meeting, a year before Van der Waals’s paper on capillarity was
published. A brief remark by Van der Waals follows De Vries's paper. This
remark, translated into English from the Dutch, reads:

The result of the experiment, although not quite in agreement with £(1 - 7/7,)*?,

is in conflict with the older theories. If one tries to calculate the value of the expo-
nent, one finds, at some distance from the critical point, the value 1.23. However,
the values increase on approaching 7, and seem to confirm the proposition that the
limiting value may be equal to 3/2.

A footnote of roughly the same wording can be found in Rowlinson’s (1979)
translation of Van der Waals’s (1894¢) paper on capillarity, p. 233, note 7.

Thus, in 1893, Van der Waals used the concept of critical exponent in the
modern sense. The first sparse and somewhat crude measurements fell short
of the exponent value he predicted. There were indications that his predic-
tions would be found correct on closer approach to the critical point. This
hope is expressed very carefully.

It so happened that in the same year, while Van der Waals completed his
paper on capillarity, Ramsay and Shields measured capillary rise in nine
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organic fluids, some of which had critical temperatures over 200°C. This rep-
utable laboratory produced an extensive and detailed set of data, with about
20 data points per fluid and a range of 60°C to 0.1°C from criticality. Ram-
say and Shields needed coexistence curve data to calculate the surface tension
from the capillary rise. They did not have to look far, since Ramsay and
Young’s data were readily available. If one plots the capillary-rise data versus
temperature, the same features noted by De Vries appear: the capillary-rise
data are slightly concave, whereas the surface tension data are distinctly con-
vex. Nevertheless, Ramsay and Shields (1893), in Section xv1, p. 474 of their
paper, chose to represent the surface tension data by an expression linear in
temperature, ignoring both the convexity and the data points within the last
6°C. Consequently, the calculated surface tension reached the value of zero
6°C below the known critical point.

In a letter dated November 3, Kamerlingh Onnes (1893) wrote to his
friend Van der Waals about Ramsay and Shield’s data. He rejected the use
of the linear form because De Vries's as well as Ramsay’s own data clearly
followed a curved path. Furthermore, he found the proposed procedure of
subtracting 6°C from 7, ‘almost incredible.” This judgment highlights
Kamerlingh Onnes’s strong conviction that a critical point is a truly excep-
tional point at which all critical anomalies should be centered.

A few days after receiving Kamerlingh Onness letter, Van der Waals
(1893b) completed his tests of the surface tension data for ether, benzene and
acetic acid, and replied (translation from the Dutch):

Dear friend, On studying the numbers given by Ramsay and Shields, I noticed that
for ether, benzene and acetic acid ¢ is given by the following equation:

c=k(T.-9"

for ether log 6 = 8.37014 + 1.27 log (7, - 2)
benzene log 6 = 8.457 + 1.23 log (7. - 7
acetic acid  log ¢ = 8.465 + 1.23 log (7. - #)

Here, o is the symbol for the surface tension and 7 is the surface-tension
critical exponent, predicted to equal 3/2 by Van der Waals’s new theory. This
letter is shown, in part, in Fig. 9.2. A comparison between the correlating
equations and the experimental data is shown in a table, and it is seen that the
agreement is close. The exponent, however, ranges from 1.23 to 1.27. For Van
der Waals, the exponent value falling midway between that of the older theo-
ries and that predicted by his new theory, was undoubtedly bad news. How
delighted would he have been if he had known that the best modern theoret-
ical value of the exponent is right in the range he found from experiment.
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Figure 9.2 Perhaps the oldest references to a critical exponent, in a letter by Van der
Waals to Kamerlingh Onnes dated Nov. 6, (1893b). The power law and critical
exponent 7 for the surface tension are defined. The exponent values obtained for
three fluids, 1.27, 1.23, and 1.23, respectively, are well below the Van der Waals
prediction of r.s5. For each fluid, the observed values, w, are compared with the pre-

dicted values, &. Copied, with permission, from Brievenarchief Boerhaave Museum,
Leiden.
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The letter continues:

The law of corresponding states would require 7 (1.27, 1.23, 1.23) to be constant. It is,
however, remarkable that from De Vries’s measurements 1.23 was found as well. Ram-
say’s observations are perhaps not sufficiently accurate in the vicinity of the critical
point. Moreover, I am still of the opinion that in the absolute vicinity of 7, the expo-
nent should be equal to 1.5. In the vicinity of 7, there seems to be a rapid change. From
Ramsay’s data one calculates indeed a higher value of the exponent in the neighborhood
of T, and therefore the difference of the first data, between, for instance, 29 and 39, is
a consequence of the use of an approximate equation. [Translated from the Dutch.]

Thus, Van der Waals, as early as 1893, introduced the notion of a critical
exponent with the purpose of characterizing the manner in which the surface
tension disappears as the critical point is approached. By performing a Taylor
expansion of the Helmholtz energy at the critical point and including the
square-gradient term, he obtained the classical or mean-field values of the criti-
cal exponents for the coexisting density difference, the capillary rise and the sur-
face tension. He was also the first to notice that the apparent exponent values
obtained from surface tension data from two laboratories were 7oz in agreement
with his theory. It is quite understandable that, although noting the discrepan-
cy, he hoped it would disappear on closer approach to the critical point. Final-
ly, it is interesting to note his expectation that the observed experimental critical
exponent should be universal. He invoked the principle of corresponding states,
knowing that its validity might extend beyond that of his equation of state, and,
unknowingly, anticipated the modern principle of critical-point universality.

The analysis of the Ramsay and Shield data, plus data for chlorobenzene
and carbon tetrachloride, can be found in Appendix 3 of the German and
French versions of Van der Waals’s (1894¢) paper on capillarity. This appen-
dix was not included the Dutch original, nor in Rowlinson’s translation into
English (1979). For all five substances Van der Waals reports critical exponent
values between 1.21 and 1.27, and shows that the extensive sets of experi-
mental data follow the simple power-law expression Eq. (9.3) closely over
large temperature regions. Van der Waals notices that in several cases the crit-
ical exponent seems to increase in value within the last few °C from the crit-
ical point. Quite honestly, however, he states that in other cases the exponent
appears to remain constant up to the critical point. He concludes:

Whether the limiting value of B really equals 1.5, cannot be decided on the basis of

these observations

This was the first and last time that Van der Waals calculated a critical
exponent from experimental data. He did not play any role in the subsequent
events discussed below.
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9.4 Verschaffelt finds that mean-field theory fails ar the critical point

9.4.1 Who was Verschaffelt? Henriot’s biography (1957) for the Belgian Acad-
emy, published two years after Verschaffelt’s death, reports that Jules-Emile
Verschaftelt was born in 1870 to an educated family in Gent. His brother
Eduard would later become a professor of plant science at the University of
Amsterdam. Verschaffelt began his university studies in Gent in 1888 and
completed the doctoral degree in 1893 with distinction. (In the Low Coun-
tries, a doctoral degree was the rough equivalent of the present-day American
Ph.D. qualifying exam).

Although he was of Flemish origin, his education has been entirely in
French. Professor Mc.Leod influenced him to study the plant sciences.
McLeod also convinced him not to forego his Flemish heritage, and encour-
aging him and his brother to learn to speak cultivated Dutch. This skill
would serve both of them very well in later life.

After obtaining his doctoral degree, Verschaffelt served as an assistant in
the geology department and began his study of physics, crystallography and
chemistry. A research project he completed on the refractive index of fluid
mixtures won him a 2-year scholarship for studies in the Netherlands. He
spent his first year in Amsterdam, taking courses with Van 't Hoff and Van
der Waals. In 1894, at the beginning of his second year, he joined Kamerlingh
Onnes’s laboratory, while taking courses with Lorentz. After his scholarship
expired he was hired as a laboratory assistant, and served as such from 1895
to 1898.

9.4.2. Verschaffelt measures capillary rise. The unfinished business of the sur-
face tension must have been on Kamerlingh Onnes’s mind, for he asked the
young Belgian to repeat the measurements of De Vries, and to extend the
measurements to higher temperatures. Verschaffelt used the glass capillary-
rise apparatus built by De Vries. This apparatus is shown in Fig. 9.3. A fine
capillary is mounted inside a glass tube suspended in a thermostated bath,
which may be a circulating vapor or a liquid boiling under controlled pres-
sure. In the mid-1890s, the Dewar vessel (now called a thermos bottle: two
coaxial silvered glass cylinders, closed at the bottom and fused together at the
top, separated by an evacuated space) had not yet been invented, and there-
fore several nested glass vessels provided insulation. Drying agents were used
to prevent the deposition of moisture on the glass. These nested glass tubes
also provided some protection to observers if the pressurized apparatus
exploded.

Verschaffelt’s (1895) publication contains the first fruits of his labor: four
data points for CO,, three data points for N,O, none closer than 10°C from
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the critical point. Verschaffelt observes that the capillary rise is linear in tem-
perature. For calculating the surface tension, he makes use of coexistence-
curve data for the two gases from a paper by Cailletet and Mathias (1886).
Although the data on the vapor side extended to within 1°C from critical, on
the liquid side there were no data within the last 10°C from the critical
point. In order to correlate the data and fill in the top, Cailletet and Math-
ias used ‘half parabolas’ with different amplitudes on the vapor and the lig-
uid branches. These equations had no theoretical foundation, were in con-

Figure 9.3 Capillary rise apparatus as used by De Vries and by Verschaffelt between
1892 and 1895. A fine capillary is mounted inside a pressurized glass tube immersed
in a thermostated bath, which is thermally insulated by means of a set of nested
glass cylinders. Copied from Verschaffelt (1895), Fig. 2.
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flict with the mean-field prediction of a symmetric top, and, gave a notori-
ously poor fit to the data. Verschaffelt, blithely unaware of these difficulties,
multiplies the capillary rise data by the appropriate density differences, cal-
culates the surface tension critical exponent and finds 1.311 for CO, and
1.333 for N,O. In addition, he analyzes surface tension data for five of the
fluids studied by Ramsay and Shields and reports values between 1.21 and
1.27 for the critical exponent. He concludes that his own critical exponents
are closer to the Van der Waals theoretical prediction than those of Ramsay
and Shields, and, on this optimistic note, sets out to improve the apparatus
for work closer to the critical point.

Verschaffelt improves the homogeneity and stability of the temperature
bath to 0.1°C. He adapts the apparatus to measurement of the small surface
tensions near criticality by using a much finer capillary than before, with an
inner diameter of 0.1 mm. He then takes two independent sets of data for
CO,, demonstrating perfect reproducibility of the apparatus. Verschaffelt
(1896) reminds the reader that, to date, all work on surface tension yielded
exponents well below the theoretical value of 3/2. There seems, however, to
be a tendency for exponents to grow on approaching criticality; his purpose
is to check whether the exponent will indeed reach the predicted limiting
value of 3/2. He reports six data points between 29.3°C and 30.6°C, the
highest temperature being within 0.5°C from criticality.

9.4.3 Verschaffelt pinpoints a problem with the near-critical surface tension data.
The new data presented no surprises. The capillary rise data are again linear
in temperature, at least up to a degree from criticality. This time, however,
Verschaffelt (1896) is much more aware of the problems arising from using
literature values for the coexisting densities. For CO,, he uses Amagat’s new
data (1892). Amagat measured coexisting densities up to 0.35°C below criti-
cal. In his paper, however, he only presented tabular data at regular tempera-
ture intervals. These values were obtained by passing a curve graphically
through the experimental data. First, Verschaffelt proposes to test whether a
parabolic equation is compatible with Amagat’s data. He knows the theoret-
ical foundation for the parabolic law in volume-temperature coordinates, and
points out that this same limiting law then must also apply if density-tem-
perature coordinates are used. This is how Verschaffelt (1896) tested the valid-
ity of the parabolic law for the coexistence curve (the symbol 7 represents
17T, the symbol « represents 7" - 7, and A is a finite increment):

In order to submit this first theoretical result to experimental verification I have calcu-
lated, from Amagat’s densities, the values of the quotient A log ( ¢; - p,)/ A log (1 - m)
which, according to Cailletet and Matthias, must be constant and equal to 0.5, and
would reach this value for m = 1, according to Van der Waals.
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Column 4 of table 1 shows immediately that the formula of Cailletet and Math-
ias does not well represent the experiments, for carbonic acid at least. Till 1° from
the critical temperature the quotient remains sensibly constant, mean value 0.367,
and the experiment can therefore be represented well by

ol - oy = A (1 _ m)0.367’

A being a constant.
From = = + 1° begins a sensible increase of the quotient as required by the theo-
ry of Van der Waals, and the last value 0.521 comes very near the theoretical one.

Verschaffelt’s table is reproduced in Fig. 9.4. Verschaffelt proceeds to cal-
culate the surface tension, and subjects it to a similar analysis. He finds low
exponent values, between 1.2 and 1.4 in most of the range, but increasing to
1.5 within the last degree below the critical point.

The present-day reader is pleasantly surprised by Verschaffelt’s method of
data analysis: the calculation of an apparent critical exponent value by loga-
rithmic differencing. This particular method was reinvented in the 1960s,
and is known as the Kouvel-Fisher (1964) method.

201  1-m= 000033 o -pa= 0,075 Alos(emed g5y
0°,35 0,00115 0,144 Alog (1-m) () 468
0°,85 0,00279 0,218 0,414
1°,35 0,0044 0.264 0,386
2°,35 0,0077 0,327 0,357
3°,35 0,0110 0,371 0,336
4° 35 0,0143 0,405 0,356
5°,35 0,0176 0,436 0,351
6°,35 0,0209 0,463 0,374
7°,35 0,0241 0,489 0,391
8°,35 0,0274 0,514 0,354
9°,35 0,0307 0,535 0,379

10°,35 0,0340 0,556 0,383
11°,35 0,0373 0,575

Figure 9.4 Verschaffelt (1896) calculates the value of the critical exponent of the
coexistence curve by taking logarithmic differences of the measured densities and
temperatures. 7 is the temperature difference, 1 - m the reduced temperature differ-
ence with the critical temperature, p; the density of the liquid and p, the density of
the vapor. The last column is an estimate for the surface-tension critical exponent. It
is close to 1/3, except for the last degree from critical, where it appears to approach
the mean-field value 1/2.
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The conclusion that Verschaffelt believed mean-field behavior to set in
one degree from the critical point is proven wrong in the next section of the
paper, appropriately named ‘Critical Remarks.” Verschaffelt reminds the read-
er that the densities used for the highest temperatures were not measured but
interpolated. Amagat had passed a curve through the data tangent to the
ordinate of the critical point.

And as we know that generally a curve has with every tangent a contact of second
order, we must confess that the obtained result, though it may really be contained in
the experiments, is nevertheless a consequence of the manner of interpolating.

Since capillary ascension is virtually linear in temperature, and a parabol-
ic shape was imposed on the top of the coexistence curve by the manner of
interpolating, it was inevitable that the theoretical value of 1.5 would be
found for the surface tension exponent.

This verification would therefore be satisfying only then when it was founded quite
on observed densities — these observed values however I have nowhere found.

A present-day experimentalist cannot fail to be impressed by Verschaffelt’s
analysis. His critical attitude towards any input data used in addition to his
own observations leads him to the source of the problem posed by the low
surface tension exponent: the coexistence curve, contrary to expectations,
does not seem to be parabolic. The tendency for exponents to reach the val-
ues Van der Waals predicted could be a consequence of the way the top of
the coexistence curve was graphed in a region where no data exist. The 1896
paper was not Verschaffelt’s last word on the limiting value of critical expo-
nents, but it did conclude his work on capillarity in Leiden.

9.4.4 Verschaffelt finds non-classical critical exponents very near the critical
point. Around 1897, Verschaffelt became engaged to a Dutch student of
physics, Elisabeth Ebert, and started planning for marriage and for a career
in the Netherlands. To this end, he would need a Dutch doctorate. Kamer-
lingh Onnes accepted him as a graduate student and assigned to him an
investigation of the properties of dilute fluid mixtures (Ch. 11.4.4, Ch.
11.4.6). He defended his doctoral thesis in 1899, and from 1898 until his
appointment as a physics professor at the University of Brussels in 1906, he
taught high school physics in Dordrecht. During this period, Verschaffelt
retained his collaboration with Kamerlingh Onnes and struck his verdict on
mean-field theory.

While dealing with the pressures and responsibilities of marriage, disci-
plining high school boys, and receiving Kamerlingh Onnes’s urgent requests
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to speed up his work on mixtures, Verschaffelt (1900a) produced a definitive
paper on fluid critical exponents. The problem of the shape of the coexis-
tence curve had never left his mind. A data set came to his attention in 1900
enabling him to settle the question. Sidney Young (1894) had published
superb data, P-Visotherms and coexisting densities of isopentane. Young was
a student with Ramsay at Bristol, and succeeded him after Ramsay was
appointed in London. Both scientists were highly reputable experts in the
measurement of properties of fluids, and a stream of excellent data flowed
from their laboratories. Verschaffelt (1900a) applied to Young’s coexistence
curve data the same technique of logarithmic differencing that he had used
for CO,. He found that the entire body of data was well fitted with a power
law with exponent 8 = 0.3434. Between 1.8 and 0.8°C from critical, the
exponent value was 0.344, and between 0.8 and 0.4°C it was 0.337. Thus
the exponent had a steady value near 1/3, with no tendency to grow as 7,
was approached.

Therefore for the time being no experimental proof can be given for the supposition,
that up to the immediate neighborhood of the critical state g - p, = A (1 - )34
would not hold instead of the theoretical formula g, - o, = 4 (1 - m)'"2.

Verschaffelt did not limit himself to the coexistence curve, but immedi-
ately widened the quest to the form of the critical isotherm:

It now appears that in place of the exponent 1/2 in the difference of liquid and
vapor density a less simple fraction must be substituted. Hence as according to Van
der Waals’ simple supposition the isothermal is a curve of the third degree, I have
investigated whether the critical isothermal could not be expressed in an analogous
way by means of a fractional exponent. The result I arrived at, was that the observa-
tions of S. Young on the form of the critical isothermal of isopentane are well
expressed by the formulae

P=P -P [1-(.-blv-b)]" forv>u,
P=P.+P[(v.- b)/(v-5)-1]"for v < v,

in which P, = 32.92 atm, v, = 4.266 cc, & = 0.518 cc and 7z = 4.259. The following
table shows that these formulae are in good harmony with the observations.

Here the symbol v stands for the specific volume, and v, for the specific
critical volume. The reader should not be confused by Verschaffelts use of
empirical forms. He had to represent the critical isotherm by two branches,
since he expected a nonanalyticity at the critical point. The branches have a
point of antisymmetry at criticality. Asymptotically near the critical point,
the form in brackets is proportional to v, - », thus giving rise to a power-law
expression for the pressure as function of the volume in the vicinity of the
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critical point. The only numerical value of interest is that of the critical expo-
nent 7 = 4.259, which is obviously much larger than the classical value § = 3.

At the end of his paper, Verschaffelt stresses that his equation for the crit-
ical isotherm is purely empirical:

It may be seen that only in a very forced way a division of the pressure into a ther-
modynamical and a cohesion pressure can be deduced from my formula, which divi-
sion is the basis of the Van der Waals theory. If therefore my formulae have a theo-
retical meaning, this seems to be based on a principle somewhat different from Van
der Waals’s equation of state; I did however not succeed in deducing such a principle.

By 1900, Verschaffelt had discovered a fundamental flaw of classical theo-
ry: an inability to describe correctly the critical behavior of fluids. The low
value of the experimental surface tension exponent is caused by the low value
of the experimental coexistence curve exponent. Verschaffelt sensed that this
shortcoming, unlike other weaknesses of a simple two-parameter equation of
state, could not be repaired within the framework of mean-field theory. This
intuition grew into a conviction in his later life.

9.4.5 Impact, or lack of it. Two opposing remarks are valid regarding the
impact of Verschaffelts’s findings. On the one hand, empirically, the cubic
coexistence curve was confirmed by several investigators, most notably by the
Kazan physicist Goldhammer (1910) in a substantial paper in a prestigious
journal. Goldhammer, citing Verschaffelt (1896), proposed a cubic law of cor-
responding states for the coexistence curves of a dozen fluids from Young’s
laboratory, preempting Guggenheim’s (1945) paper by 35 years.

On the other hand, Verschaffelt’s findings did not seem to resonate in his
scientific environment in any significant way. There is no indication of ani-
mosity or any attempt at suppression of evidence on the part of Verschaffelt’s
supervisor. Kamerlingh Onnes did present at the Academy meetings Ver-
schaffelt’s three early Leiden communications that build the case against Van
der Waals’s theory. He also approved Verschaftelt’s papers for publication in
Archives néerlandaises. Verschaffelt maintained a most cordial relation with
Kamerlingh Onnes. Kamerlingh Onnes just never warmed up to the insight
that the Van der Waals theory of criticality was in fundamental disagreement
with experiment.

To understand the lack of interest in Verschaffelt’s ideas, one must know
about Kamerlingh Onnes’s interests, convictions, and purposes at the turn of
the century. Many limitations of the Van der Waals equation came to light
long before 1900. It was well known that critical ratios were overestimated by
as much as 20%, and that experimental data could be represented at best
over limited ranges only by particular choices of values of 2 and 4. The use
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of a constant excluded-volume term & had been questioned on theoretical
grounds. As early as 1881, Kamerlingh Onnes himself had pointed out that &
should be volume-dependent. From that time on, several physicists, includ-
ing Van der Waals, Lorentz, Van Laar and Boltzmann, worked on improve-
ment of the excluded-volume term by calculating successive contributions
from pairs, triplets, etc., of interacting hard spheres.

Shortly after he presented Verschaffelt’s (1900a) result, and as discussed in
Ch. 3.5, Kamerlingh Onnes (1901) proposed an empirical corresponding-
states polynomial representation of P-V-T data, in order to replace the much
maligned Van der Waals equation. He may have viewed Verschaffelt’s result
as yet another shortcoming of this equation.

Kamerlingh Onnes retained his enthusiasm for the study of mixtures and
truly appreciated the fundamental role played by the theory of Van der
Waals. Since the early 1890’s, he was engaged in a lengthy vendetta against
half a dozen experimenters who were attacking the Andrews-Van der Waals
view of criticality on the basis of questionable data (Ch. 10). Kamerlingh
Onnes was convinced that the main problem with the literature data was
impurity, and initiated a program of studies of impurity effects near critical
points. This is why, in 1896, Kamerlingh Onnes assigned the experimental
study of one such mixture, that of a small concentration of H, in CO,, to
Verschaffelt as a thesis project. Around 1900, the mathematician Korteweg,
who had been out of the picture for a decade, began an analysis of the behav-
ior of dilute fluid mixtures near critical points (Ch. 11.4.3). One must recall
the atmosphere at that time to understand the lack of impact of Verschaffelt’s
work on critical exponents. Kamerlingh Onnes’s was disillusioned with the
Van der Waals equation and engrossed in his own work on accurate empiri-
cal equations; he was vividly interested in impurity effects; his mind was
occupied by a well-planned research project for Verschaffelt; and Korteweg’s
entrance into the field was a challenge. To Kamerlingh Onnes, Verschaffelt’s
nonclassical critical exponents must have seemed to be one more sign of the
failure of the Van der Waals equation, of whose multitudinous shortcomings
he had been convinced for many years. Verschaffelt’s insistence must have
seemed like beating a dead horse. The fundamental difference between a dis-
crepancy in a critical ratio and that in a critical exponent must have escaped
Kamerlingh Onnes.

This hypothesis about Kamerlingh Onnes’s attitude is in agreement with
all known facts. Although there seems to have been a disruption in the cor-
respondence between Van der Waals and Kamerling Onnes between 1894-
1900, the exchange of letters resumed its original high frequency in 1900.
Kamerlingh Onnes described to Van der Waals in fair detail the activities of
his students and coworkers. The only reference to Verschaffelt in letters of
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that year that have been conserved, occurs in that of October 18. Kamerlingh
Onnes (1900b) writes:

In the meantime I think I have gotten Verschaffelt to work on the hydrogen-carbon
dioxide plait.

This was the year that Kamerlingh Onnes presented Verschaffelt’s results
about the nonclassical values of critical exponents at the Academy. The sub-
ject apparently did not even cross his mind when he wrote to Van der Waals.
The only problem he saw was ‘getting Verschaffelt to work’ on the mixture
project. Nevertheless, in the years to follow, several Leiden experimentalists
reported approximately cubic coexistence curves. For instance, Keesom
(1902) reports an exponent value of 0.3327 for pentane, quotes Verschaffelt,
and mentions that the Van der Waals theory gives a value of 0.5.

It is moving to read how Kamerlingh Onnes (1915), replying to what must
have been a question by the 78-years old Van der Waals regarding cubic coex-
istence curves, enthusiastically reports that he has found the origin of the 1/3
power law, pointing his friend to Goldhammer (1910). But then he carefully
explains how, beginning with Verschaffelt’s value of 0.3434 for isopentane,
several experimenters in his group had found similar exponent values
between 1902 and 1910. He appears to accept the validity of the cubic law,
but does not mention the intrinsic conflict with the mean-field prediction.

9.5 Verschaffelts career in the 20th century

Verschaffelt was appointed a professor of experimental physics at the Free
University of Brussels in 1906. When the First World War erupted in 1914 and
the Germans occupied Belgium, he and his family escaped to the Nether-
lands. Kamerlingh Onnes’s appointed him to a research position at the Cryo-
genic Laboratory in Leiden (Fig. 9.5), and he taught high school again to sup-
plement the family income. Lorentz, then secretary of the Holland Society
of Sciences and Humanities (HMW), appointed him as the French-language
editor of the Archives néerlandaises. For many years he also served as a science
secretary for the Institut International de Physique Solvay. This required
thorough knowledge of French, German and English, and brought him a
huge amount of work.

In 1923 he received an appointment from the University of Gent, which
had recently turned Flemish. He became a full professor in 1929 and served
until his retirement in 1940. Verschaffelt remained in Belgium during the
Second World War. Remaining true to his Flemish origins, he always walked
a straight and independent path with respect to the Flemish movement.
When this movement compromised itself by seeking German support for its
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Figure 9.5 Verschaffelt at work in the Physics Laboratory at Leiden in 1915.
The picture was provided by his daughter, Francoise (Fransje) Wiersma-Verschaffel,

in 197s.
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cause, Verschaffelt denounced the movement’s student chapter at Gent Uni-
versity and refused an honorary membership. As a consequence he spent
some months in jail in 1943, which he endured as an interesting experience.
In 1946, after his wife’s death, he left for the Netherlands. His daughter
Frangoise (Fransje) had married Professor Wiersma in Leiden. Throughout
his long career and up to the year of his death, he published almost 300
papers on topics of thermodynamics, capillarity, thermochemistry and irre-
versibility. He became a correspondent of the Belgian Academy in 1909.

9.6 An unrecognized bridge to the modern era

Despite the difficulties he encountered throughout his life, Verschaffelt
returned repeatedly to his 1900 insights on fluid criticality. Verschaffelt (1901)
attempted to replace the classical Taylor expansion of the pressure in terms of
volume and temperature around the critical point by one more true to exper-
iment.

P =P+ mlx-x) +a(x-x)" (9-4)

Here x = 1/(v - b), x; equals the critical value of x, and m is a temperature-
dependent coefficient which passes through zero at the critical temperature;
n is the critical exponent for the critical isotherm, known to equal at least 4,
instead of the classical 3, and « a critical amplitude. Verschaffelt was not too
happy with this expression because he had no theoretical justification for it,
nor did he see how it could be generalized to mixtures.

Three more publications on critical behavior resulted in the 1920s, see Ver-
schaffelt (1922, 1926, 1927). He tried to describe the critical P-V isotherm, as
in his 1901 paper, as two branches of ‘fourth degree parabolas,” so that the
isotherm is a curve with an analytical discontinuity. We quote from the 1922
paper, translated from the French:

If it is true that the third derivative is zero at the critical point, but not the fourth,
then there is a point of discontinuity which equations of the Van der Waals type
cannot describe. Thus the critical isotherm could still be expanded, on each side of
the critical point, in a power series in which the coefficient of the third power is
zero, but it is impossible to represent the entire critical isotherm by a series expan-
sion around the critical point: the critical point presents to such an expansion an
insurmountable barrier. Thus an equation as that of Van der Waals cannot serve to
represent the isotherms up to the smallest volumes.

Such an equation can only serve in the region of large volumes, where it starts as
an extension of the gas laws. Similarly, a series expansion in increasing powers of 1/v,
such as the one employed by Kamerlingh Onnes for representing the isotherms, is
only valid up to the critical region, at least if one considers it as a Maclaurin series
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beginning at 3 = 0; since nothing prevents one, of course, to represent the isotherm,
even beyond the critical point, by a polynomial — which is what Kamerlingh Onnes
does — but then one must observe relatively large deviations in the vicinity of the
point of discontinuity, that is, near the critical point. That is exactly what happens;
Kamerlingh Onnes, however, ascribes these deviations to the large compressibility of
matter near the critical point, a compressibility which diszurbs the slope of the exper-
imental isotherms

Thus, in 1922, Verschaffelt had a clear idea of the failure of all analytic
equations, including the virial expansion.

Verschaffelt died in 1955, the year that B. Widom and O.K. Rice (1955)
proposed an expression for the equation of state near the critical point that is
similar to Verschaffelts (19or). Widow and Rice’s paper, in turn, initiated the
modern revival of interest in fluid criticality.

9.7 Verschaffelt vindicated

We saw in Ch. 9.1.3 that the modern understanding of criticality in fluids has
evolved from fundamental work on model systems, such as the Ising model,
which could be transformed to a crude model for the gas-liquid phase tran-
sition. Theory predicted that criticality in systems with short-range forces
should show universal critical behavior, characterized by critical exponents
quite different from those given by mean-field theory. Experimental work on
near-critical fluids and on liquid mixtures, by refined new optical techniques
that became available after the invention of the laser, began in the 1960s and
continued throughout the 20t century. It resulted in critical exponent values
that ultimately converged with the best theoretical results and are now
known with high accuracy. For a review with many references to the litera-
ture, see Sengers and Levelt Sengers (1986). The values obtained by Van der
Waals for the surface tension critical exponent, and by Verschaffelt for the
coexistence curve and the critical isotherm, are consistent with the best mod-
ern values to within the more limited accuracy of these century-old results.
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10. Challenges to Van der Waals-Andrews

criticality: Kamerlingh Onnes, Kuenen, and

Verschaffelt

History has demonstrated that it was very difficult for scientists to accept the
Andrews-Van der Waals ideas about fluid criticality and continuity of states
above the critical point. The older notion that liquid disperses into vapor at
the critical point, with liquid and vapor retaining their identities, was firmly
ingrained. From 1880 until well into the 20t century, scientists in many
European countries challenged the concepts of Andrews and Van der Waals.
In response, Kamerlingh Onnes and his collaborators engaged in a spirited
battle that flared up time and again, and spent many years refuting these
challenges. Later, in the middle of the 20t century, mean-field theories
would be found defective on a fundamental level for their neglect of critical
fluctuations. In parallel, however, the old theme of persistence of the liquid
phase, discredited long ago by the Leiden scientists, resurfaced in new guises.

This chapter, based on Levelt Sengers (1979), may therefore be considered
as a vindication of the early insight in fluid criticality achieved by the Dutch
School.

10.1 Andrews-Van der Waals versus older views of fluid criticality

Chapter 2 describes how Cagniard de la Tour (1822) sealed different quanti-
ties of liquid into glass tubes, and heated them until the meniscus left the
cell. When the amount of liquid was properly chosen, the meniscus disap-
peared near the middle of the cell, at a temperature characteristic for the
fluid under consideration. At this ‘Cagniard-Latour’ temperature the surface
tension between liquid and vapor had disappeared. At that time, however, it
was not at all clear what had happened to the liquid. Early experimenters,
such as Mendeleev and, at least on some occasions, Faraday, assumed that the
liquid ‘dissolved in the vapor’ without actually losing its identity. This is an
asymmetric way of considering the vapor-liquid critical point.

Andrews’s experiments in the 1860s, however, led him to describe the
vapor-liquid transition in symmetric terms. As we saw in Ch. 2.2, Andrews
reduced the volume of carbon-dioxide vapor at constant temperature, and
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found that the vapor transformed into a liquid while the pressure remained
constant (Fig. 2.1). Only after the vapor had condensed would the pressure
rise again. On repeating this process at higher temperatures, the densities of
the two phases approached each other, to become equal at what Andrews
called the critical temperature. Above the critical temperature, a transition
from a dilute to a dense phase occurred gradually with increase in pressure,
without the appearance of a meniscus. In his Bakerian lecture, Andrews
(1869) insisted that a continuous transition from gas to liquid is possible, and
that the two states cannot be distinguished from each other unless they are
actually in coexistence. In his words:

...gas and liquid are only distant stages of the same condition of matter and are
capable of passing into one another by a process of continuous change.

Van der Waals reinforced Andrews’s view (Ch. 2). Based on simple assump-
tions about excluded volume and mutual attraction of the molecules, his equa-
tion of state yielded pressure-volume isotherms, a vapor-liquid phase transition,
a critical point, and a continuously varying supercritical state, in qualitative
agreement with Andrews’s observations. There was no need to ascribe to mole-
cules in the gas phase properties different from those in the liquid.

Obvious as the Andrews-Van der Waals picture may seem to us, it was rev-
olutionary at the time. Notwithstanding its clarity and appeal, it was gener-
ally not accepted. Scientists were very reluctant to give up the older idea of
the liquid dissolving in the gas. Most opponents of the Andrews-Van der
Waals description of the gas-liquid transition believed in some form of per-
sistence of the liquid state above the temperature of meniscus disappearance.
Many scientists, even well into the 20t century, felt that the liquid-vapor
phase transition could not be understood unless liquid molecules were
assumed to be different from vapor molecules. Usually they considered the
liquid molecules as products of chemical reactions or association of gas mol-
ecules, although an alternative view, that the gas molecule is an expanded
version of a liquid molecule, was also voiced. The supercritical fluid was con-
sidered to be a mixture of gas and liquid molecules, ‘molécules gasogéniques
et liquidogéniques’ in the words of De Heen (1892b), ‘fluidons and gasons’ in
the words of Traube (1904, 1938). The opposition to the Andrews-Van der
Waals view was not merely philosophical. Between 1880 and 1905, experi-
ments all over Europe were claimed to indicate the failure of the theory of
the continuity of states.

It took a long time for scientists to appreciate how difficult and error-
prone critical-region experimentation is. By the early 1890s, only a few Euro-
pean laboratories — those of Kamerlingh Onnes in Leiden, Gouy in Paris,
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Ramsay in London and Young in Bristol — had acquired a sufficient grasp of
the principal sources of error. They identified temperature gradients, gravity,
impurity, and slow equilibration, by critical evaluations of experiments in
other laboratories.

Interpretation of the experiments was virtually impossible before the for-
mulation of Gibbsian thermodynamics and the phase rule in 1877. Argu-
ments raised against the Andrews-Van der Waals concepts were often in con-
tradiction with the phase rule. It took surprisingly long — well into the 1890s
— before the implications of Gibbs’s work began to be generally known and
accepted. Van der Waals, however, had acquainted himself at an early stage
with Gibbs’s work. Kamerlingh Onnes, through his friendship with Van der
Waals, became familiar with Gibbs’s ideas as well, and he quickly developed
into a staunch defender of the Andrews-Van der Waals position.

10.2 Overview of controversies

From 1880 to 1907, experiments were carried out in Europe that disputed the
Andrews-Van der Waals view of criticality and of the supercritical state.
Between 1880 and 1889, Ramsay, then in Bristol, and Cailletet and coworkers
in Paris, carried out imaginative and exciting experiments showing that after
a two-phase system is heated through the critical point, the supercritical fluid
retains a memory of the preceding two-phase state. The experiments could
not be interpreted at that time. Inspired by these results, a rash of experi-
mentation broke out in the early 1890s, involving the Italians Battelli and
Zambiasi, the Belgian De Heen, and the Russian Galitzine. These experi-
ments were all used to discredit the Andrews-Van der Waals view. In 1892,
the Frenchman Pellat proposed that the Cagniard de la Tour temperature, at
which the meniscus disappears, is lower than Andrewss critical point at
which the densities of the two phases become equal. This particular idea
would be repeated for half a century after Pellat first expressed it.

Also during the early 1890s, however, the Frenchman Gouy performed the
first reliable studies of the effect of gravity on near-critical fluids and on the
rate of equilibration of such systems. Shortly before, Leiden graduate student
Kuenen discovered how to perform reproducible measurements in near-crit-
ical fluid mixtures (Ch. 6). These experiments would provide necessary clues
for understanding the problems affecting the controversial experiments.

Around 1893, Kamerlingh Onnes and his staft took the offensive, repeat-
ing several of the controversial experiments and assessing their errors. Ram-
say joined Kamerlingh Onnes in this effort, and openly revoked his earlier
conclusions. Galitzine and De Heen, however, persisted. As a consequence,

De Heen found himself doggedly pursued by Kamerlingh Onnes, who did
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not give up until the inadequacy of De Heen’s separator was demonstrated.
Finally, the Germans Traube and Teichner reported in 1904 a quite elegant
experiment that they claimed demonstrated the persistence of the liquid state
above the critical point. Kamerlingh Onnes took this attack so seriously that
he decided to repeat Teichner’s experiment. He also had seasoned staff mem-
bers perform quantitative estimation of impurity effects near critical points
(Ch. m).

Kamerlingh Onnes did not overreact when he spent considerable effort to
demolish, one by one, over a period of fifteen years, the challenges to
Andrews-Van der Waals criticality. The idea of persistence of the liquid state
above the critical point appears to arise very naturally, viz. its re-emergence
in the mid-20® century. The more impressive is the unwavering conviction
with which Kamerlingh Onnes adhered to the Andrews-Van der Waals con-
cepts, and the lengths to which he went to in order to refute experiments
seemingly in conflict with this picture.

In modern work, the presence of critical fluctuations, ignored in mean-
field theory, plays an essential role. We will touch on this topic at various
occasions, in particular towards the end of this chapter. However, the chal-
lenges posed to the Van der Waals theory at the end of the 19t century, with
the exception of Verschaffelt’s work, (Ch. 9), were seldom at this fundamen-
tal level. In most cases, it was underestimation of the quality controls needed
in experiment that led to reports of baffling results.

10.3 Why experiments near critical points are difficult

For a proper understanding, it is necessary to explain why experimentation
near critical points is difficult, and what are the principal sources of error. We
have seen in Ch. 2 that at the critical point, the isothermal compressibility
and the isobaric expansion coefficient diverge. As a consequence, the density
of the system becomes extremely sensitive to variations of pressure and tem-
perature. If the bottom of the cell is cooler than the top, a steady-state den-
sity gradient will develop due to the large expansion coefficient, creating the
impression that the liquid state persists. In the early days of critical-region
experimentation, the need for excellent temperature stability and homogene-
ity was not always appreciated. Much of the work was done in organic fluids
with critical point near to, or over 200°C, and stability to 0.1°C was consid-
ered excellent temperature control. Gouy’s work in the 1890s, achieving a sta-
bility of 10“C, was a unique and admirable exception.

Due to the large compressibility, the force of gravity is sufficient to gener-
ate a sizeable density gradient in a fluid within a few 0.1 K from its critical
point, as was first pointed out by Gouy (1892). An interesting consequence is
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that the meniscus can disappear at various levels in the cell, depending on the
fill density, even though the critical point is an invariant point. Confusion
about this point persisted for decades.

Most importantly, impurity effects, topic of Ch. 11, are greatly magnified
near a critical point. Thus, even small impurities can have a major effect on the
density, depending on how the experiment is conducted. Equilibration of
impurities by diffusion is a long and tedious process. Unevenly distributed
impurities cause unexpected density gradients. Few experimenters had vacuum
pumps at their disposal, so air was an ever-present contaminant. Expelling air
from organic liquids by boiling could lead to decomposition.

The effect of impurities could not be properly understood until a theory
of mixture behavior near the solvent critical point was developed by Van der
Waals (1890), and Kuenen had learned to conduct reproducible experiments
on mixtures (Ch. 6). By 1894, the Leiden experimenters were in a position to
pinpoint the principal sources of error in many early experiments. Quantifi-
cation of impurity effects became possible a decade later, thanks to Leiden
work that is the topic of Ch. 11. Verschaffelt then estimated the size of den-
sity gradients due to unequilibrated impurities, and showed that these gradi-
ents reached very large values near the critical point. Thus, with great per-
sistence, the Leiden experimenters demonstrated that the reported conflicts
with the Andrews-Van der Waals view of criticality were within the limits of
error of the respective experiments.

10.4 Ramsay finds evidence of gaseous and liquid molecules

William Ramsay (1852-1916 ), a British experimental chemist, is best known
for his discovery of several of the noble gases. In 1894, jointly with Lord
Rayleigh, Ramsay announced the discovery of argon, and in 1895, he isolated
terrestrial helium, which up till then had only been known from solar spec-
troscopy. In 1898, he discovered krypton and neon. He received the 1904
Nobel prize in chemistry.

From 1880 to 1887, he was a professor of chemistry at University College
in Bristol. He and his associate Sidney Young performed careful measure-
ments on the critical state of many fluids. Some of these were discussed in
Ch. 9. Young succeeded Ramsay at Bristol in 1887, when the latter became a
professor of chemistry at University College, London. Ramsay continued his
collaboration with Young on fluid criticality until the mid-1890s. Young and
his group produced accurate equation-of-state data, critical parameters, and
surface tension data for many organic fluids. These data led Verschaffelt to
question the adequacy of the Van der Waals equation for describing critical

behavior (Ch. 9).
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In his early years at Bristol, Ramsay performed a series of experiments on
the nature of the supercritical state, which Andrews had carefully avoided
calling either vapor or liquid. Ramsay studied several organic liquids of fair-
ly high critical temperatures, near 200°C. He partially filled glass tubes with
the liquid under consideration, boiled off part of the liquid to expel air, and
sealed the tube. Tubes and thermometers were inserted in holes in a copper
block, and observed through slits in the block. (Fig. 10.1), that was heated to
a desired temperature.

In a first set of experiments, Ramsay (1880a) found that the temperature
of meniscus disappearance decreased considerably, as much as 13°C, as the
fill density increased. With Andrews, Ramsay accepted that the densities of
gas and liquid became equal at the critical point. He explained the above
observations as follows:

...when the tube contains a small amount of liquid the space left for the gas is larg-
er, and consequently more vapour must be given off by the liquid before enough gas
can be compressed till it acquires the same specific gravity as the liquid; the temper-
ature at which the meniscus disappears is consequently higher.

Figure 10.1 Top: a copper block heated by a flame and provided with slotted holes
for inserting tubes and thermometers. Bottom: a constricted tube. Copied from
Ramsay (1880a), p. 324, 325.
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Ramsay’s explanation contradicts the invariance of the critical point. In
addition, he expresses his belief that gas and liquid maintain their identities
after passing through the critical point. At the critical point they merely mix
because their densities are equal.

In a second experiment, Ramsay demonstrated the persistence of the lig-
uid using a tube constricted in the middle (Fig. 10.1). After a pass upwards
and downwards through the critical point, the liquid always re-condensed in
the section of the tube where it had been originally, even if that section was
tilted upwards in the supercritical state. Revealingly, Ramsay reports that this
memory effect disappeared after the tube was maintained at the supercritical
state for half an hour or more.

Ramsay, cleverly using the constricted tube as a cylindrical lens, showed
that the part that had originally contained the liquid had a higher refractive
index. He concluded that the constriction prevented the mixing of the liquid
and the gas.

Apparently, Ramsay’s experiments were challenged. At the end of his
paper, there is a reply to Professor Stokes, who had criticized the experiment
in a letter to Prof. Mills. The latter was a senior colleague of Ramsay’s, who
had presented his paper to the Chemical Society. Stokes had suggested sever-
al possible sources of error, such as air or water impurities, and the presence
of temperature gradients between the copper block and the cells. Ramsay
replied that his method of filling the tubes made the presence of air impossi-
ble. He decribed in detail the great effort he made to dry his samples. He was
sure that temperature gradients do not exceed 0.5°C. The critical tempera-
tures of two samples filled to the same volume fraction, as well as the repeata-
bility of the experiment, were within this tolerance.

In the same year, Ramsay (1880b) published P-V-7" measurements on
ether, benzene and an equal-weight mixture of these compounds, in an appa-
ratus similar to those of Andrews and Cailletet. After the liquids were dried
and partially boiled off in order to expel air, they were confined to a glass
tube. Mercury separated the liquid from an air manometer on which pres-
sures were read. The thermostat, again, was a heated copper block, tempera-
ture-controlled to about 0.1°C. The volume of the liquid was obtained by
observing the position of the mercury level through a slit in the block. For
several of the sub-critical benzene and mixture isotherms, Ramsay reported
that close to the liquid branch the pressure actually decreased with diminish-
ing volume. He apparently did not realize that this violates thermodynamic
stability. Instead, he claimed Andrews had never seen such effect because the
carbon dioxide the latter used had not been pure enough. Ramsay (188ob)
explained this effect as follows:
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...the molecules, when the gas has been compressed to a certain extent (very short-
ly before all gas is condensed to liquid), begin to exert some attraction for each
other, and consequently relieve the pressure.

Ramsay compared the gas-liquid transition with the dissociation of a
compound. In evaporation of a liquid, complex molecules dissociate into
simpler ones. Liquid and gas molecules do not mix until the disappearance
of the surface tension signals that the densities of the two phases have
become equal. At supercritical temperatures, the fluid consists of a mixture of
liquid and gas molecules, the relative amounts depending on the total vol-
ume available. Mixing can be prevented temporarily by use of a constriction.

Apart from variations in detail, Ramsay’s point of view typifies the idea of
persistence of the liquid state. Justly, therefore, Ramsay would be quoted as
the originator of this idea, much to his later chagrin. The experimental find-
ings usually are: a critical temperature that depends on the fill density, and
the persistence of density differences above the critical point. The explana-
tion of these effects is, usually, that liquid and vapor molecules have different
identities. At the critical point, mixing occurs because the densities of liquid
and gas become equal. In principle, however, liquid and vapor molecules are
distinguishable, and can be separated even above the critical point.

In hindsight, the early experimenters were not always aware that their
sample purity, temperature control, and equilibration times might be insuffi-
cient for experimentation near a critical point. The implications of the phase
rule, formulated by Gibbs during the 1870s, were not yet common knowl-
edge amongst experimentalists in 1880. Echos of Ramsay’s arguments, how-
ever, will be heard until well into the 20t century.

10.5 Cuailletet liquefies mixtures

On many occasions in this book, we have encountered Cailletet, well known
for his work on liquefying gases, including the ‘permanent’ gas oxygen. His
advanced technological skill and his bold spirit produced pioneering research
on the behavior of fluids at high pressures. In Ch. 4.2, we saw Cailletet
(1880a,b) studying the condensation of a mixture of five parts of carbon diox-
ide and one part of air. On various isotherms below 20°C, the mixture began
to condense at modest pressure. Condensation would proceed as the pressure
was raised. At pressures between 150 and 200 atmospheres, however, the
meniscus became hazy and disappeared. It did not reappear on further com-
pression. He noted that when the pressure was slowly reduced, a thick mist
appeared in the tube and a meniscus formed. His description and explana-
tion of the observations is the same as that used by other scientists of that
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time when describing a critical-point phase transition in one-component flu-
ids. The problem is that according to the phase rule a mixture of fixed com-
position has an invariant critical point. Therefore, the meniscus disappear-
ance and reappearance observed by Cailletet over a range of temperatures
cannot, in general, have been a critical-point phase transition.

In the absence of a practical model for phase transitions in fluid mixtures,
an understanding of Cailletet’s experiment was out of the question. Cailletet
himself did little more than present the observations and express the opinion
that the liquid and the gas had dissolved into one another, forming a homo-
geneous phase. Van der Waals reported similar observations in the same sys-
tem that year (Ch. 4.2).

A compatriot of Cailletet, Jamin (1883) was less cautious. He did accept
Andrews’s result that at the critical point the vapor no longer ‘takes refuge at
the top” and the liquid no longer falls to the bottom. The liquid, persisting at
its vapor pressure, ‘swims in the gas and is no longer visible. The vapor pres-
sure keeps on increasing with temperature, until all liquid is exhausted and a
truly dry vapor results. According to Jamin, this explanation was not only in
agreement with Cagniard de la Tour’s and Andrews’s experiments, but it could
also explain Cailletet’s experiments on mixtures. Thus, on compressing a mix-
ture of air and carbon dioxide, the latter component begins to condense when
its vapor pressure is reached. On further volume reduction, carbon dioxide
remains at constant vapor pressure, but the pressure of air continues to
increase. Finally, a point is reached at which the density of the vapor is as high
as that of the liquid. The liquid now leaves the bottom of the cell and spreads
itself out through the vapor. One could imagine, ventured Jamin, that on fur-
ther increase of pressure the density of the liquid, increasing less fast than that
of the vapor, might be overtaken by that of the vapor, after which the liquid
would separate out again and collect at the top of the vessel. Jamin’s explana-
tion might seem to forecast the so-called barotropic effect, later discovered by
Kamerlingh Onnes and Keesom in mixtures of helium and hydrogen, and
discussed in Ch. 8. The focal point of the argument is, however, that two
fluid phases mix because they have reached equal density. This argument will
be heard repeatedly, even after being challenged by Duhem in 1888 (Ch. 10.8).

Ramsay considered Jamin’s explanations an infringement on his own pri-
ority in this field, and reacted immediately. In the Comptes Rendus of the
same year as Jamin’s paper, Ramsay (1883) pointed out that he had voiced the
ideas now presented by Jamin three years earlier. He repeated statements in
his earlier papers. At the critical point gas and liquid mix because they have
the same density. Above the critical point, a gas, consisting of small molecu-
lar aggregates, and a liquid, consisting of more complex aggregates, can mix
in all proportions.
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10.6 Cuailletet and Collardeau demonstrate the persistence of the liquid state

Cailletet and Collardeau (1889) thought of an interesting way to demonstrate
the persistence of the liquid state. They deposited a drop of iodine on the
wall of a test tube into which they compressed carbon dioxide. As soon as the
liquid level reached the iodine, the latter dissolved, giving the liquid a purple
color. When the fluid was heated above the critical point, the meniscus dis-
appeared, but the purple color persisted at the bottom of the cell, fading out
over a range of a few millimeters of height. The authors considered the per-
sistence of the purple color evidence of the persistence of the liquid state.

This refutation of one of Andrews’s premises opened the field to further
challenge. Cailletet and Collardeau (1889) made a serious effort to confirm
Jamin’s prediction (Ch. 10.5) that a compressed homogenized binary mixture
should separate again if the pressure were sufficiently increased to make the
gas denser than the liquid. Despite their efforts, however, the experimenters
were unable to verify this prediction. They then ventured that perhaps
Andrews’s concept of equality of liquid and vapor densities at the critical
point had to be questioned in the first place! Cailletet and Collardeau had the
original idea of testing equality of densities first in a partially miscible binary
liquid mixture. Duclaux (1876) had experimented with binary and ternary liq-
uids at the point where two phases of equal volume become identical, and the
interface disappears. Cailletet and Collardeau recognized the similarity of the
meniscus disappearance in the binary liquid and in a one-component gas.
Measuring the densities of the two liquid phases at the point of meniscus dis-
appearance, they found them to be unequal. In order to demonstrate that a
similar inequality of densities existed at the critical point of a one-component
fluid, Cailletet and Collardeau used a device that Cailletet and Mathias (1886)
had designed for measuring coexisting densities: a glass tube in the form of a
letter O, containing some sulfuric acid at the bottom. The apparatus was
filled with CO,. By cooling one side, the CO, was made to condense there.
The sulfuric acid showed a level difference, indicating the density difference
of liquid and vapor. After heating the O tube through the critical point, how-
ever, the level difference, although diminishing, persisted, and was still visible
several degrees above the critical point. Apparently, the liquid had not com-
pletely evaporated after the meniscus disappeared.

The O-tube experiment would be a source of inspiration to subsequent
investigators. (This device, however, has a serious problem with equilibra-
tion: when CO, condenses in one side of the tube, the volatile impurities are
forced to the other side, and will be very slow to mix.)

The authors concluded that the critical point is not the point at which the
liquid suddenly evaporates completely. Nor does it occur at the temperature
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at which liquid and vapor attain the same density. It is the temperature at
which liquid and gas acquire the property of dissolving into one another in
all proportions, forming a homogeneous mixture after stirring. Continuity of
states is guaranteed by modifying the proportion of liquid to gas in the
supercritical fluid in a continuous fashion.

So, almost two decades after Andrews’s experiments, the premises that
vapor and liquid become identical at the critical point and do not persist
above it were put into question by one of France’s leading high-pressure
experts, Cailletet.

10.7 Pellat: Andrewss critical temperature is not that of Cagniard de la Tour

The experiments of Cailletet and Collardeau led Pellat (1892) to question
whether Andrews’s critical temperature, at which liquid and vapor densities
become equal and the P-V isotherm has a horizontal inflection point, is
indeed the same as that of Cagniard de la Tour’s temperature of meniscus dis-
appearance. Since the experiments showed that density differences apparent-
ly persist above the temperature of meniscus disappearance, Pellat concluded
that Andrews’s critical temperature was higher than that of Cagniard de la
Tour. He also observed that the meniscus disappears inside the cell for quite
a range of fill densities, whereas, according to Andrews, this should happen
at only one density. (We recognize that this is Gouy’s gravity effect men-
tioned in Ch. 10.3.) Pellat concluded that the meniscus disappears some-
where in the interior of Andrews’s coexistence dome, and that at such a point
gas and liquid densities are not yet equal (Fig. 10.2). Different versions of this
plot will reappear during the next half-century.

10.8 Blurring of the Andrews-Van der Waals view

Cailletet’s 1880 experiment on condensation of mixtures puzzled scientists in
the field, especially Van der Waals, who independently reported similar
experimental results in the same year (see Ch. 4.2). Both authors described
the reappearance of the meniscus on expansion of the homogeneous mixture
at various temperatures in terms that suggested an analogy with the critical
phase separation of a one-component fluid. A correct explanation of this
experiment had to wait for Van der Waals’s development of his theory of
mixtures in 1890, (Ch. 4), and for Kuenen’s verifications of this theory in
1892 (Ch. 6). The French physicist, historian and philosopher Pierre-Mau-
rice-Marie Duhem (1861-1916 ) made a distinct step in the right direction.
Duhem (1888) was the first to apply Gibbs’s principles to Cailletet’s experi-
ment. He pointedly remarked that equality of density alone is not a sufficient
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Figure 10.2 Sketch of the curve of meniscus disappearance XRY inside Andrews’s
coexistence dome BCA. Copied from Pellat (1892), Fig. 1.

reason for mixing of the phases in binary fluids, citing Plateau’s work as a
counterexample. Plateau (1873) had suspended oil drops in a water-alcohol
mixture of matching density in order to eliminate the effect of gravity.
Although the droplets had the same density as the surrounding fluid, they
obviously did not mix with it.

Nevertheless, the colorful experiments of Cailletet and Collardeau aroused
the imagination of many scientists, and resulted in a flood of new experi-
ments. Unfortunately, Cailletet and Collardeau also set the tone for the inter-
pretation of these experiments. This process, once in motion, would be hard
to stop.

10.9 Experiments by Zambiasi, De Heen, Battelli and Galitzine

In the early 1890s, scientists in several European countries reported observa-
tions of critical behavior in fluids. The Italian Zambiasi (1892), for instance,
repeated Cailletet’s O-tube experiment in an apparatus of modified shape

(Fig. 10.3).
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Figure 10.3 Zambiasi’s (1892) version of the O-tube experiment.

He confirmed that the level differences persisted above the critical tem-
perature. Contrary to Ramsay, Ch. 10.4, however, he reported that the tem-
peratures of meniscus disappearance and meniscus reappearance were the
same.

The Belgian De Heen (1892a), working at the Physics Institute of the Uni-
versity of Liege, observed temperatures of meniscus appearance and disap-
pearance in tubes filled with varying amounts of ether and heated in a bath
of sulfuric acid. Contrary to Ramsay (Ch. 10.4), he found that the tempera-
ture of meniscus disappearance rose with fill density. De Heen (1892b) also
calculated the density of the vapor from the position of the meniscus, the fill
density, and the density of the liquid, as determined in a separate experi-
ment. To his surprise, the vapor density in the two-phase system varied by as
much as 50% at a fixed temperature. De Heen concluded that the density of
the saturated vapor may assume a range of values at a given temperature.

The Italian Battelli (1893) filled glass tubes with varying amounts of ether
or alcohol and sealed them while the fluid was boiling. The tubes were heat-
ed in vapors of boiling kerosene (Fig. 10.4), of which he had prepared eight
fractions boiling at 10°C intervals. He found that the temperature of menis-
cus reappearance was below that of meniscus appearance, but that it was
lower the higher the fill density. Battelli showed that one or the other of his
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Figure 10.4 Sealed glass tubes inside a glass jar surrounded by vapors from kerosene
boiling in the vessel C. Copied from Battelli (1893), Fig. 1.

findings was in contradiction to the experiments or conclusions of at least
one of his predecessors in the controversy: Zambasi, De Heen, Cailletet,
Ramsay, Jamin and Cagniard de la Tour. For details, see Levelt Sengers
(1979). Battelli presented a new explanation: the meniscus disappears at the
point that cohesive forces are no longer capable of holding liquid molecules
together. These molecules then fly out into the vapor phase where they keep
on dividing into smaller and smaller groups. Occasionally they meet and
melt together forming chains. These are the ‘striae,’ the refractive-index
streaks observed in critical-region experiments. (They are presently consid-
ered a sign that a near-critical system is not in thermal equilibrium.)

Boris B. Golitsyn (1862-1916) spells his name as Galitzine in French publi-
cations. A descendant of St. Petersburg nobility, he studied physics and math-
ematics at the University of Strasbourg and joined the faculty at Moscow Uni-
versity in 1891. He was intrigued by Pellat’s idea that Andrews’s and Cagniard
de la Tour’s critical temperatures might not be the same. Galtizine (1893) pub-
lished a paper based in part on work he had carried out while at Strasbourg.
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Figure 10.5 Tubes, partially filled with ether, are heated in a cylinder C filled with
glycerine and surrounded by naphthalene vapor A boiling under reduced pressure in
vessel D. Copied from Galitzine (1893), Fig. 1.

He had prepared about ten tubes with various amounts of ether, paying special
attention to expulsion of all air. He heated the tubes in an elaborate vapor
thermostat, Fig. 10.5. In contrast to Zambiasi, De Heen and Battelli, he found
that the temperature of meniscus disappearance was independent of the fill
density. This may be considered a tribute to the purity of his samples.
Although he had no method for measuring the Andrews critical temperature,
he states that it was substantially above those of meniscus appearance or disap-
pearance. He was able to observe meniscus disappearance inside his tubes for a
range of initial liquid fill volumes between 0.31 and 0.48 of the cell volume.

Next, Galitzine performed some studies of the supercritical state. He used
a glass U-tube with mercury at the bottom (Fig. 10.6), with one side filled
completely with liquid ether, the other only partially, and found that the
mercury levels did not equalize above the critical point. According to
Andrews criticality, they should, each leg being filled with a supercritical
fluid at the same pressure and temperature. (Unlike in the O-tube experi-
ment, however, equality of pressure on the two separate sides of the U-tube
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device is not guaranteed. Persistence of a temperature-dependent level differ-
ence is therefore not in conflict with the Andrews-Van der Waals concepts.)

Galitzine also calculated that the densities on the two sides differed by as
much as 20% at supercritical temperatures. To prove that residual air could
not have caused these phenomena, Galitzine showed that they were unaltered
after a large amount of air was admitted to one side of the vessel. The reader
will find this hard to believe, and so did the Leiden group, as we will see in
Ch. 10.13. Finally, he claimed that the ‘new ideas” about the disintegration of
molecular complexes could readily explain his experiments.

Thus, by 1893, all insights of Andrews and Van der Waals had been chal-
lenged and disproved by several experimenters. Andrews’s deep grasp of the
experimental situation was given up in favor of a mass of mutually conflict-
ing observations. Van der Waals’s molecular theory was pushed aside in favor
of intuitive ‘explanations.” These explanations claimed to be based on more
modern theories of molecular constitution in vapors and liquids, but were
never quantified. Fortunately, a few experimentalists kept their heads cool.
The year 1892 would prove to be a turning point in experimentation near
critical points.
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Figure 10.6 A glass U tube has mercury at the bottom, and is partially filled with lig-
uid ether on one side, but completely filled on the other side. Copied from Galitzine

(1893), Fig. 6.
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10.10 Gouy studies gravity effects near the critical point

The skilled experimenter Louis-Georges Gouy (1854-1926)) was an expert in
optics and a professor at the University of Lyons, France. Gouy (1892) pub-
lished a 3-page note on the effect of gravity in a near-critical fluid. He point-
ed out that even though the pressure exerted by the force of gravity is minute
compared to the critical pressure, gravity has a large effect on the density
because of the divergence of the compressibility.

Gouy’s note clarified a fact that tends to confuse experimenters: due to the
action of gravity, the critical state, even though it is invariant, can be realized at
some level in a cell even if the cell is not precisely filled to the critical density.

This gravity effect is present in all fluids, and had already been described
by Gibbs. Due to the very large compressibility of a near-critical fluid, even a
small gravitational pressure head can have a large effect on the density. Thus,
the near-critical fluid in a vertical cell assumes a range of states. The gravita-
tional contribution to the chemical potential, gh, increases linearly with the
height 4, and therefore the intrinsic fluid contribution, ., must decrease lin-
early with height, so that the total chemical potential remains constant. The
fluid contribution is calculated readily from a formulation of the Helmholtz
free energy or the equation of state of a fluid. The result for the density is
a sigmoid curve as a function of height, with an inflection point at or near the
level where the density equals the critical density, and where the meniscus will
appear when the cell is cooled through the critical temperature. As long as the
inflection point remains within the cell, the critical-point meniscus disap-
pearance can be observed at a range of levels, but always at the same temper-
ature, the critical.

It is much to Gouy’s credit that he quantified the density profile in a tall
tube on the basis of the Van der Waals equation. According to Gouy’s esti-
mate, the fluid in a cell 8 cm high would become critical at some level inside
the cell for fill densities from 3% below to 3% above the critical density.
Gouy’s estimate was not decisive in the raging controversies because most
experimenters reported density gradients much larger than could be explained
by gravity effects alone.

In the next year, Gouy (1893) reported the first accurate observations of
equilibration near the critical state. He used 25 cm tall cells filled with carbon
dioxide. He felt that, in view of the great sensitivity to temperature distur-
bances, temperature control to 10*°C would be required. This goal was two
orders of magnitude beyond what was considered the best achievable at that
time, and is still competitive today. He built a 100 1 bath, insulated it with
down, stirred it thoroughly, and provided it with an electric on-off control.
He shook his tubes, inserted them in the bath, and watched the meniscus
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drift and settle. He found that the position of the meniscus was independent
of the previous states of the sample, and always the same at a fixed tempera-
ture. He was able to make the meniscus vanish at a level inside the cell by
choosing liquid-to-vapor volume ratios from 0.73 to 0.93 at 17°C. Density
differences did indeed persist at slightly supercritical temperatures, but Gouy
ascribed those to the action of gravity on the highly compressible medium.

He then took a tube equilibrated at 20°C and placed it in a bath at the
critical temperature, without shaking the tube. The meniscus now formed in
the wrong place, indicating too high a density for the liquid phase. The posi-
tion of the meniscus drifted. It had not yet reached its final state after a weck.
Gouy ascribed this very slow transition from a transient to a final state in a
tall tube to the diffusion of a small amount of air.

In these two papers, Gouy demonstrates an advanced understanding of
the pitfalls of critical-region experimentation. All major sources of error, tem-
perature gradients, gravitational stratification, impurities, and slow equilibra-
tion, are recognized and understood.

Gouy (1880) is best known for inventing an elegant optical interference
technique, still in use, for measuring diffusion coefficients in liquid mixtures.
He made use of the refractive index gradient accompanying the concentra-
tion gradient. A parallel light beam impinging on the cell gets deflected, and
an interference pattern results, which evolves in time as diffusion decreases
the existing concentration gradients. In an interesting twist, Wilcox and
Balzarini (1968) adapted the Gouy method to the measurement of density
profiles caused by gravity in one-component fluids near critical points.
Hocken and Moldover (1976) used this method to prove that fluids behave
like the Ising model if the vapor-liquid critical point is approached within a
fraction of 1 K.

10.11 Kuenen explains Cailletets early experiments on phase separation of mixtures

While controversy raged, Kuenen discovered how to make reproducible
measurements in fluid mixtures, and Van der Waals produced the first mix-
ture equation of state. Shortly after he finished his doctoral thesis (Ch. 6),
Kuenen (1893b) felt confident enough about his understanding of criticality
in fluid mixtures to offer an explanation of the early experiments of Cailletet
(1880a, b) on compression of mixtures of carbon dioxide and air, discussed in
Ch. 10.5. First of all, unless the contents of the vessel containing the mixture
are vigorously stirred, the system does not reach an equilibrium state. Cail-
letet, however, had not stirred. Secondly, Kuenen describes what happens
when a near-critical two-phase binary mixture is compressed. Fig. 10.7, from
Kuenen’s doctoral thesis, shows the isothermal liquid-vapor plait, including
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the tie lines, in the V= plane. The concentration is plotted on the vertical
axis, and the volume on the horizontal axis. The critical point, where the
length of a tie line shrinks to zero, is indicated by C. Consider the connodal
points on the tie line closest to C. If the two-phase system is compressed at
constant temperature, at first each state moves to the left, to a smaller vol-
ume, at constant composition. Kuenen shrewdly observes that both states
thus move into the stable region. Though not in equilibrium with each other,
the states will tend to persist in the absence of stirring. Only near the inter-
face some exchange of matter will occur, which will eventually wash out the
interface by diffusion, just as Cailletet had observed. This, however, has
nothing to do with criticality.

Thus, by 1893, the Leiden scientists had achieved a sound theoretical and
experimental understanding of liquid-vapor criticality in pure fluids and
fluid mixtures. From then on, Kamerlingh Onnes and his staff took the lead
in defending the Andrews-Van der Waals concept of criticality.

It should be mentioned that the prestigious Russian physicist Stoletov,
aware of Kuenen’s and Gouy’s work on stirring and equilibration near critical
points, did not let Galitzine’s refutations of Andrews-Van der Waals criticality
pass without comment. Between 1892 and 1894, Stoletov published in Russian
a series of papers that criticized experiments by Galitzine and by many others
for reasons of impurity, partial decomposition of samples, and lack of equi-
librium. See Kipnis et al. (1996), p. 186, for details.
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Figure 10.7 A plait for a binary mixture in the isothermal volume-composition
plane. Shown are the connodal AQCPB and several tie lines. The vertical axis rep-
resents the concentration, and the horizontal axis the volume. C is the critical
point, branch A-C the liquid, branch B-C the coexisting vapor. Copied from Kue-

nen (1893c), p. 378.
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10.12 Ramsay does penance and takes the offensive

All opponents of the Andrews-Van der Waals concept of fluid criticality
began their reports by quoting Ramsay (1880a) as the originator of the new
ideas. By 1890, however, Ramsay, Young, and their coworkers were immersed
in accurate determinations of coexistence curves of organic liquids. Ramsay’s
experience preparing pure samples and his growing awareness of the effects
caused by even small impurities made him realize that his earlier point of
view was mistaken. Much to his credit, Ramsay (1894a) openly recalled his
former position.

Unfortunately, my name is often cited as a proponent, yes even as an originator of
such ideas; and I feel compelled to repent once more, by taking the occasion to
declare that I no longer believe in such nonsense. [Translated from the German.]

This humble acknowledgement of his fallibility was immediately followed
by full-scale criticism of the experiments of Battelli, Zambiasi, Galitzine and
De Heen. Ramsay and Young (1894b) pointed out the inconsistencies
between the various experiments with respect to the variation of the temper-
ature of meniscus disappearance with fill density (Ch. 10.9). They also noted
that the critical temperatures reported by De Heen for several fluids differed
greatly from those reported for the same substances by other groups, in one
case even by as much as 46°C. As one possible source of error, they indicat-
ed temperature variation, certainly in the cases of Battelli and De Heen,
whose work was put aside as ‘very inaccurate.” They pointed out this might
also be the case in Galitzine’s experiment if the naphthalene he used in his
bath was impure. Ramsay and Young emphasized that striae are never seen if
the temperature is truly constant.

Next, they turned their attention to the claimed persistence of the liquid
state. Not denying the possible existence of molecular complexes, they knew
these should not affect the homogeneity of the supercritical state. The only
reason for density gradients is the gravity effect discussed by Gouy. Thus,
sample impurity must have been a major reason for the aberrant results.
Ramsay and Young deplored the fact that scientists were now attempting to
improve Van der Waals’s simple formula on the basis of these untrustworthy
observations.

De Heen and Galitzine immediately reacted to this criticism. De Heen
(1894) repeated his statement that pressure and temperature do not always
define the state of a supercritical fluid, and challenged Ramsay and Young to
point out his errors of reasoning and experimentation. He felt that Gouy’s
gravity effect could not explain his observed density gradients, since gravity
effects should be immediate and not take a day to develop. Galitzine’s (1894)
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reply was more to the point. He claimed he had made sure the experimental
temperature was uniform and that he had not seen any striae. He also felt he
had taken great pains in eliminating air from his ether samples. In their reply,
Ramsay and Young (1894b) took Galitzine’s position seriously, but suggested
alcohol as a possible contaminant of ether, and warned him about fluid
decomposition or contamination from sealing the tube. In reply to De Heen,
the authors showed that the reported critical temperatures for methyl for-
mate and methyl acetate spanned a range of no more than 10°C. De Heen’s
critical temperatures for these substances, however, differed from the averages
by more than 40°C. Given these huge discrepancies, Ramsay and Young sim-
ply refused to take his work seriously.

10.13 Kuenen disproves Galitzines experiments

Kuenen (1893b) claimed that even before knowing about Gouy’s work on
transient states he was convinced that the history dependence and hysteresis
effects reported by Cailletet, Zambiasi and De Heen indicated a process of
‘retardation.” He had completed experiments with carbon dioxide and found
that using a stirrer provides reproducible results. Also the meniscus disap-
peared inside the cell for a rather narrow range of densities, just as Gouy pre-
dicted. The reason for the retardation clearly had to be sought in the pres-
ence of impurities. Suppose a two-phase system contains a little air.

Slowly according as air is absorbed by the liquid and spreads through it by diffusion
equilibrium will be attained.

This explanation was so satisfactory, Kuenen felt, that the development of
new theories for the critical behavior of simple substances seemed unnecessary.

Kuenen (1894a) then examined the new theories purporting that liquid
and vapor molecules retain their identities in supercritical states. If it is
assumed there are indeed two different kinds of molecules, either these two
types of molecules can transform into one another, or they cannot. If they
can transform, the fluid must behave as a one-component system. Thus, the
specific volume must be fixed once temperature and pressure are given in the
one-phase state. This hypothesis, therefore, does not explain Galitzine’s
observations that density differences persist in the one-phase state. Likewise,
coexisting fluid phases must have well determined densities at a given tem-
perature, in contradiction to De Heen’s experiments.

On the other hand, if one assumes that liquid and gas molecules cannot pass
into one another, some of Galitzine’s experiments could perhaps be explained.
But who wants to make the assumption of two different species of ether mole-
cules, for which no evidence has ever been found in any other experiment?
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Although this argument alone would have been sufficient, Kuenen decid-
ed to repeat Galitzine’s U-tube experiment. Kuenen quickly found that close
to a critical point the U-tube served as a sensitive thermometer, reacting to
the lightest temperature differences between the two legs. He estimated that
temperature differences below the level of detection could cause a good part
of the density differences in the supercritical state he and Galitzine observed.
Subsequently, Kuenen (1894b) showed that the remaining density differences
must be ascribed in part to difference in the mercury level, and in part to an
admixture of a permanent gas. He also demonstrated that his own results, in
contrast to Galitzine’s (Ch. 10.9), changed drastically when he admitted air to
one side of the U-tube. He estimated that 0.1 volume% of air readily
explained the residual density differences in his own experiments.

10.14 De Heen separates the liquid-like from the gas-like molecules

Not discouraged by Ramsay’s and Kuenen’s criticism of his earlier experi-
ments, De Heen (1896) decided to build a device for separating ‘liquidoge-
neous from ‘gasogeneous’ molecules in the supercritical state. Two cylindri-
cal vessels, provided with sampling valves, were placed one above the other
and connected by a capillary containing a shut-off valve. Each reservoir con-
tained a piston; the pistons moved in tandem, keeping the total volume con-
stant. In a typical experiment, the two reservoirs were filled with liquid car-
bon dioxide, the connecting valve was closed, the top vessel emptied, and the
connecting valve reopened. The system was then heated above the critical
point and the valve closed. On sampling the two vessels, large density differ-
ences were found in the supercritical state. In de Heen’s view, the top vessel
contained gasogeneous, the bottom one liquidogeneous molecules. The nar-
row connection between the two vessels prevented mixing. In a second set of
experiments, he restricted mixing even further by heating the system with the
valve closed. Above the critical point, the valve was opened and closed a few
times. A density ratio of 1.44 was now found between the two reservoirs.
Surprising are the seriousness with which Kamerlingh Onnes took De
Heen’s work, and the alacrity with which he reacted. The sequence of events
can be reconstructed from a detailed paper by Kamerlingh Onnes (1901a).
Kamerlingh Onnes first contacted De Heen with questions about sample
purity. When De Heen did nothing to check or improve purity, Kamerlingh
Onnes asked him to send his apparatus to Leiden, and he asked his assistant
Verschaffelt to repeat the experiment. When the latter disassembled De
Heen’s apparatus, a smell of grease was detected, originating from valve pack-
ing material that was in direct contact with carbon dioxide. Kamerlingh
Onnes then abandoned the original apparatus, and built a simplified version.
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The pistons were omitted, and thermocouples were installed for checking
temperature equilibrium. Repeating De Heen’s first experiment with 20 ppm
pure carbon dioxide, he found the density difference was within the bounds
expected given his rather crude temperature control.

Before repeating De Heen’s second experiment, Kamerlingh Onnes
pressed De Heen on the time scales involved in opening and closing the
valves. De Heen (1898) replied that the valve was cracked open 4 or 5 times
for 4 or 5 seconds each. Kamerlingh Onnes quickly showed that after each
equalization of pressure an equivalent temperature difference builds up, while
liccle if anything happens to the density. Repeating De Heen’s second exper-
iment, he again found that the density differences observed could be
explained by the temperature gradients in the system. In a letter responding
to Kamerlingh Onnes’s (19o1a) paper, however, De Heen (1901) considered
the matter far from settled and proposed that he, Kamerlingh Onnes, Ver-
schaffelt, Mathias, and Galitzine conduct the experiment with the same sub-
stance in the same apparatus. There is no evidence that the parties men-
tioned accepted the challenge.

10.15 Persistence of the concept of liquidogens

Notwithstanding the efforts of Gouy, Kuenen and Kamerlingh Onnes, doubts
about the correctness of the Van der Waals-Andrews ideas persisted. At the
prestigious Congres International de Physique in Paris, Galitzine (1900) pre-
sented a paper on the critical refractive index in which he reaffirmed that, in
the supercritical fluid, large density differences persist, which cannot be
explained by temperature differences, gravity, or impurity effects. Above its
critical point a substance can assume a range of densities at fixed given tem-
perature and pressure.

More striking was the Frenchman Mathias’ attitude. Cailletet and Mathias
are known as co-discoverers of the well known law of the rectilinear diame-
ter (1886). The law states that the average of the coexisting vapor and liquid
densities is a linear function of temperature, and is frequently used to esti-
mate the elusive critical density. In later years, Mathias would become a fre-
quent guest at the Leiden laboratory. At the international conference in Paris
referred to, Mathias (1900) submitted a paper on the determination of the
critical density and temperature. In this paper, he emphatically states that at
the temperature of meniscus disappearance the density of the liquid is larger
than that of the vapor. In his book on the critical point of pure fluids, Math-
ias (1904a) treats Andrews’s theory and the theory of the persistence of the
liquid state on an equal footing, without rejecting one in favor of the other.
In a letter to Van der Waals about his book, Mathias (1904b) writes:
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From my book on the critical point of pure fluids, you may have seen that I remain
faithful to the classical theory of fluids, in particular on the point of univariance of
saturated equilibrium states.

The most serious discrepancy, in fact, the only one, between the classical theory and
reality is formed by the phenomenon Cagniard-Latour, namely that the saturated
states stop being monovariant a little below the true critical temperature. [Translat-
ed from the French.]

After a few diplomatic words about the possibility of reconciliation
between the two points of view, Mathias reveals his inability to accept the
identity of gaseous and liquid molecules:

The great defect, in my view, of your theory of identity of liquid and gas molecules
is that one cannot understand at all the simple phenomenon of liquefaction of gases.
You begin with a gas in which the molecules are equidistant on the average: you
decrease the volume at constant temperature, the molecules remain equidistant on
the average; there is no reason why that would ever stop and why the liquid should
be partitioned in two phases, a liquid and a gas.

With the idea of liquidogens, however, the explanation is very simple, since the rea-
son for the discontinuity required for the production of a separation in to two phas-
es at a given moment, is that a group of gasogeneous molecules can form a single lig-
uidogeneous molecules below the critical temperature. [Translated from the French.]

Mathias ignores Kuenen’s argument that whether molecules associate or
not in the liquid phase makes no difference to the critical behavior. He
makes, however, an interesting point by graphically expressing the heart of
the mean-field assumption: gaseous molecules remain equidistant on com-
pression of the gas. His uneasy feeling about this assumption is justified. Sta-
tistical physics developed during the 20t century shows that in molecular
systems interacting with short-range forces, the local density around a chosen
molecule in a gas exceeds the average density, contrary to the mean-field
assumption.

10.16 The use of floats as probes of local density

10.16.1 An experiment by ITeichner. A professor at the Technische Hochschule,
Charlottenburg, Germany, J. Traube (1902a, 1903a,b) published a series of
papers proposing a new theory of the vapor-liquid phase transition. In con-
trast to the prevailing views on liquid-like and gas-like molecules, Traube
assumes that the former, which he calls fluidons, are much smaller than the
latter, called gasons. In his view, when a fluidon evaporates from the liquid
phase, it expands into a larger gason. There are, therefore, two values for the

212 CHALLENGES TO VAN DER WAALS-ANDREWS CRITICALITY



Van der Waals co-volume: a small one for the liquid and a large one for the
vapor. He does not quantify this theory. In a letter Traube (1902b), whose
ideas had raised considerable controversy, asks for Van der Waals’s blessing.
We do not know whether the master granted this request, but chances are
slim. Traube (1903b) credits Van der Waals for pointing out that the excluded
volume decreases with density (for completely different reasons, see Ch. 2.4),
and, in the same breath, scolds the master for not giving priority to Traube as
the discoverer of the shrinking gasons.

Traube had his student Teichner (1904) investigate the supercritical fluid by
an ingenious and elegant new method. Small hollow glass spheres, a few mm
in diameter, were suspended in a glass tube filled with near-critical carbon
tetrachloride. The average densities of the floats had a range spanning the crit-
ical density of carbon tetrachloride. Each float would seek the level of match-
ing density in the fluid, and since the densities of the floats were calibrated,
the density distribution in the cell was thus made directly visible (Fig. 10.8).
In view of the high value of the critical temperature of carbon tetrachloride,
282.2°C, special care was taken to insulate the glass thermostat, which was of
the same type as those used by Young and by Galitzine. Teichner carefully
prepared his samples, and noted that stirring affected the location of the
meniscus as well as the temperature of meniscus disappearance.
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Figure 10.8 Calibrated glass floats indicate the density profile in carbon tetra-
chloride when heated through its critical point. On the left, below the critical
point, spheres not shown have collected at the interface. For supercritical states, on
the right, the density difference between top and bottom is indicated in %. Copied
from Teichner (1904), Fig. 2.
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Fig. 10.8 shows the course of a typical experiment and the resulting densi-
ty distribution, with the fluid, starting from the right, passing through the
critical point on heating. Stirring made the large density difference in the
supercritical state disappear. Nevertheless, Teichner concluded that his exper-
iments were in complete agreement with those of Galitzine and De Heen,
and he deemed it unlikely that Andrews’s theory was correct.

Teichner was prepared for criticism on the points of temperature stability
and purity. He conceded that temperature differences as large as a few tenths
of a degree could be present, but these could never cause density gradients as
large as 25%, as observed. Purity was a different story. In a paper by Traube
(1904) and a letter by Young (1905) to Verschaffelt, it transpires that Young
had been in contact with Teichner in the early stages of the experiment and
in 1903 investigated the tube in which the large density differences were
found. He noted that the fluid turned brown on heating, indicating decom-
position. On opening the tube he found a large amount of permanent gas.
Young repeated the experiment with a sample he considered pure, and found
no evidence of anomalously large density gradients. He sent this tube to
Teichner with elaborate instructions as to sample preparation. When Traube
and Teichner repeated the experiment with Young’s sample, they found that
the density differences increased after each passage through the critical point.
Young thought this was evidence of progressive decomposition of the fluid.

Teichner (1904) was pessimistic about the chances of his experiment being
accepted as disproving Andrews’s view of criticality. He realized that propo-
nents of this view would always invoke the presence of impurity or the
occurrence of decomposition.

One wonders why Traube and Teichner made things difficult for them-
selves by using carbon tetrachloride in an otherwise interesting experiment.
Carbon dioxide would have been a much better choice, given its lower criti-
cal temperature, its availability in highly pure form, and the substantial
knowledge already available about its properties.

10.16.2 A quantitative treatment of impurity effects near critical points. Around
the turn of the 19t century, it became clear to Kamerlingh Onnes that con-
troversies around the experiments ‘proving’ persistence of the liquid state
would never end if the influence of impurities could not be quantified. He
initiated a program to study such effects, to be described in Ch. 11. Verschaf-
felt (1899a-d, 1900a,b) measured P-V-T-x relations for the system carbon
dioxide-hydrogen. From these measurements, the behavior of a condensable
substance, such as carbon dioxide, in the presence of a small amount of a
permanent gas, such as hydrogen, can be estimated. Verschaffelt used a cor-
responding-states model for comparing the properties of a dilute mixture
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with those of the pure host at the same pressure and temperature. Verschaf-
felt (1904) calculated that at the host’s critical pressure and temperature, a
0.1% impurity could cause as much as 30% difference in density. A reduc-
tion of the impurity level by a factor of 10 cuts the density difference only in
half, as a result of strong nonlinearity of the impurity effect at the critical
point. Density differences of several percents must still be expected at 3°C
above critical. In tall cells such differences, which are caused by unevenly dis-
tributed impurities, will persist almost indefinitely and disappear only on
stirring. Verschaffelt explained that the entire course of Teichner’s experiment
could be understood completely on the basis of small, slowly diffusing impu-
rities.

Young (1905) was very impressed with Verschaffelt’s analysis and sent him
a congratulatory letter. After describing his frustrating interactions with
Traube, he wrote:

I am therefore particularly glad that you have taken the matter up and shown so
clearly that the observed differences in density can be explained by the presence of
minute quantities of impurities.

Verschaffelt’s wife sent a copy of this letter to Kamerlingh Onnes (1905),
who, within days, wrote an equally enthusiastic reply:

Dear friend, with much interest and joy I read Young’s letter regarding your latest
paper. It was so kind of your wife to copy it for me; she can be pleased with her
effort. Of course both of you are delighted with the letter, and you may count me in
as well....and congratulations that such a well-known authority as Young is no less

pleased with your work than H. Kamerlingh Onnes. [Translated from the Dutch.]

10.16.3 Kamerlingh Onnes repeats De Heens and Teichner’s experiments. This
story has reached the years immediately preceding the liquefaction of helium
in Leiden, which took place in 1908. One might think that after the repeti-
tion of Galitzine’s and De Heen’s experiments, and after giving a quantitative
account of Teichner’s experiments as an impurity effect, Kamerlingh Onnes
might consider matters closed and turn to more pressing affairs. This is not
so. Clearly dissatisfied with his crude repetiton of De Heen’s experiment and
believing that verbal arguments against Traube and Teicher must be support-
ed by facts, Kamerlingh Onnes decided to repeat both experiments.

Repeating De Heen’s experiment (Ch.10.14) more carefully, Kamerlingh
Onnes and Fabius (1907b) showed that the small density differences they
found between the cells 3°C above the critical point were consistent with
Verschaffelt’s estimate, given the purity of their samples. This was a conclu-
sive test that De Heen’s reported large density differences were spurious.
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Reviewing Teichner’s experiment, Kamerlingh Onnes decided that carbon
dioxide would be a better choice than carbon tetrachloride. The lightweight
floats required must have been a challenge to Leiden’s glass blowers. The
temperature stability in the experimental cell was at the mK level. In an
extensive series of experiments, Kamerlingh Onnes and Fabius (1907b)
showed that the densities of liquid and vapor were within 5% of each other
when the meniscus disappeared at a level inside the cell. After heating
through the critical point, the densities were equalized to within 3% slight-
ly above critical, but it took about six hours to reach equilibrium. According
to Verschaffelt’s estimate, an unequilibrated impurity of only 0.01% could
cause density gradients as large as 12% this close to critical. Kamerlingh
Onnes concluded that the small density difference he found was explained
by residual impurities.

Not to be deterred, Traube (1914) commissioned his student Hein to
repeat the Teichner experiment in carbon dioxide under the best-controlled
circumstances. Grudgingly, Traube admitted that Hein’s results agreed better
with those of Kamerlingh Onnes and Fabius than with those of Teichner.
Nevertheless, he stuck to his assumption that there are two types of mole-
cules, fluidons and gasons. He again rejected Van der Waals’s ‘one-phase the-
ory,” which he disparagingly refers to as the ‘old classical theory.” Traube
claimed that Van der Whaals’s occasional remarks, such as his Nobel lecture of
1911, confirm the persistence of fluidons. Traube’s pugnacious mood contin-
ued for another quarter century.

10.17 History repeats itself

10.17.1 Fallow years and rebirth. Just prior to the liquefaction of helium in
1908, the Leiden researchers had completed their proof of the validity of the
Andrews-Van der Waals view. After the liquefaction of helium, physicists
turned their attention to the exciting world of superconductivity and super-
fluidity, leaving the study of fluid phase equilibria to chemists, geologists,
metallurgists and engineers. At the 1937 Amsterdam meeting commemorat-
ing the centennial of Van der Waals’s birth, for instance, there was extensive
coverage of Van der Waals forces, but only two papers were presented on the
gas-liquid transition and criticality. One was Lennard-Jones’s paper on the
phenomenological cell theory of liquids, which has had merit as a simple
approximation method for estimating properties of liquids, but which has
not opened new vistas. The other was written by Born, who referred to
Mayer’s new theory of condensation, which was just appearing in print at
that time. This latter theory indeed marked the onset of a new era in the
study of phase transitions in fluids.
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Joseph Mayer was a professor of statistical physics at the University of
Chicago and the spouse of a Physics Nobel-Prize winner, Maria Goeppert-
Mayer, with whom he wrote a widely used textbook on statistical mechanics.
Mayer showed how to derive the virial expansion for the pressure of an
imperfect gas from first principles of statistical mechanics, namely the Ursell
cluster expansion.

Mayer (1937, 1938) and his student Harrison (1938) investigated properties
of large clusters and identified the condensation point as a point of singular-
ity of the cluster expansion. With this promise of rigor, the subject of con-
densation became a concern worthy of the attention of physicists. Born and
Fuchs, as well as Uhlenbeck and Kahn, inspired by Mayer’s approach,
improved and generalized his theory of condensation. Set in motion by
Mayer, further rigorous statistical-mechanical work on phase transitions fol-
lowed, such as that by Van Hove, Van Kampen, and by Yang and Lee. For a
review of these developments, see De Boer (1949).

10.17.2 The derby hat and the flar top. Applying their theory of condensation
to the critical region, Harrison and Mayer (1938) predicted that above the
temperature of meniscus disappearance a region of infinite compressibility
exists, which was later affectionately referred to as the ‘derby-hat region’ (Fig.
10.9). Above the Cagniard-Latour temperature of meniscus disappearance,
T,, in Fig. 10.9, there is a region in which different densities can be realized
for given temperature and pressure. This was an old theme, several examples
of such anomalous regions having appeared in print in the preceding so
years. See, for instance, Fig. 10.10, a picture taken from Traube (1903).

Note that the density is plotted on the vertical axis in the Traube picture,
so that it appears turned by 90° compared to that of Harrison and Mayer,
Fig. 10.9.

Mayer and Harrison were aware that such reports existed and also that the
reported anomalies had been ascribed to temperature gradients, impurity, or
gravity. However, it so happened that just at the time Mayer was developing
his theory of condensation, the experimental group of Maass at McGill Uni-
versity in Montreal was involved in full-scale critical-region experimentation.
Their specialty was local density measurements by means of a highly sensitive
spring-and-float technique. They reported many curious effects in the critical
region of fluids. Almost invariably they observed hysteresis effects on repeat-
ed passage through the critical point. In the one-phase region above 7, they
measured large density differences at fixed temperature and pressure. See for
instance, Tapp et al. (1933), Maass and Geddes (1937), and Maass (1938). Nal-
drett and Maass (1940) reported that the coexistence curves of ethylene, in
stirred samples, had a flat top, see Fig. 10.11.
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Figure 10.9 The ‘derby-hat’ region, a postulated region of infinite compressibility
above the temperature of meniscus disappearance T,,. Several pressure-volume
isotherms are shown. The meniscus disappears at T,,, the horizontal section of the
isotherms disappears at T... Copied from Harrison and Mayer (1938), Fig. 1.
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Figure 10.10. A sketch of the curve of coexisting densities in a stirred (I) and in an
unstirred system (II). The vertical axis represents the density, the horizontal one the
temperature. At the lower critical temperature the meniscus disappears, but only at
the upper one the densities become equal. Copied from Traube (1903a), p. 570.
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Figure 10.11 The flat-top coexistence curve of ethylene. A stirred system shows the
inner flat-top coexistence curve. The curve marked by o indicates the region in
which P-V isotherms show a flat portion. Copied from Naldrett and Maass

(1940), Fig.1.

The descriptions of their findings, and the titles of their publications, such
as ‘Persistence of the liquid state of aggregation above the critical temperature,’
are oddly reminiscent of the work done around 1900. Maass and coworkers
knew these effects had been seen before, and took sides with Galitzine,
Teichner and Traube, see Tapp et al. (1933). Traube (1938) gladly accepted this
endorsement of his work and offered his two-phase theory as an explanation:

O. Maass and his collaborators have used this hypothesis of the structure of liquids
to explain those questions of critical phenomena, and the present author agrees with
them. He is of the opinion that the particles of liquids form complexes — orientated
aggregates which are closely packed, whereas the gas particles are less closely packed
groups or single particles. Thus we may, if we wish, speak of a theory of two phases
instead of a theory of continuity. At the critical temperature and above and below
that temperature there exists an equilibrium of different states of matter closely and
less closely packed, which we call liquidogene and gasogene, and this equilibrium is
responsible for the deviations from the Andrews-van der Waals’ theory observed by
so many investigators.
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Modern researchers who simulate molecular arrangements in supercritical
states by computer will immediately recognize the picture that Traube paints
here, of denser and less dense regions in the supercritical fluid, as akin to their
own results. For such a simulation, see Figure 10.12 in Ch. 10.18. Traube’s 1938
description, however, differs considerably from his early-1900 hypothesis that
fluidons were small molecules and gasons big ones. By indiscriminately
lumping together the many investigators ‘who observed deviations,” Traube
ignores the careful separation of the wheat from the chaff achieved by the
Leiden scientists.

Maass and coworkers considered the supercritical fluid to be a ‘dispersion’ of
a liquid in a vapor, in contrast to the idea of continuity of states, and thought
that a liquid-like structure persisted above 7}, see Maass (1938). As was the case
with Mathias and with Traube, the emphasis on the structure of the supercrit-
ical state gives a foretaste of modern developments, although the rejection of
continuity of states is misplaced. As happened around 1900, Maass and
coworkers invoked ‘modern theory’ for an explanation of their results. In this
case, that was the theory of Mayer and Harrison. Krichevskii and Rozen
(1947), however, two Russian investigators thoroughly familiar with the work

[

Figure 10.12 Computer simulation of supercritical water near its critical density. The
molecules occupy a 3-D box. The fluid density is 12% below the critical, and the
temperature is 5% above critical. The molecules do not occupy space uniformly, but
form clusters. From Mountain (1997).
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of Andrews and Van der Waals, pointed out that such a one-phase region of
infinite compressibility is thermodynamically impossible. They also analyzed
Mayer’s series expansions and indicated several instances where Mayer’s argu-
ments could have failed. They expressed the opinion that the experiments were
likewise in conflict with thermodynamics. Mayer (1952), however, still main-
tained that the coexistence curve had a flat top.

Although a new set of accurate and detailed P-V-T data for carbon dioxide,
obtained by Michels and coworkers (1937) at the Van der Waals Laboratory in
Amsterdam, was available and showed none of the effects reported by the
Canadian group, Maass’s results were not seriously questioned in the West.

By the mid-1950s, however, due to excellent experimental work by Schneider
and coworkers at the National Research Council in Canada, it was shown that
the flat top was an artifact entirely due to gravity. See, for instance, Habgood
and Schneider (1954). Along with the flat top, the derby hat quietly faded away.

A new era began in which the fundamental role of critical fluctuations was
brought to the light. Mean field theory’s neglect of these fluctuations would
be exposed as its insurmountable weakness.

10.18 A modern view of the supercritical state

Confusion about the critical state in the last part of the 19® century was due
to two factors: under-appreciation of the difficulty of experimenting near this
state, and unfamiliarity with Gibbs’s phase rule

After the turn of the century, however, when the existence of molecules
was no longer in doubt, the structure of the supercritical state remained a
puzzle and source of confusion. Many authors describe this state as a mixture
of liquid-like and gas-like structures, but mean-field theory is in no position
to deal with such a state. Incorporating the fluctuations became the objective
of the modern theory of criticality and took place in the second half of the
20t century.

At the end of this chapter, it seems appropriate to comment on the mod-
ern view of the structure of the supercritical fluid. Fig. 10.12 shows a comput-
er simulation by Mountain (1997) of the positions and orientations of a col-
lection of water molecules in a 3-dimensional box. The attractive energy
between the polar water molecules is represented fairly realistically, so that the
model yields properties such as the vapor pressure curve, the critical point,
and the dielectric constant reasonably well compared to those of real water.

The particular state shown is that of supercritical ‘computer water’ about
12% below its critical density, and about 5%, or 35 K, above its critical tem-
perature, not not particularly close to its critical point. The most striking
feature is the clustering of the water molecules. They seem to search each
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other’s company, leaving parts of space unfilled. The average cluster may be
four or five molecules in diameter, so the correlations are not particularly
long-ranged, but their extent agrees with what one would estimate on the
basis of the power law for the correlation length at this condition, Eq. (9.2).
This clustering persists and grows even more pronounced at the lower den-
sities. Therefore it is not solely a critical effect. This clearly illustrates the
failure of the mean-field assumption setting the local density around a mol-
ecule equal to the average density.

The clustering effect strengthens when a strongly interacting solute is
inserted into the supercritical solvent. It collects the solvent molecules
around it in a thick blanket, at a density much higher than the bulk. This
effect is not just an interesting computer-generated artifact. Modern spectro-
scopic techniques allow the study of solute molecules in supercritical solvents
and can deduce the local density from changes in the absorption or fluores-
cence spectrum of the solute molecules. Invariably, the solvent density
around the solute is found to be higher than the bulk density, thus directly
disproving the mean-field assumption.

Must one now conclude that the Van der Waals-Andrews picture of fluid
criticality is incorrect? Yes, according to present-day understanding of criti-
cality. It neglects the critical density fluctuations whose effects can be seen,
and which are caused by short-ranged molecular interactions.

Were Kamerlingh Onnes and his staff misguided in their unflinching
defense of the Andrews-Van der Waals view? Most certainly they were not.
The shortcomings of the controversial experiments, their interpretations, and
the rejection of the Andrews-Van der Waals concept of criticality had nothing
to do with this subtle but fundamental flaw of the mean-field assumption.

Did the Leiden group overreact, spending too much effort on experiments
better ignored? Perhaps it is wise to let Kamerlingh Onnes judge. He had a
better and closer feel for the scientific climate of the time than can be devel-
oped over a century later. He must have sensed a genuine threat to sound sci-
entific principles and reliable experimental practice.

Must we conclude that so much effort spent on defending a mean-field
model was not worth it? This would be very shortsighted, in view of the
essential role mean-field theory has played and still plays. Mean-field theory
is always useful when the effect of fluctuations is minor. For theoretical mod-
els, the mean-field approximation is often the first step, giving the researcher
a feel for what qualitative behavior to expect. In dimensions of two and high-
er, it does not give nonsense. For calculating fluid phase diagrams, it is
unsurpassed. Even the nonclassical renormalization-group calculations of
critical exponents use the mean-field expansion of the free energy as a start-
ing point for the incorporation of the effect of critical fluctuations.
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11. Dilute near-critical mixtures — Van ’t Hoff,
Van der Waals, Korteweg, Verschaftelt,

Keesom, and Van Laar

11.I Introduction

In this last chapter on topics studied by the school of Van der Waals and
Kamerlingh Onnes, almost all members encountered earlier gather around a
common interest: the behavior of dilute mixtures near critical points. Why
was this? One reason was that the universal laws for the thermodynamic
behavior of dilute solutions had moved to the center of attention at that time.
What happens to these laws near the solvent’s critical point was a natural and
compelling question for the Dutch School, which was uniquely equipped to
address it. Another motivation was the need to quantify the effect of impuri-
ties in experiments near critical points, as discussed in the previous chapter.
It became urgent to model impurity effects. In the process, it was found out
that the effect of impurity on the fluid density is exceptionally large near the
solvent critical point.

This chapter begins with the behavior of dilute mixtures away from criti-
cality. Near infinite dilution, such mixtures have very special and interesting
characteristics elucidated in the 19t century, with major contributions by
Jacobus Henricus Van ’t Hoff, a chemistry professor at the University of
Amsterdam from 1877 to 1896. He won the first Nobel prize in chemistry,
the centennial of which was celebrated in 2001. It seems fitting to pay trib-
ute to Van 't Hoff in this chapter, even though his interactions with Van der
Waals were minimal.

The emphasis of the chapter then shifts to the behavior of dilute solu-
tions near critical points. After an introduction from the modern perspec-
tive, contributions by Van der Waals, Korteweg, Verschaffelt, Keesom and
Van Laar will pass review. Each of them approaches the problem in a way
reflecting his special expertise and interest. The chapter closes with remarks
regarding the revival of interest in dilute near-critical mixtures triggered by
a topic widely studied in the last part of the 20th century, that of super-
critical fluids as solvents.
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1.2 Van 't Hoff and mixtures near infinite dilution

11.2.1 Biographical. E. Cohen (1912), a former pupil, colleague and friend of
Van ’t Hoff, published an extensive biography (in German) the year after the
latter’s death. Recently, Cordfunke (2001) published (in Dutch) a succinct
overview of Van ’t Hoff’s life and the significance of his work. These sources
have provided the following facts. Jacobus Henricus (Henry) Van 't Hoff
(1852-1911) originated from an upper-middle-class family, his father being a
physician in Rotterdam. The family had a comfortable existence, but since he
and three younger brothers would all receive a university education, finances
were sometimes tight. A precocious and brilliant student in high school, he
studied calculus and technology at the Delft Polytechnic, and physics with
Professor Rijke in Leiden in 1871 and 1872. He took classes along with
Lorentz and Van der Waals, the latter being 15 years his senior. After his 1872
candidaats exam (roughly equivalent to a bachelor’s degree), he studied
abroad for a while, which was not customary for beginning graduate students
in those days. He spent the academic year 1872/73 in Bonn, Germany, with
the chemist August Kekulé, famous for his proposition of the ring structure
of benzene. He then returned to the Netherlands and obtained his doctoral
exam (roughly equivalent to a Ph.D. qualifying exam) at the University of
Utrecht in December, 1873. Then he spent another six months in France,
where Adolph Wurtz and Joseph Achile Le Bel at the faculty of medicine in
Paris strengthened his interest in structural organic chemistry. By the sum-
mer of 1874, Van ’t Hoff returned to the Netherlands, applying in vain for a
HBS teaching position. He felt fortunate when he acquired a teaching posi-
tion at the Veterinary School in Utrecht, where he found he had plenty of
time to spend in the laboratory.

In the fall of 1874, at the age of 22, Van ’t Hoff proposed, in an 11-page
Dutch manuscript, the hypothesis that forms the foundation of organic
chemistry and the life sciences: the tetrahedral arrangement of the bonds of
the carbon atom. He did this on the basis of the known number of isomers
of substances containing an ‘asymmetric’ carbon atom, one that was bonded
to four different atoms or groups. If the bonds were in a plane, there should
be three different isomers, and no mirror images. In a tetrahedral arrange-
ment in space, however, there should be only two isomers, and these two
would be optically active mirror images of each other. It was known that the
latter was the case. This proof was brilliant, but its force escaped some of the
learned professors that reacted to his paper. Although the hypothesis
intrigued them, they advised Van 't Hoff to go back to the laboratory and
find out experimentally whether his hypothesis was really true, see Cohen

(1912).
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Jacobus Henricus van ’t Hoff.
Copied with permission of the Boerhaave Museum, Leiden.

The tetrahedral model raised the level of reality of molecules, just at the
time that thermodynamics experts such as Ostwald and Mach considered
molecular existence unproven, and the molecular hypothesis unnecessary.
Before Van 't Hoff’s hypothesis, a chemical formula such as H,O could still
be interpreted in minimalist way, as representing a reaction of two volumes of
hydrogen with one volume of oxygen, forming a new compound. The young
Van ’t Hoff, however, had the vision to ascribe a spatial arrangement to the
bonds of a molecule, and proved its validity.

Van ’t Hoff had a meteoric career. When the Amsterdam Athenacum was
converted to a university in 1877, he was appointed a lector of chemistry, and
in 1878 he received a professorship, becoming a colleague of the much older
Van der Waals. He was elected to the Royal Netherlands Academy of Arts and
Sciences (kNaw) in 1885, and to the Holland Society of Sciences and Human-
ities (HMW) in 1890. His talent was widely recognized and appreciated both in
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Holland and in Germany. Repeatedly, he received offers for prestigious posi-
tions abroad. In particular, he used an offer from Leipzig University in 1887 to
obtain a new chemistry building at the University of Amsterdam, which cost
the city an exorbitant amount of money. (As a student, the author of this
book took some of her chemistry classes in this cavernous building, but it
burned down in 1987.) In 1896, however, Van ’t Hoff accepted an offer from
the Prussian Academy of Sciences in Berlin, as the teaching load in Amster-
dam was too much for him. In 1901 he received the first Nobel prize in chem-
istry. Surprisingly, it was not given for the asymmetric carbon atom, although
this work was highlighted in the laudatory speech by Dr. Odhner, President
of the Royal Swedish Academy of Sciences, but for Van ’t Hoff’s work on the
chemical thermodynamics of dilute solutions. Van ’t Hoff indeed laid the
thermodynamic foundation for the physical chemistry of solutions and for
reaction chemistry, by equations that carry his name and that are used by
chemists to the present day.

Although the tenures of Van der Waals and Van 't Hoff at the University
of Amsterdam overlapped for 20 years, they did not collaborate. Neverthe-
less, Van 't Hoff immediately grasped the importance of Van der Waalss
work on mixtures for extending osmotic theory to higher concentrations. As
a co-editor, with Ostwald, of the Zeitschrift fiir Physikalische Chemie, he
arranged for translation into German and rapid publication of Van der
Waals’s (1890) paper on mixtures before the original French version of 1891
went to press, see Kipnis ez al., (1996) 114-115. Van der Waals’s profound
influence on the Amsterdam chemists came to the fore only after Van 't Hoff
left for Berlin, to be succeeded by Bakhuis Roozeboom in 1897.

Van 't Hoff received the Nobel prize in 1901, at the age of 49. Van der
Waals would have to wait for another decade, and was in his seventies when
he was finally so rewarded.

11.2.2 What is magic about dilute solutions? In order to explain the importance
of Van ’t Hoff’s work, we make an analogy with ideal-gas law, PV = RT This
law is universal, since it contains no particulars of the gases it applies to. No
actual gas, however, obeys the law exactly. At low density, there are usually
small positive or negative departures between PV and R7. Near a critical
point, however, the departures are huge, and condensation cannot be
described at all. Nevertheless, the law is of utter importance in theory and in
practice. It serves as an anchor point in the limit of zero density (infinite
molar volume). Any theoretical equation of state needs to be thus anchored.
Experimental data that appear to miss this limit are thereby suspect.

Ch. 4.1 introduced Dalton’s generalization of the ideal-gas law to mixtures,
P=73% P =3Yn RT, Eq. (4.1). Each component 7 is assumed to exert a partial
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pressure P, independent of the others, given by Boyle’s law and therefore pro-
portional to the mole number 7 of component i. The total pressure equals
the sum of the partial pressures. Again, this low-density limiting behavior
serves as an anchor point for the description of the behavior of gas mixtures.

The ideal-gas laws are valid to the extent that the interactions between the
molecules of the gas can be neglected, that is, at low density. The focus of the
school of Van der Waals, however, was on departures from the ideal-gas law
caused by the molecular interactions.

One may characterize Van ’t Hoff’s work as the development of a set of
anchors for solutions, analogous to the ideal-gas law. A solution is a special
type of mixture in which one component, the solvent, is a liquid usually well
below its boiling point, with low compressibility and a vapor pressure far
below an atmosphere. The other component, the solute, may be solid, liquid
or gas, and is usually assumed to be present in relatively small amounts. In
such a case, the interactions between solute molecules can be ignored, but
interactions between molecules of the solvent, or between solvent and solute,
are strong and ever present. Nevertheless, at low solute concentration, the
solution becomes ideal, and the properties of the solution and the character-
istics of chemical reactions between solute molecules assume a simple and
universal concentration dependence. Chemistry owes this profound insight
in large measure to Van ’t Hoff.

As early as the 1880s it was quite well known that adding a volatile solute
to a solvent, such as water, lowers the vapor pressure and therefore lowers the
freezing point and increases the boiling point. On the basis of his experi-
ments, Raoult, in 1887, proved that for low concentrations those effects are
proportional to the mole fraction of the solute, but entirely independent of
its nature. (For dissociating solutes, it is not the number of moles, but the
number of independent entities that counts.) These universal dilute-mixture
effects are called colligative properties. Eq. (4.2), (P - P) /P, = x;, for the low-
ering of the vapor pressure of a solution due to an admixture, is an example
of a colligative property.

The colligative property studied by Van 't Hoff was osmosis, an effect
known from the 18t century. If a solution, such as sugar in water, is covered
by a layer of pure water, the sugar will slowly spread through the water until
the concentration is the same throughout. If a sturdy membrane is put
between the sugar solution and the water such that water can pass through,
but sugar cannot, water is driven to the side of the solution, and pressure
builds up in the solution until it stops further transport of water to the solu-
tion. Van 't Hoff called this measurable pressure buildup through a semi-per-
meable membrane the osmotic pressure 11. Van ’t Hoff, as well as other
chemists in the late 19t century, measured the osmotic pressure as a function
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of concentration and found that, for low concentrations, it was proportional
to the concentration and independent of the nature of the solute. Careful
measurement established, moreover, that the osmotic pressure equals.

Il=cRT; c=nlV (1r.1)

with V the volume of the solution, 7, the moles of solute, and ¢ the concen-
tration of solute. Van 't Hoff derived this law in 1885. He pointed out its
implication: the osmotic pressure equals the pressure that an ideal gas would
exert in the cell if would contain as many moles per unit volume as the solute
in the solution, independent of the character of the solute.

Van ’t Hoff put the laws governing colligative properties on a thermody-
namic basis by imagining appropriate thermodynamic cycles, while making use
of semi-permeable membranes to move components in and out reversibly. In
his design of such cycles, he always used the ideal-gas law for vapor phases, and
assumed a state of high dilution in the solution. He invented his proofs afresh,
avoiding the use of Gibbsian thermodynamics and the phase rule. His most
important work was in the field of chemical reactions. He postulated by intu-
ition, see Cordfunke (2001), the famous relations for the change of the chem-
ical equilibrium constant with temperature and pressure in terms of the stan-
dard-state heat and volume of reaction. These relations were proved to be
exact, and they form the foundation of chemical thermodynamics. In solution
chemistry, a commonly used standard state from which to measure departures
from ideality is that at infinite dilution of the reacting solutes.

11.2.3 Critique. The laws derived by Van ’t Hoff for the osmotic pressure,
Eq. (11.1), as well as for other colligative properties, were defined in terms of
concentration dependence, and were strictly valid only in the limit of infinite
dilution. Van ’t Hoff was well aware of this, but many of his followers were
not. As clearly stated by Gibbs (1876, 1878), the key is in the chemical poten-
tial of the solvent, which must be equal on both sides of the membrane. If
interactions between solute molecules can be neglected, the most important
concentration-dependent contribution to the chemical potential of the sol-
vent comes from the Gibbs mixing term, which for small concentration
assumes the simple universal form of — R77,/n,; here n, equals the moles of
solvent in the volume V. In addition, the (small) increment of pressure, 11,
on the side of the solution contributes (V/7,)Il to the solvent chemical
potential. Setting the sum of these contributions to zero keeps the chemical
potential of the solvent in the solution equal to that of the pure solvent on
the other side of the membrane and results in Eq. (1.1). For small TI, the
pressure buildup must therefore be proportional to ¢, independent of the
nature of the solute.
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It is understandable that enthusiastic followers immediately began to apply
this law at any concentration. Worse, Van ’t Hoff’s observation that the osmotic
pressure happens to equal the pressure that the solute molecules would exert if
they would be moving freely in the volume occupied by the solvent, was wide-
ly interpreted by German chemists as a physical explanation of the origin of
osmotic pressure. These developments drove the Amsterdam chemist Van Laar
to a high pitch of strident indignation. For the rest of his life, he conducted
a one-man crusade against the concept of osmotic pressure, and against the
German ‘Osmotic School,” see Snelders (1984). He did not mellow with age. In
1915, he attacked Ehrenfest, who had had the temerity to write an article on the
kinetic interpretation of osmotic pressure. To Van Laar, the driver of osmotic
effects is the difference in chemical potential of the pure water and the water in
the solution. The story of sugar molecules, unencumbered by the solvent, flying
around in the cell and impinging on membranes, was anathema to him.

Van Laar, of course, justly criticized this interpretation. A sound basis for
describing both the colligative effects and the corrections needed for systems
not at infinite dilution could only be found by systematically applying
Gibbsian thermodynamics. Curiously, the only references to Van der Waals
in Cohen’s (1912) voluminous biography are exactly about this point. Van ’t
Hoff, while careful about the fact that the laws proposed by him are valid
only in the limit of infinite dilution, repeatedly refers to Van der Waals as the
one who would know how to proceed away from this limit. From this per-
spective, the present chapter makes the point that ‘moving away from the
infinite — dilution limit is very different if the solvent is at its critical point,
rather than in an incompressible liquid state.

Van 't Hoff, who shunned the complex mathematical machinery being put
into place by Van der Waals and who did not appreciate Bakhuis Roozeboom’s
phase theory, was able to obtain the fundamental limiting laws of chemical
thermodynamics by simple means and sound intuition. These laws bear his
name, and, properly generalized, find application to this very day. The Nobel

prize was well deserved, even if not given for the asymmetric carbon atom.

11.3 A solute added to a solvent at its critical point

In this section, we introduce from a present-day perspective the concepts
and properties that will be encountered in the historic narrative to follow.
For details, reviews and references, see Levelt Sengers (1991, 1993).

11.3.1 Solute-induced phase separation. Near infinite dilution, adding a solute

to a solvent results in changes in the solvent properties that are proportional
to the amount of solute and of a universal nature. This is not always so if the
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Fig. 1.1 The plait and its tie lines for a low-volatility solute, in the V-x diagram, for
a temperature just below (a), at (b), or above (c) the solvent critical point. The
isothermal connodal (coexistence curve, or dew-bubble curve) is shown. The tie
lines slant, but become vertical at x = 0 and x = 1. In (b), not only the connodal, but
also the curve of constant pressure (P = Py, T = 7)) has been shown. The circles
indicate the solvent critical point (b), or the plait point (c).

solvent is at its critical point. One reason is that the solute may induce a
phase transition, which is a catastrophic effect rather than a smooth change
proportional to the amount of impurity.

To explain why this is so, we draw in Fig. 11.1 isothermal V-x plots, with
V the molar volume, and x the mole fraction of the solute. These plots are
shown for the cases that the principal component, the solvent, is just below
(a), just at (b), or just above (c) its critical temperature, while the solute, far
less volatile, is way below its critical point. The feature at x = 0 is the one to
watch first. In case (a), the solvent is just below its critical temperature, so at
x = 0 there are coexisting liquid and vapor phases that have almost, but not
quite, the same molar volume. In case (b), the critical temperature, these two
volumes have just become equal. In case (c), the solvent is above its critical
point, and there is no longer vapor-liquid coexistence at x = 0. The behavior
on the x = 1 axis, however, is entirely unremarkable. The solute is way below
its critical point, and therefore a small-molar-volume liquid and a high-
molar-volume vapor are coexisting at all three temperatures.

We now pay attention to the plait on the surface. In case (a), the trans-
verse plait simply runs across the entire diagram. This is not necessarily so:
azeotropy, or the occurrence of an additional fluid or solid phase, may inter-
rupt the plait (Fig. 6.6). We assume the absence of such interruptions here,
so as not to complicate the argument. In case (b), the plait comes in from the
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right, and just closes at the pure-solvent critical point on the x = 0 axis. In
case (c), the plait comes in from the right and closes at a critical point before
it reaches the x = 0 axis.

To find the critical point of the mixture, we pay attention to the tie lines.
Since the solute is of low volatility, we expect it to shun the vapor and concen-
trate in the liquid. Thus, the tie lines should slant from top left to bottom
right. There is an exception: at x = 0 and at x = 1, the tie lines must be vertical,
because only one of the components is present and its mole fraction is unity in
both phases. This leads to the tie lines shown schematically in Figs 11.1. The
mixture critical point in Fig. 11.1c is the point where the tie line shrinks to zero,
and we would not be surprised to find it slightly off to lower volumes in this
particular case of an involatile solute and an uncomplicated plait.

Thus by adding an involatile solute to a slightly supercritical solvent, a
two-phase region is entered. This is a disruptive event instead of a smooth
change proportional to the amount of impurity.

11.3.2 What happens to the plaitr point? As the impurity is added, the plait
point shifts in general to a slightly different temperature 7, and pressure 2.
In the particular example of a nonvolatile solute, Fig. 11.1¢, for instance, we
notice that the plait point temperature must be above that of the solvent, but
in practice a downward shift is just as common. We will see that both the
Amsterdam and Leiden scientists invested ingenuity and effort in calcula-
tions of the derivatives d7,/dx and dP,/dx. They found that the shift of the
plait point temperature and pressure is linear in x for small x, but most cer-
tainly not universal. In the process, they found a number of interesting rela-
tions between these shifts and a variety of derivatives of the Helmholtz ener-
gy or the pressure evaluated at the solvent critical point.

11.3.3 The shape of the isothermal coexistence curve. The most interesting case
is that when the solvent is at its critical point, Fig. 11.1b. First of all, near x =
0, the coexisting phases still have different molar volumes, but they have
almost the same mole fraction. For mean-field equations of state, the con-
nodal (coexistence curve) is a parabola tangent to the volume axis. At the sol-
vent critical point, therefore, the roles of V and x are distinctly different. A
small amount of solute added at the solvent critical temperature leads to a
split into two phases of considerably different density. For instance, at the
solvent critical point, a 1%-level addition of impurity leads to two phases
with a density difference of the order of 10%.

11.3.4 The shape of the critical isotherm-isobar. The Leiden researchers were
most interested in the question of the difference in density between a pure
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fluid at its critical point, and that of a dilute mixture at the same pressure P,
and temperature 7. The answer will reveal what density differences can per-
sist due to un-equilibrated impurities in a fluid at its critical point.

For a nonvolatile solute, the isotherm-isobar at the solvent critical point
must run in the liquid phase, as shown in Fig. 11.1b. For a mean-field equa-
tion of state it is part of a cubic, with a vertical tangent at the solvent critical
point. Mathematically, this can be expressed in the following way:

AtP=P,T=T,nearx=0: (V- VC)3 =x (11.2)

This implies that the derivative (0V/0x)  becomes infinite at the solvent
critical point. This derivative serves to define the partial molar volumes of
solvent and solute, V; and V,, given by

{/1 V—x (a V/ax)pT
V, = V+ (1-x) (0VI0x)pr (11.3)

Here V'is the molar volume of the solution.

The partial molar volumes, as a characteristics of solvent and solute,
were used by Bakhuis Roozeboom, but not by Van der Waals and Kamer-
lingh Onnes. The partial molar volume is one of many similarly defined
partial molar properties introduced early in the 20t century for character-
izing mixture behavior, and presently universally used. See, for instance,
Rowlinson and Swinton (1982). In dilute mixtures, partial molar properties
usually have very simple behavior, the partial molar properties of the sol-
vent approaching those of the pure solvent, and those of the solute
approaching a finite limit. At the solvent critical point, however, this sim-
ple behavior no longer prevails. It is clear from Fig. 11.1b, for instance, that
when x approaches 0 at the solvent critical point, the partial molar volume
of the solute, V,, becomes infinite. The same conclusion follows from the
mathematical identity

(OVI0x) pr = - (OPOx) 7 (OVIOP), 1 = (OP/Ox) 7 (V K7) (11.4)

Since (0P/0x)y, 7 is finite and non-zero, it follows that in the limit of infi-
nite dilution the partial molar volume of the solute diverges just like the
compressibility K7 of the pure solvent. The sign and strength of the diver-
gence are determined by the derivative (0P/0x)y, 15 see Ch. 11.3.5.

The fact that the isotherm-isobar is a cubic with vertical tangent is
the reason that near the solvent critical point a small impurity causes a dis-
proportionally large density change, which is not linear in the concentra-
tion. It implies that, at the critical pressure and temperature of the pure
host, a 1 part in 1000 impurity causes a density increase of the order of
10%! This is a huge effect, quite contrary to the usual linear departure
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from infinite dilution. It easily explains the strange phenomena observed in
so many laboratories where sample purity was not a high priority (Ch. 10).
The Leiden researcher Verschaffelt found a way of estimating the size of
this effect in the early 1900s.

At the solvent critical point, therefore, the simple rules for colligative
properties, that effects are proportional to concentration, must fail. Rightly,
Van ’t Hoff pointed to Van der Waals holding the key to formulation of the
thermodynamic behavior of mixtures not infinitely dilute, and with vapor
phases that are not ideal.

11.3.5 Some other useful derivatives. The critical-point value of the derivative
(0P/Ox)y, 1, introduced in Eq. (11.4), is a well defined, finite, generally non-
zero, non-universal quantity in mean-field theory. It reveals how much the
pressure falls or rises if in a fluid at its critical point, kept at constant volume,
a small number of solvent molecules are exchanged for solute molecules. If
the solute is highly volatile, such as hydrogen in carbon dioxide at its critical
point, an increase in pressure is to be expected and the derivative (0P/0x)
is positive. A low-volatile solute, such as a salt in near-critical water, will lead
to a decrease in pressure, so that the derivative is negative.

When a solute is added to a solvent at its critical point, a mixture critical
line develops starting at x = 0. In Fig. 11.2 we show this situation in a P-7°
diagram. There are two important slopes in this picture: that of the vapor
pressure curve, (dP/dT),, of the pure solvent at its critical point, and that of
the incipient critical line, dP,/dT,. As to the first one, Van der Waals
(1905b) showed that for pure fluids, (dP/dT), equals the slope of the critical
isochore, (dP/dT)y. See Ch. 11.4.5 and 11.4.8. This means that in Fig. 11.2,
the pressure-temperature relation for the one-component fluid at its critical
density does not change slope when the fluid passes through its critical

P
III
P=Pc1 /
4
I/I
CRL
Fig. 1.2 In the P-7 diagram, the vapor pressure curve
and the critical isochore ¢ = p; of the pure solvent, (1),
are shown, along with the beginning of the critical line,
T CRL. The circle indicates the solvent critical point.
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Fig. 11.3 Near-critical isothermal dew-bubble curves in the P-x diagram, for a
solute of low volatility. The behavior is shown (a) just below, (b) at, and (c) above
the critical temperature of the solvent. The circle indicates the solvent critical
point (b), or the plait point (c). At the critical point, the dew-bubble curve nar-
rows to a ‘bird beak.’

point. The derivarives dP,/d T, dT,/dx and dP,/dx obey a simple thermo-
dynamic relationship, see Ch. 11.4.5.

11.3.6 The shape of the mixture dew-bubble curve in the P-x plane. In Fig,
11.3, we draw attention to a peculiarity of the dew-bubble curve in the
vicinity of the solvent critical point for the case of a solute of low volatili-
ty. Just below the solvent critical point, case (a), the dew-bubble curve has
the normal appearance, with a finite angle between the two branches.
Above the solvent critical point, case (c), the dew-bubble curve does not
reach the x = 0 axis any more. At the critical point, case (b), the two
branches have a common tangent with, in general, finite non-zero slope.
Van der Waals (1905b) proved this ‘bird-beak’ feature. It was rediscovered
by Wheeler (1972), see Ch. 11.5.

11.4 The Dutch school and dilute near-critical mixtures

11.4.1 Overview. Van der Waals (1895a,b) derived, as exact thermodynamic
relationships, the first limiting laws for the shift of the critical pressure with
temperature due to an admixture. The first experiments and modeling of
impurity effects began in Leiden shortly before the turn of the century. Ver-
schaffelt and Keesom were principal players. The experimental data they used
for tests were those Verschaffelt had obtained around 1900 for the system car-
bon dioxide with small fractions of hydrogen. For the modeling, they used
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various forms of the law of corresponding states, in keeping with the Leiden
tradition of preferring this law over the Van der Waals equation.

Around 1900, the mathematician Korteweg, who had been silent on the
matter of fluid mixtures for a decade, took an interest in the problem of
impurity effects near criticality. He produced a calculation of impurity effects
in the V-x diagram on the basis of the Van der Waals equation for mixtures,
in his own systematic fashion. Korteweg (1903) published this work in
French and in English. A large color graph is part of his paper.

At roughly the same time, Keesom and Verschaffelt independently began
deriving expressions for the initial slopes of the plait point curve. This effort
stranded because of the impossibility to obtain from experiment with any
degree of reliability the second derivatives occurring in their various expres-
sions. Verschaffelt (1906a) then turned around and, quickly and effectively,
developed a reliable method for estimating impurity effects, based on the
superposition of nets of experimental P-V isotherms for the pure solvent and
a dilute mixture of constant composition. Van Laar (1905e,h) derived simple
expressions for the shift of the plait point temperature with concentration for
his specialty: the van der Waals geometric-mean mixture model. Van der
Waals (1905a,b) reminded all parties involved that he had worked on this
problem ten years ago, but he did use the opportunity to publish a number
of proofs of interesting and relevant identities that had been lying in his desk
drawer for a long time.

After briefly reviewing Van der Waals’s (1895) papers, we will first discuss
Korteweg’s (1903) pictures, the results of Keesom (1901) and Verschaffelt
(1902a, 1902b, 1903, 1906a,b), and finally, the work of Van Laar (1905e,h) and
Van der Waals (1905a,b).

11.4.2 Van der Waals and the slope of the critical line. Van der Waals’s (1895a,b)
papers give an exact expression for the derivative dP,/dT, for any concen-
tration along the plait point curve in terms of second derivatives of both the
energy and the Helmholtz energy. Also, Van der Waals gives the analogous
result for the limit of infinite dilution. With no direct link to experiment,
Van der Waals’s relations, although exact, were not particularly useful. Kee-
som (1901) rewrote these equations for dilute mixtures, replacing the energy
and Helmholtz energy derivatives by the more convenient derivatives of the
pressure, to be discussed in Ch. 11.4.5. This is the reason we do not give Van
der Waals’s expression here.

11.4.3 Korteweg’s mathematical analysis of the Van der Waals model near the sol-

vent plait point. A picture is the centerpiece of the Korteweg (1903) paper.
Fig. 11.4 shows the top part of the large-scale graph in the back of his paper.
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There are eight possible locations of the dilute-mixture plait point with
respect to the pure-fluid critical point. One such case was introduced in
Ch.11.3.1 and was shown in Fig 11.1. Korteweg considers all possible cases for
the Van der Waals model for mixtures.

Korteweg displays the condition of a dilute mixture, kept at a constant
temperature close to but not equal to the critical temperature of the solvent,
in an isothermal V-x plane. The point K indicates the critical volume of the
pure solvent, while 2 indicates the plait point volume and concentration. K-
P is the projection onto the V=x plane of the initial part of the critical line,
which itself is, of course, not isothermal. The full curve is the isothermal
connodal or coexistence curve, ending in P, and the dashed curve is the
isothermal spinodal through P. The point R is the largest concentration
reached on the connodal. Its location with respect to P determines the nature
of the retrograde behavior (Ch. 6.6).

Considering the four pictures in the left column, we note that they repre-
sent situations as in Fig. 11.1c, where the temperature is slightly higher than
the critical temperature of the solvent: the plait does not intersect the V axis,
and thus there are no solvent coexisting phases present. The solute is far
below its critical point, and much less volatile than the solvent. As the tem-
perature decreases, the plait will touch the x = 0 axis at the solvent critical
temperature. Below this temperature, the plait point disappears and the plait
runs over the full length. On the left, Korteweg has collected all possible
arrangements of K, P and R for this case.

Considering now the four isothermal pictures on the right, we note that the
temperature is below the critical point of the solvent. The plait intersects the
V-axis at x = 0 in two points, which represent a low-volume liquid phase and
a high-volume vapor phase, with the critical volume somewhere in the middle.
The plait disappears at P, the plait point, and, if it does not reappear as x
increases, it will not reach the x = 1 axis (the case of azeotropy is an example
of reappearance of the plait). The solute is above its critical temperature, and
thus in general more volatile than the solvent. As the temperature drops
towards the critical point of the solvent, the plait point 2 moves towards K.
Below the solvent critical temperature, there is no plait on the surface.

A further division of Korteweg’s eight cases is based on the location of the
plait point P with respect to the solvent critical point K. P is located at a
higher volume than K'in all odd-numbered plots, and at a lower volume than
K in all even-numbered cases.

We now address the relation of the extremum R to the type of retrograde
condensation. Take, for example, case 6. Coming down along a vertical path
of fixed composition passing between points P and R, a mixture, on expand-
ing, develops a drop of liquid when it enters the plait on the dew side of the
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Temperature slightly higher than the Temperature slightly lower than the
critical temperature of the solvent. critical temperature of the solvent.

Case 3.

Case 1.

Case 8. Absent.

Fig. 11.4 Eight possible ways in which a plait forms by addition of a small amount
of a second component to a fluid near its critical point. The vertical axis is the vol-
ume axis, the horizontal one the concentration. K is the critical volume of the first
component, P is the mixture plait point, the full curve is the connodal, R is the
extremum on the connodal, and the dashed curve is the spinodal. Copied from Kor-
teweg (1903), Fig. 1.

connodal. On continued expansion, the amount of liquid grows, reaches a
maximum, and then shrinks, to disappear when the mixture passes out of the
plait, again on the dew side of the connodal. This is retrograde condensation
of the first kind, as discovered and explained by Kuenen, see Ch. 6.6. Cases
3-6 are in this category.

In a case such as 7, on the other hand, the low-volume mixture of fixed
composition will now enter and exit the two-phase region through the bub-
ble curve. Thus it will form a gas bubble, which will disappear again on fur-
ther expansion. This is retrograde condensation of the second kind, which
Kuenen tried in vain to find experimentally (Ch. 6.7). Cases 1-2 and 7-8 fall
in this category.

Korteweg derived these cases from the Van der Waals binary-mixture
equation by expanding the isothermal Helmholtz energy at the critical point
of the solvent in terms of concentration and volume. Korteweg needs to con-
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sider only two parameters, 2, and &,,, since the application is to a dilute
mixture to lowest order in concentration, when solute-solute interactions can
be neglected, Korteweg introduces the lowest-order parameters

® = ﬂlz/ﬂ; Y = blz/b (II.S)

and proceeds to calculate in which ranges of », y space the individual cases
shown in Fig. 11.4 prevail. Note that this is the quite general ‘global’ problem,
be it near the limit of infinite dilution. The geometric-mean rule is not
assumed, nor is any restriction placed on the strength of the unlike excluded
volume &,,.

A large color graph of these ranges and their borders in x, y space accom-
panies the paper. A reduced-size copy, be it in black and white, is shown in
Fig. 11.5. Even though the color of the original is lost, Fig. 11.5 is still easy to
read, since the labels of the regions correspond to those in Fig. 11.4. Regions
of negative » or v have no physical meaning.

Korteweg’s (1903) paper gives the details of the calculations of the border
curves in Fig. 11.4 to second order in concentration, based on a Taylor expan-
sion at the plait point of the solvent, and finding the plait point of the mix-
ture as discussed before, Ch. 5.3.6. Korteweg gives expressions for the initial
shift of the plait point concentration as a function of temperature, and the
shift of the plait point volume as a function of concentration. We will not
discuss these derivations here. One result is that case 8 does not follow from
the Van der Waals equation, which is the reason one does not find it in Fig.
11.5. A second result is that points on the border between regions with plaits
open to the left and plaits open to the right, such as case 2 and case 6, cor-
respond with a double homogeneous plait points (Ch. 5.4.2) at the solvent
critical point. In Fig. 115, there is one point where six regions meet. This is
the point where the mixture interaction parameters equal those of the sol-
vent, x = 1, v = 1, a pathological case, physically speaking, requiring a high-
er-order treatment.

Korteweg’s work on the general dilute Van der Waals mixture is exact and
exhaustive. It is to be regretted that it evolved independently from Verschaf-
felt's and Keesom’s work. Korteweg refers often to their work and even
refrains from claiming priority:

We do not, however, give them [the mathematical relations Korteweg presents] as

new, as they must essentially agree with similar equations obtained by Keesom (1901)
and Verschaffelt (1903).

An early collaboration with the Leiden scientists, especially Verschaffelt,

might have made all parties involved more effective. Kamerlingh Onnes
seems to have viewed Korteweg as a competitor, see Ch. 11.4.6.

238 DILUTE NEAR-CRITICAL MIXTURES



Fig. 11.5 ‘Global’ diagram for mixture behavior near the solvent critical point accord-
ing to the Van der Waals equation. The regions in %, v space, with x = 4,/ and
= by,/b, in which the various scenarios shown in Fig. 11.4 prevail according to the
Van der Waals equations for mixtures. The numbers in Fig. 11.4 correspond to those
in Fig. m.5. Case 8 in Fig. 11.4 does not occur in Fig. 1r.5. In the point x = 1,y =1
six regions meet. Regions of negative » and vy have no physical meaning. Copied
from Fig. 1, in color, of Korteweg (1903). The horizontal line just below the center is
an artifact due to a fold in the orignal.

11.4.4 Verschaffelt: an experiment on dilute near-critical mixtures, and its inter-
pretation. We introduced Verschaffelt in Ch. 9, after he began to work on his
doctorate at the Physical Laboratory in Leiden. Kamerlingh Onnes wanted
him to study the system carbon dioxide-hydrogen. The initial objective seems
to have been a more detailed study of retrograde condensation than Kuenen
had done (Ch. 6.6). Another goal was to test the validity of the principle of
corresponding states for mixtures. Serendipitously, the system became a
model for impurity effects in which Kamerlingh Onnes was interested,
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embroiled as he was in conflicts about the nature of criticality (Ch. 10). There
were some experimental constraints. The critical pressure of carbon dioxide is
over seventy atmospheres to begin with, and Verschaffelt noticed right away
that adding 5 mol% hydrogen led to a huge increase in vapor pressure as the
mixture condensed. The study of this system in glass cells near the carbon
dioxide critical point was therefore by necessity going to be limited to small
fractions of hydrogen.

A large difference in volatility will enhance impurity effects. So the system
carbon dioxide — hydrogen was an excellent choice: the first component has
a critical temperature of 404 K, while that of hydrogen is only 33 K.

Measurements were performed as described in Ch. 6.4. The highest pres-
sures Verschaffelt (1899a) reports for a 5 mol% mixture are close to 120 atmos-
pheres. P-V isotherms were measured at seven temperatures from 15 to 31°C.
One striking result is the huge increase in pressure required to make the mix-
ture condense. At 15°C, for instance, pure carbon dioxide condenses at about
50 atmospheres. The 5% mixture, however, begins to condense at 57 atmos-
pheres, but fully converts into liquid only at 103 atmospheres. This clearly
demonstrates the fierce resistance to mixing of these two components. The
plait point temperature decreases about 4°C for a 5% admixture of hydrogen.
Verschaffelt found clear evidence of retrograde condensation of the first kind.

Next, Verschaffelt (1899b) reports some results for the nominal 10 mol%
and 20 mol% mixtures. For these, he could only measure short stretches of
the P-V isotherms, because the pressure limit of his apparatus was quickly
reached. From the data, he constructed the dew-bubble curves and the plait
point curve. The latter keeps on moving to lower temperatures and to steeply
higher pressures.

It is clear to us that Verschaffelt has inadvertently discovered a Type-III
phase diagram (Ch. 7 and Ch. 8), with a critical line running to high pressure
and lower temperatures. At that time, Kuenen had not yet published his work
on such a system. Verschaffelt does wonder about the course of the plait point
line. He thinks it will rise equally steeply from the hydrogen side and specu-
lates that it may go through a very high maximum, suggesting an uninterrupt-
ed mixture critical line (Type I). Much later, however, in the French translation
of his thesis, in 1906, he quotes Kamerlingh Onnes as suggesting that two
branches of the critical line might rise steeply from the carbon-dioxide and
hydrogen critical points and move to infinite pressure. This was just about the
time Van Laar investigated the longitudinal plait, making connection with
Kuenen’s Type-III phase diagram (Ch. 7.5), although just before gas-gas equi-
librium was discovered and explained in Leiden (Ch. 8). Verschaffelt (1906a),
however, in a model described in Ch. 11.4.6, still calculates the critical line for
the mixture of carbon dioxide and hydrogen as a continuous curve with a very
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large pressure maximum. For the present application, the inappropriate phase
diagram presents no problem, because only the part of the critical line close to
the carbon-dioxide critical point is under consideration.

Verschaffelt (19oob) performs a test of the law of corresponding states by
plotting the P-V isotherms for pure carbon dioxide by Amagat, and for the
5%, 10%, and 15% mixtures he himself has obtained, on large-scale loga-
rithmic plots, shifting these with respect to each other to make them super-
impose, which he is able to do quite well. This procedure is an example of
the use of empirical scale factors discussed in Ch. 3.s.

It is important to realize that the test is limited to a narrow range of tem-
peratures, about 15°C, and that only the 5% mixture has substantial overlap
with the isotherms of pure carbon dioxide. After superposition, even the
closest 5% mixture isotherm is 7°C from the critical temperature of pure
carbon dioxide; all other isotherms are further away after superposition.
Verschaffelt notes some departures at densities higher than critical.

Verschaffelt obtains values for the critical parameters Py, Vi, and 7 of
each of the mixtures, the point at which the mixture would have become
critical if a pure fluid, had it not become materially unstable. He calls these
fictitious parameters the critical parameters of the homogeneous mixture. They
will play a substantial role in Keesom’s subsequent work.

Verschaffelt finds the concentration dependence of the scale factors. He
also derives from the fictitious critical parameters the mixture parameters a,
and &, that the Van der Waals equation would give, and finds that they can
be represented as quadratic functions of the composition according to the
mixing rules proposed by Van der Waals, Eq. (4.4).

11.4.5 Keesom: dilute mixtures and the law of corresponding states. Keesom
(1901) wants to find out how the plait point shifts as an impurity is added to
a pure host.

He first derives useful relationships between these slopes and derivatives of
the pressure that could, in principle, be obtained from experiment. In the
back of his mind is Verschaffelt’s experiment, in which P-V isotherms were
obtained for mixtures of constant concentration. Although such experiments
readily yield the fictitious plait point,” they give no clue as to the location
and shift of the real plait point.

Keesom first performs a service to science by writing Van der Waals’s
(1895) expression for the initial slope of the plait point temperature in a more
convenient way. He replaces Van der Waals’s second derivatives of the energy
and free energy by derivatives of the pressure. Keesom then produces the fol-
lowing relation for the initial change of the (real) plait point temperature
with composition:

DILUTE NEAR-CRITICAL MIXTURES 241



W.H. Keesom and J.P. Kuenen posing at the rear of the Physics Laboratory,
Leiden in 1909. Keesom is the tall bearded man next to the door.
Kuenen is the one flanking the woman (Miss G.L. Lorentz).
Collectie Academisch Historisch Museum, Universiteit Leiden.
Copied with permission.

Lim (x — 0, solvent critical point)

(0PIdx)*y + RT (0°Plox0V),

d7,/dx = - . (11.6)
RT (0°PIOTOV),

Keesom’s equation thus permits evaluation of the initial slope of the plait
point temperature from first and second derivatives of the pressure, evaluat-
ed at the solvent critical point. Alternatively, once an equation of state is
given for the dilute mixture, the derivatives at the solvent critical point can
be evaluated. Although the sign of the denominator is always negative, the
plait point temperature may rise or fall depending on the sign of the second
term in the numerator and the magnitude of this second term compared to
the first. Keesom’s nice result was forgotten and derived anew by American
chemical engineers Redlich and Kister (1962).
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Keesom (1901) presents an expression similar to Eq. (11.6) for the initial
change of the plait point pressure (his Eq. 1c, p. 295) with concentration. The
two derivatives are related by the expression:

Lim (x - 0, solvent critical point)
dPyldx = (OP/0x)y — (0PIOT), dT,/dx (11.7)

with d7},/dx standing for the right-hand side of Eq. (11.6). Keesom’s more
elaborate expression represents Eq. (11.7) with &7 ,/dx substituted from
Eq. (11.6).

In the limit x — 0, the derivative (0P/07)y, equals (0P/07)y; the limiting
slope of the critical isochore, which is the locus V' = V_ of the pure solvent.
Keesom now makes use of the fact that in the P-7 plane at the critical point,
the critical isochore and the vapor pressure curve of a one-component fluid
are confluent, see Fig. 11.2. He mentions that Van der Waals proved this
interesting equality in his lecture notes, and that Van Laar and others also
noted it. In part 3 of his paper, Keesom (1901) copies three proofs given to
him by Van der Waals. Later, Van der Waals (1905b) will finally publish these
proofs, see Ch. 11.4.8. Keesom uses the equality of (9P/07) and (dP/dT), at
the critical point for numerical estimations of one or the other of the two.
Usually the latter is easier to obtain from experiment. If (4P/dT), is substi-
tuted for (0P/07)y, Eq. (11.7) could have been written as

Lim (x - 0, solvent critical point)
dPyldx = (OPI0x)y— (dPIdT), dT/dx (11.8)
Keesom retains the right-hand side of Eq. (11.6) for 47,,/dx in his expres-

sion.

Krichevskii (1967) derived Eq. (11.8) anew. Krichevskii, who rekindled the
interest in dilute near-critical mixtures in the modern age, led a large experi-
mental group in the area of fluid mixtures in the former Soviet Union. This
group is known for several firsts, such as the measurement of gas-gas equilib-
rium above the component critical points (Ch. 8), and of the tricritical point
(Ch. 7.2.4). The infinite-dilution critical value of (0/0x)y; a non-diverging
characteristic indicator of dilute-mixture behavior near the solvent critical
point, is presently called the Krichevskii parameter.

Keesom (1901) now proceeds to estimate the various derivatives in Eq.
(11.6) in order to test his relationship. He estimates numerical values for the
slopes of the vapor pressure curve and the critical isochore from experiment.
For carbon dioxide, he reports a value near 7, in reduced units, with a 10%
spread. The spread makes him unhappy. Discreetly, Keesom does not men-
tion that the Van der Waals equation gives a value of only 4 for (dP/dT),.
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After 1900, everyone involved, including the master himself, seems to be
content with the experimentally derived value of 7 for this slope.

For the derivative in the denominator of Eq. (11.6), 0*p/ 070V) 4, Keesom
derives a value from Amagat’s data on carbon dioxide, which happens to
agree closely with that from the Van der Waals equation. (If, however, the
value of (0P/07)y is uncertain by 10%, there is no way he could have derived
the volume derivative of this quantity with an uncertainty even approaching
10%.)

More seriously, but unknown to Keesom, or anyone else at that time, this
particular second derivative must be zero in a real fluid at its critical point
because of the failure of mean-field theory at the critical point, (Ch. 9).
Thus, Eq. (11.6) is not applicable to real fluids. If care is used in taking the
infinite-dilution limit, however, Eqgs. (11.7) and (11.8) do retain their validity
for real fluids.

Having been unsuccessful in a direct test of Eq. (11.6) due to circum-
stances beyond his control, Keesom decides to rewrite this equation in terms
of the law of corresponding states. He uses the fictitious gas-liquid critical
parameters mentioned in connection with Verschaffelts work to make the
pressure, volume, and temperature dimensionless

T = P/ka T= T/T;ck W = WI/xk (II.9)

In these reduced coordinates, the mixture obeys the same equation of state
as the pure fluid. Keesom expresses all derivatives on the right-hand side of
Eq. (11.6) in terms of these reduced coordinates, in the limit of small x near
the solvent critical point, and obtains the following result:

B-« (6Tc/a‘r)2]
C (0°=/0007)

(11.10)

(T (dTyldx) = o -

with a corresponding expression for the initial slope of the pressure along the
plait point curve. The constant C represents the value of the inverse critical
ratio. The derivative d7,/dx and dP,/dx are thus expressed in terms of deriv-
atives of the reduced, one-component equation of state, with two parameters
characteristic of the mixture:

(I/Tk) (dek/dx) = o5 (I/Pk) (d];k/dX) = B (II.II)

At first sight, it seems a step backward to express the concentration
dependence of the real plait point temperature in terms of that of the ficzi-
tious plait point. The advantage of Eq. (11.10) is, however, that the derivatives
involved are those of a pure component. Contrary to Eq. (11.6), no concen-
tration derivatives are involved. Moreover, Verschaffelt (1900) had already
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shown the way to obtaining the fictitious plait point parameters, namely by
superimposing the measured -V isotherms of the mixture of constant com-
position onto those of the pure solvent using two scale factors. Keesom also
derives a simple relation for the location of the real plait point in P-7 space
with respect to the fictitious plait point for small x:

Ppl - ka
= (dPldD), (1r.12)
Ty - Ty

This is a result that Van ’t Hoff should have appreciated: since the right-
hand side is a pure-solvent property, the ratio on the left must be the same
for all solutes in the same solvent. Keesom estimates the left-hand side of Eq.
(1.12) using Verschaffelt’s values (1899¢, 1900b) for 10% and 5% hydrogen in
carbon dioxide. He is content with a 20% mutual agreement of the left-hand
and the right-hand side of Eq. (11.12).

Although he had already demonstrated the futility of pinning down sec-
ond pressure derivatives, he wrestles through the computations required to
calculate the shift of the plait point volume with composition in the last
pages of this paper. This leads to a formula occupying a full three lines on a
page. It contains various third derivatives of the reduced pressure, and can
obviously not be tested.

The paper ends with the honest admission that there are not enough suf-
ficiently accurate data to test the expressions derived for the shift of the plait
point parameters. For the comparison of observation and calculation, Kee-
som considers the simple Eq. (11.12) the most important result for the time
being. That so much effort has yielded such minimal returns must have been
a painful conclusion for the Leiden proponents of the law of corresponding
states.

11.4.6 Verschaffelt models dilute near-critical mixtures. Shortly after Keesom’s
(1901) work was published, Verschaffelt (1902a, 1902b, 1903) took up the
same problem. Inspired by Keesom’s work, Verschaffelt (1902a) decides to use
the law of corresponding states in the form of the two-scale-factor empirical
virial equation developed by Kamerlingh Onnes (Ch. 3.5) that was fitted
accurately to data for several pure fluids.

Verschaffelt then develops a Taylor expansion of the virial equation for the
pure solvent at the critical point, and proves that the coexistence curve is a
parabola to lowest order. Verschaffelt does not show any reluctance to do
this, even though he was the only person to know that such an expansion is
not possible (Ch. 9.4.4), and he does not allude to his finding that this curve
is a cubic.
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Next, Verschaffelt expands the mixture equation of state, at constant com-
position, around the fictitious critical point. He expresses the expansion co-
efficients in terms of the shift of the critical parameters, which he knows
empirically from his superposition of isotherms. Alternatively, he can obtain
them from Kamerlingh Onnes’s reduced virial equation.

Although Korteweg (1903) would calculate the coefficients of the expan-
sion from the Van der Waals equation, Ch. 11.4.2, while Verschaffelt uses the
empirical virial equation, once the expansion is performed, further mathe-
matical procedures are the same. Nevertheless, the Amsterdam mathemati-
cian and the Leiden physicist worked independently during the same time
period. Verschaffelt's work can be considered to be the more general because
it is not based on the Van der Waals equation.

Verschaffelt’s (1902a, 1902b) papers, published as Leiden Comm. 81, con-
sist of a thick sheaf of calculations of the behavior of a dilute mixture near
the solvent’s critical point. Verschaffelt could have learned from the clarity of
presentation that marks Korteweg’s work.

A letter from an unhappy Kamerlingh Onnes (1903) to Verschaffelt, dated
January 24, reveals that there is a problem with the draft of Leiden Com-
munication 81, which was to bundle Verschaffelt’s (1902a, 1902b) papers.
Korteweg had presented his results in the December 1902 meeting of the
Academy, and apparently reported that there were some discrepancies with
Verschaffelt’s results. Korteweg (1903), however, while referring repeatedly
to the work of Verschaffelt and Keesom in the publication, did not mention
any discrepancies. We quote from Kamerlingh Onness (1903a) letter to
Verschaffelt:

You have everywhere expanded to a power one higher [than Korteweg]. You remem-
ber that I explicitly cautioned you about this approach, because lots of powers might
then be needed, and you understand that I do not have the time to do such a thing,
or check it. But I do advise you to check once more all calculations....

...Could you not work through all of Korteweg’s essay with your new results,
expressing all of Korteweg’s coefficients in yours and then comparing all of Korte-
weg’s conclusions with yours? This would be very useful by itself. But it would be
very useful indeed if you would in time discover a mistake in your calculations, as
far as they don’t agree with Keesom’s and the latter have been checked. Surely it is
also desirable for you to draw your cases in the xV plane and it is regrettable that you
have not worked right away on the representation in the y [Helmholtz energy]
plane, but have let yourself be distracted by other problems, because since Korteweg
has entered this field, you should understand that it would have been desirable that
you would have made of it what you could.....I am holding back Comm. 81 for the
time being. [Translated from the Dutch.]
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(The ‘other problems’ must refer to Verschaffelt’s discovery, discussed in
Ch. 9.4.4, of the failure of mean-field theory at the critical point.) In a letter
of Kamerlingh Onnes (1903b) to Verschaffelt dated February 18, it appears
that Verschaffelt had great difficulty trying to fit the adjustable parameters of
the virial-equation corresponding-states model. When fitted to all data, the
resulting critical point was in the wrong place. Kamerlingh Onnes agrees that
there is something discrepant between the behavior of the fluid in general
and near a critical point (something Verschaffelt had tried to convey to him

repeatedly, Ch. 9).

There is definitely something irreconcilable between the critical region and the
isotherms further away. The conflict between what follows from the isotherms fur-
ther away and the observations nearby the critical temperature indicates that in the
critical region the observations are dominated by influences not yet clarified. [Trans-
lated from the Dutch.]

He feels, however, that reasonably close to a critical point the virial model
should still be able to represent qualitatively the difference between pure-
fluid and mixture behavior, since if there is deviant behavior, it would be the
same for all substances. Dutifully, Verschaffelt (1903) carries out the substan-
tial chore of an intercomparison with Korteweg’s results, substituting Korte-
weg’s Van der Waals equation for mixtures by his own empirical virial equa-
tion. After correcting a few mistakes in his 1902 papers, he finds complete
agreement with Korteweg’s results. Later, however, Verschaftelt (1906b) pub-
lished yet another erratum: he had found that some small terms were omit-
ted in the starting expansion of the mixture free energy.

Verschaffelt must be pitied. Keesom had worked on this problem, and had
already decided that the data were not good enough to obtain the necessary
values of pressure derivatives. Verschaffelt had to work with a model that he
alone knew was wrong at the critical point. Fitting the data in a reasonable
way appeared impossible. A monstrous amount of formula manipulation had
to be carried out. He found himself in a race with Korteweg and under pres-
sure by Kamerlingh Onnes.

As stated in Ch. 10.16.2, Verschaffelt (1904) totally redeemed himself in
Kamerlingh Onnes’s estimation by making the first useful estimate of the size
of impurity effects in Teichner’s (1904) questionable experiment. He used a
net of isotherms for mixtures of carbon dioxide and oxygen determined by
Keesom in the work for his doctoral thesis; Keesom had superimposed these
isotherms following Verschaffelt’s example (Ch. 11.4.5), and had estimated the
parameters o and £ in Eq.ar.ir. A pure fluid and a dilute mixture at the same
pressure and temperature are at slightly different values of the reduced coordi-
nates. To lowest order, the reduced temperatures differ by o, and the reduced
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pressures by Bx. The corresponding density differences can then be directly
obtained from the reduced plot of the P-V isotherms. Verschaffelt estimates
that, in the absence of stirring, Teichner must expect a density gradient of the
order of 30% over the length of the tube if there is a concentration difference
of 0.001 mole fraction between the ends. Thus, Verschaffelt obtained by sim-
ple means a useful estimate of the magnitude of impurity effects in near-criti-
cal fluids. Kamerlingh Onnes’s praise for this work was quoted in Ch. 10.16.2.

11.4.7 Van Laar uses the geometric-mean Van der Waals model. Van Laar
(1905h) felt compelled to react to a paper by Van ’t Hoff (1903) about the rise
of the critical (plait point) temperature due to the addition of a solute in the
limit of infinite dilution. True to form, Van t Hoff had stated that this rise
was universal, the same for a mole of any solute. Van Laar (1905h), however,
derived an approximate expression for the rise of the critical-point tempera-
ture, which clearly depended on the Van der Waals parameters of the solute
in question and thus lacked Van ’t Hoff-like dilute-mixture universality. Dis-
satisfied about a very unreasonable assumption he had to make in order to
fic his expression to known data, Van Laar (1905e) begins anew. He knows
about Keesom’s exact expression, Eq. (11.10), based on the law of correspon-
ding states, but criticizes it as containing too many derivatives that have to be
obtained empirically. He, in his turn, uses his own exact expression (Ch.
7.5.4) for the plait point curve for Van der Waals mixtures obeying the geo-
metric-mean rule, Eq. (4.7), for mixtures of arbitrary # and 4. After elaborate
calculations, he obtains a compact expression for the change of the critical
temperature with composition at infinite dilution:

(UT)) @Tyldx), o = 0 =0 =2 (372 - ='712)* - 1} (1.13)

with 0 = 7,,/T,,, the ratio of the critical temperature of the solute to that of
the solvent, and = = P,/P,, the ratio of the critical pressures. This expression
is not only simple, it is also highly useful, since the rise of the critical tem-
perature is now expressed for the first time in terms of directly measurable
pure-fluid critical properties only, be it under the restriction of the geomet-
ric-mean rule. The expression simplifies even more if it is assumed that the
critical pressures of the host and the impurity are the same. Then, the right-
hand side reduces to 6(6-1).

Van Laar (1905¢) makes an interesting comparison of Eq. (1r.13) with
experiment. It so happened that Bakhuis Roozeboom’s graduate student
Biichner had performed one of the first experiments on supercritical solubil-
ity. Five organics of low volatility, such as naphthalene and tribro-
momethane, were dissolved in carbon dioxide near its critical point. The sol-
ubility is, by definition, the concentration at which the solution saturates in
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the presence of an excess of the solute. At saturation, the plait point curve
reaches a critical end point that is usually close to the critical point of the sol-
vent. From the solubility and the temperature at the critical end point, Van
Laar readily obtains an estimate of the value of (1/77) d7,/dx. In order to
calculate 0, the critical temperature of the solute is needed, which was not
known for any of these solutes. Van Laar poses as a rule of thumb that the
critical temperature equals twice the melting temperature. Van Laar finds
agreement between the experimental value of (1/77) d7,/dx, and his 0(0-1)
rule on the level of 20% or better. Why was he so lucky? For one, he
refrained entirely from calculating any property involving the volume, which
would have come out poorly. For another, there was no need for him to take
derivatives of experimental data. This was a nice piece of work, with an inter-
esting new application.

11.4.8 Van der Waals has the last word. Van der Waals (1905a,b,c) begins a
series of three papers in the following irritated vein:

..., by a remark by Van ’t Hoff, and by Van Laar’s calculations, a discussion has been
carried on on the rise of the critical temperature of a substance in consequence of an
admixture. In this it has been perfectly overlooked that already more than ten years
ago, the principal properties of the critical line, and also the properties at the begin-
ning and the end of the line were discussed and determined by me.

In this first paper, Van der Waals begins with his 1895 expression referred
to in Ch. 11.4.1, which gives the initial rise of the critical temperature in
terms of second and third derivatives of the Helmholtz free energy. Using his
mixture equation of state, he is able to obtain an expression in terms of infi-
nite-dilution concentration derivatives of the characteristic parameters 2 and
b, valid for the case that & is a constant. He spends some effort reworking it,
approximating some of the terms, and trying to compare with Keesom’s
experimental data on the mixture of carbon dioxide and oxygen. That leads
him to an expression akin to that Krichevskii would derive much later, Eq.
(11.8), except that instead of the initial slope of the plait point curve, his
expression is derived for the initial slope of the line of fictitious critical points.
This leads him into the same blind alley as Keesom and Verschaffelt.

The paper suffers from repeated switching between calculations based on
the Van der Waals pure-fluid and mixture equation of state, and comparisons
based on empirical fact. The fact that the excluded volume must shrink as
the density increases, for instance, is not incorporated in the equation of
state, leading to a 30% overestimate of the critical volume. Furthermore, Van
der Waals uses the empirical fact that the slope of the pure-fluid vapor pres-
sure curve is around 7, while his equation of state gives a value of only 4.
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In the second paper, Van der Waals (1905b) follows a much more satisfac-
tory path. Apparently, he paid attention to Keesom’s remark that all kinds of
useful but unpublished thermodynamic relations at the solvent critical point
could be found in Van der Waals’s lecture notes (see Ch. 11.4.5), and he sets
out to neatly derive these relations one by one. Thus, there is a proof of the
pure-fluid property that the critical isochore and the vapor pressure curve in
the P-T plane have the same slope at the critical point.

In the same paper, a number of interesting dilute-mixture properties are
described that would be slowly rediscovered in the 1960s and 1970s (see Ch.
11.4.5). First, there is the proof that the dew and bubble curves in the P-7°
plane have a common tangent at the pure-solvent critical point, the ‘bird-
beak’ effect, see Fig. 11.3, (b). It is also shown that this slope is equal to the
derivative (0P/0x)y, 7 at the solvent critical point.

Another interesting relation is that between this derivative, the solute con-
centrations x;, x, in coexisting phases, and the molar volumes V;, V, of the
two phases near the solvent critical point:

(OPI0x) v, = RT [(x, - x1)/2] [1/(V; - V)] (11.14)

Since the left-hand side of Eq. (11.14) remains finite as x; and x, tend to
zero, x, - x; must approach the value of zero faster than V, - V] does. This
was noted in Ch. 11.3.3, and shown in Fig. 11.1, (b).

The last of the three papers is an excruciating attempt to fit expressions for
limiting behavior to measured mixture properties. Van der Waals (1905¢c)
makes no secret of the fact that, although he needs an equation of state to
evaluate several of the derivatives in his expressions, large deviations must be
expected especially in volume-related properties, due to the neglected volume
dependence of the excluded volume 4. The large departure of the experi-
mental slope of the vapor pressure curve from that predicted by his equation
is also referred to. A number of attempts to obtain numerical estimates for
infinite-dilution properties follow, with Van der Waals alternating between
the equation of state and empirical parameters, interspersed with data com-
parisons. There do not seem to be new results in this paper and it ends with-
out a firm conclusion.

11.4.9 An evaluation. Van ’t Hoff’s work honed scientists’ interest in dilute
solutions. Almost all members of the Dutch School participated in the stud-
ies of dilute mixture effects near critical points described in this chapter. The
results fall into three classes: thermodynamic relationships between various
properties of dilute mixtures near the plait point; calculations by means of
the Van der Waals equation for mixtures; and calculations by means of the
law of corresponding states.
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As to the thermodynamic relationships, Van der Waals was clearly the
leader, setting the tone with his early formulae for the change of temperature
and pressure along the plait point curve, and later, proving interesting rela-
tions for properties of coexisting phases in a mixture near the host’s critical
point. Keesom contributed heavily by rewriting Van der Waals’s formulae in
terms of experimentally accessible variables.

The calculations based on variants of the Van der Waals equation for mix-
tures are relatively simple, because the interactions between solute molecules
are negligible to lowest order. Korteweg’s application is general, elegant and
complete. The mathematician was not as close to experiment as Van Laar and
his Leiden colleagues, which limited the impact of his work. Van Laar’s geo-
metric-mean Van der Waals model is both simple and applicable.

Keesom’s and Verschaffelt’s contributions on the basis of variants of the
law of corresponding states were sound in principle, but application was a
disappointment. This was due in part to the impossibility of estimating reli-
able values for second derivatives of experimental data. More seriously, how-
ever, the inadequacy of a mean-field description of near-critical states in pure
fluids and in mixtures played a role. Verschaffelt and Kamerlingh Onnes
sensed this, but more than half a century would pass before this issue was
resolved. From a modern perspective, P-V isotherms of fluid mixtures of con-
stant concentration cannot be expected to superimpose near a critical point:
a field variable, not a density, must be kept constant for critical-point uni-
versality to hold.

For a rough estimation of impurity effects, Verschaffelts and Van Laar’s
shortcuts paid off. Verschaffelt’s repeat of Korteweg’s calculations for a corre-
sponding-states model, this time to third order, however, was not a good
idea. Given the limited computational means of the times, mistakes were
unavoidable. More seriously, Keesom had already shown the inadequacy of
that approach even at the second-order level.

The present-day reader is appalled by the extraordinary calculative efforts
made at that time. Modern computers do the work carried out with so much
dedication a century ago, and our appreciation for such ‘drudgery’ is very
limited. We should not forget that the Dutch school generally kept proper
perspective, and that new concepts and deep insights emerged from the
many pages of calculations. Appreciation of the historical work returns when
one watches the old concepts and insights slowly rediscovered in modern
times.
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1.5 Supercritical fluids

In the 1980s there was a strong surge of interest in the behavior of mixtures
near the pure-solvent critical point. The interest was driven by the unusual
solvent properties of supercritical fluids, which could be made good use of in
chemical process design. A decade earlier, however, Krichevskii and his exper-
imental group in the Soviet Union did significant work, as did the American
theoretical chemist John C. Wheeler.

From reviews by Krichevskii (1967) and Khazanova and Sominskaya (1971),
it is clear that Krichevskii’s group had spent considerable effort in order to
obtained an experimental and a theoretical understanding of the behavior of
dilute near-critical mixtures. A collaborator, Rozen (1976), worked out the
thermodynamics of such systems by means of a classical Taylor expansion
around the solvent critical point, in the way Korteweg or Van Laar could have
done it. In the introduction to this paper, Rozen describes how Krichevskii
was questioning whether the dilute-mixture laws would hold at the solvent
critical point as early as 1943. Rozen then showed that the partial molar
volume of the solute, instead of varying linearly in the concentration, diverges
as x°. This follows immediately from Eqs. (11.3) and (ir.4). Initally,
Krichevskii refused to believe this, but measurements from his own group
confirmed the divergence. Even stranger, these measurements also demon-
strated that the partial molar volume of the solvent does not simply become
equal to the molar volume of the solvent, but has different limits at the sol-
vent critical point depending on the path of approach. Rozen (1976) worked
out these different limits under the mean-field assumption.

Wheeler (1972) had reached this same conclusion on the basis of a non-
classical theoretical model. An expert on decorated lattice gases, he calculat-
ed the partial molar volume near criticality for a modern nonclassical version
of the decorated lattice gas. The partial molar volume of the solute indeed
diverges, be it with a different exponent than in Rozen’s case for the mean-
field fluid. Wheeler (1972) also rediscovered the ‘bird-beak’ behavior of the
dew-bubble curve, Fig. 11.3, (b). In addition, Wheeler confirmed that the
limiting value of the solvent partial molar volume depends on the path to the
solvent critical point, and he gave the proof for his model.

The partial molar properties of the solute are the mainstay of solution
chemical thermodynamics. They are directly connected to the infinite-dilu-
tion standard state first characterized by Van ’t Hoff, and are extensively tab-
ulated for many aqueous systems. This unanticipated divergence of the stan-
dard state was an unpleasant surprise. It implies that at the solvent critical
point, the departures of the solution from the infinite-dilution state do not
depend linearly on the concentration of the solute, but are unexpectedly large.
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Many experiments performed in the 1980s have confirmed these diver-
gences of the solute’s partial molar properties at the solvent critical point.
Highly accurate measurements of partial molar enthalpy and heat capacity of
aqueous salt solutions, performed close to the water critical point at
647 K, revealed steep changes at low concentration, and the more so the
closer to the water critical point. For reviews and references, see Levelt Sen-
gers (1991, 1993).

A satisfactory formulation of the properties of solutions near the solvent
critical point will be difficult to come by. Models such as those of Korteweg
and Rozen are consistent and incorporate the anomalous behavior correctly
at the mean-field level. However, if an accurate representation of the real,
nonclassical fluid behavior is desired, an approach based on mean-field equa-
tions, or on the use of the traditional law of corresponding states must fail.
For non-electrolytes, nonclassical mixture models are presently available, but
most of these are limited to regions close to the critical point. The appropri-
ate renormalization-group calculations incorporating charge screening effects
in electrolyte solutions have not been performed as yet.

The Dutch scientists studied a problem with implications and challenges
that they could not have foreseen. The difficulties they encountered when
comparing with experiment resulted to a great extent from the nonclassical
behavior of real fluids, only dimly perceived at that time. The Dutch School
had reached the limits of mean-field theory, but did not have the means to
transcend it.
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12. Impact of the Dutch School

12.1 Overview.

There are many and diverse paths leading from the studies of fluid mixture
phase separation and fluid criticality of the Dutch School at the turn of the
19th century to present-day science and technology. Some are quite direct and
obvious, others are more tortuous and diffuse. Some paths were major excur-
sions: they crossed geographical boundaries, and at their far end, a new sci-
entific endeavor began. Some never evolved, or were forgotten. A new path
was created later, and only afterwards it was found to have existed much ear-
lier. From what was initially a strictly scientific enterprise, the emphasis shift-
ed to engineering applications, but the century-old roots of the modern dis-
ciplines are still recognizable and traceable.

The effect of Van der Waals’s work on molecular science in the 20t cen-
tury was direct and fundamental, as is well recognized and extremely well
documented, due in large part to books by Rowlinson (1988), and by Kipnis
et al. (1996). This chapter summarizes the achievements of the Dutch School
highlighted in previous chapters, as well as insights lost and rediscovered lat-
ter. Then, it sketches connections perhaps less known. Three of these have
been chosen. First, the history of fluid property and phase equilibrium stud-
ies in the Netherlands passes review, including the bifurcation of phase equi-
librium and fluid property studies that occurred early in the 20t century.
Secondly, we show the impact of the Dutch School on physical chemistry,
geology and metallurgy in Russia. Finally, we recall the debt owed to the
Dutch School by the 20th-century chemical process industry.

12.2 Lasting intellectual contributions

By introducing parameters characterizing molecular size and attraction in
constructing his equation of state, Van der Waals set the tone for molecular
physics of the 20t century. That molecular aspects such as size, shape, attrac-
tion, and multipolar interactions should form the basis for mathematical
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formulations of the thermodynamic and transport properties of fluids is
presently considered an axiom. The Van der Waals forces between molecules,
much weaker than chemical bonds but present universally, play a funda-
mental role in condensed-matter science and in surface science. Elucidation
of the nature of the Van der Waals forces between molecules has remained a
scientific effort from Van der Waals’s days to the present.

The law of corresponding states, first derived by Van der Waals from his
equation of state and generalized by Kamerlingh Onnes, was a key concept of
lasting significance. This law is still the method of choice for estimating prop-
erties of poorly characterized compounds within families of related substances.

The ability of the equation of state to qualitatively describe phase separa-
tion in fluid mixtures is another major and lasting achievement. The cubic
character simplifies these calculations. This is why, notwithstanding the enor-
mous advances in computer technology, cubic equations retain their niche in
the modeling of chemical processes. The virtues of cubic equations for calcu-
lation of phase equilibria of multicomponent fluid mixtures are so great that
efforts to improve them have lasted through the 20t century. In a sense, the
cubic equations are the first and the last word in global phase equilibrium
calculations. Any refining of the equation of state due to increased knowl-
edge of intermolecular forces leads to greater complexity. This diminishes the
ability to explore the phase behavior fully and may produce phase diagrams
not present in real fluid mixcures. There is, as yet, no match for this achieve-
ment of the Dutch School a century ago.

The mean-field assumption, another fundamental contribution by Van
der Waals, has turned out to be a mixed blessing. Its strength is the major
simplification of the conceptual and computational work. For the applica-
tion to global phase diagram calculations, there is no substitute for the mean-
field approach, which is still the method of choice for a first exploration of
any theoretical model in statistical mechanics. This method fails, however,
when fluctuations become important. The method does not work, for
instance, in fluid mixtures of very different molecular attraction and size, in
which the surroundings of a chosen molecule differ considerably from the
bulk concentration. Chemists and chemical engineers have developed
approximations to account for local-composition variation while retaining
the character of analyticity of the equation of state.

The neglect of large-scale fluctuations existing near critical points because
of the large compressibility of the fluid cannot be repaired this way. Van der
Waals and Verschaffelt noted the failure of the Van der Waals equation near
the critical point a century ago, and Verschaffelt knew this failure was a gen-
eral feature of analytic equations of state. It was only in the second half of the
20t century that the critical fluctuations were quantitatively studied, and
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limited-range scaled fundamental equations, accurately fitting fluid data near
the critical point, where proposed to replace those based on the mean-field
theory. Crossover theory offers means to repair existing mean-field equations
near the critical point. However, an equation of state valid over large ranges
of fluid phase behavior, which is accurate in region where fluctuations are
large, and which is capable of predicting realistic fluid mixture phase behav-
ior, is still a distant goal.

12.3 Knowledge lost and rediscovered

12.3.1 Important insights that were forgotten. Much, but not all, of the mathe-
matician Korteweg’s work on plaits and plait points was lost and gradually
rediscovered. His insight in the origin and development of plaits on analytic
surfaces, including the unstable regions, was qualitatively familiar to Van der
Waals as well as to Dutch chemists such as Scheffer, who show plots of acces-
sory plait formation in their papers. The Taylor expansion of the Helmholtz
energy near critical points (plait points) of pure fluids and fluid mixtures
were familiar to the Dutch School, and the criticality conditions formulated
by Korteweg for fluid mixtures made it into the modern literature. This was
primarily due to Rowlinson’s influential book on liquids and liquid mixtures
(1958). Physicists in general, and Soviet physicists in particular (see Ch. 12.5),
however, were unaware of Korteweg’s work. Taylor expansions near critical
points, the basis for renormalization-group calculations that incorporate the
effect of fluctuations, are universally credited to Landau (1937).

Van der Waals’s equation of state lost its luster at an early stage as its many
deficiencies and inaccuracies became apparent. By the middle of the 20t cen-
tury it was considered useless beyond the confines of a freshmen physical
chemistry class. The work by Van Konynenburg and Scott (1980) on the
global phase diagram of Van der Waals mixtures, however, proved how much
valuable qualitative insight can be obtained from this equation. Rowlinson’s
(1988) translation of Van der Waals’s thesis, preceded by an extensive discus-
sion of the impact of this work, has led to a renewed appreciation by the sci-
entific community. Van der Waals’s definition of critical exponents for mean-
field theory, along with Verschaffelt’s discovery of nonclassical critical
exponents, was a concept lost and not rediscovered until half a century later.

Van der Waals’s fourth major achievement is his theory of capillarity of
1894. Though not discussed in this book, it is another example of historic
amnesia. Only after Cahn and Hilliard (1958) completed their influential
work on the free energy of nonuniform systems (in which they did cite Van
der Waals’s (1894) value of the experimental surface tension critical exponent)
did they discover that Van der Waals had developed the theory of capillarity
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based on a continuous density profile through the interface more than sixty
years earlier.

One wonders what caused this loss of valuable knowledge. There are prob-
ably many contributing factors. What presently seems highly significant may
not have appeared that way at the time it was first discovered, or was over-
shadowed by developments considered more important or exciting.

12.3.2 Language barriers. Speakers and writers of Dutch are for the most part
limited to the native Dutch, Flemish and South-African populations. Due to
the foreign-language proficiency of the educated Dutch, however, this should
not have been a major impediment to dissemination of the work of the Dutch
School. Very few of the relevant papers are available exclusively in the native
language. It is very common to find several versions of a paper of the Dutch
School in one or more of the foreign languages: German, French and English.
The practice of publishing in English took a firm hold in the Netherlands as
early as 1900. Before that time, Academy Proceedings appeared in Dutch,
while German was the language of preference for publications following these
presentations. Kamerlingh Onnes, however, was far ahead of his time, by pub-
lishing the Leiden Communications in English from the very beginning.

Korteweg, on the other hand, published his two substantial papers on
plaits in the French-language Archives néerlandaises. Only one of these was
also published in the German-language proceedings of the Academy of Vien-
na. Van Laar published part of his work on the geometric-mean Van der
Waals model in French in Archives du Musée Teyler. History just might have
taken a different course had Van der Waals published his four major works in
English instead of German.

12.3.3 Other impediments to dissemination. Korteweg the mathematician, even
though highly focused on applications and held in high esteem, may have
been somewhat of an outsider. The very limited referencing by other mem-
bers of the Dutch School did not work in his favor. The Leiden colleagues
apparently preferred to go by the far less explicit but more accessible results
in the appendix of Van der Waals’s 1890 paper on mixtures. The esoteric
qualities of the Van der Waals symmetric mixture may have been a strike
against Korteweg. As we saw in Ch. 7.5.10, Korteweg’s model was re-explored
in the second half of the 20t century by Meijering (1951), Straley and Fisher
(1973), Das and Griffiths (1979) and others in the context of phase separation
in three-component liquids or solids and the three-state Potts model. Only
Meijering, however, cites Korteweg’s work.

Van Laar’s work on fluid phase equilibria remains mostly unread. The rea-
sons are obvious to those who have tried. Van Laar, an educated man with
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strong interest in literary endeavors, did not know how to bring his points
across effectively, and significant results drowned in an ocean of formulae.
Van Konynenburg and Scott (1980) recognized his contributions to the glob-
al phase equilibrium calculations of the geometric-mean Van der Waals equa-
tion for mixtures. Meijer ez al. (1989, 1993), however, were the first to note
that Van Laar had actually performed exact calculations for this case.

Van Laar’s work did find a place in chemistry. Van Emmerik (1991) dis-
cusses his equation for the heat of mixing based on the geometric-mean rule.
Hildebrand used and modified it as input to the influential theory of regular
solutions. As a consequence of his feud with Van ’t Hoff and the osmotic
school, Van Laar was the first to introduce what are currently called activity
coefficients for non-ideal solutions.

12.3.4 The new physics. By the end of the 19 century modern physics was
borne. The discovery of radioactivity broke open the indivisible atom of
Demokritus, and directed the focus onto the atomic nucleus. Spectroscopy
presented electromagnetic and atomic theory with the challenge to explain
the spectral lines, characterizing the different elements, in terms of electrons
orbiting the nucleus. Early notions of quantization of energy were to blossom
into the new discipline of quantum mechanics. The liquefaction of helium
opened the field of cryogenics. Superconductivity and superfluidity were dis-
covered and studied intensively. With so much energy and intensity devoted
to the new fields of science, interests in phase behavior of fluid mixtures
slipped into the background, out of the focus of physicists.

12.4 Heritage of Van der Waals and Kamerlingh Onnes in the Netherlands

The universities of Leiden and Amsterdam were the centers of study of fluid
phase behavior around 1900. In the Leiden physics department, Kamerlingh
Onnes held the reins. Fluid mixture phase equilibria were a topic of active
interest, with the liquefaction of helium marking the end of this period. The
mysterious properties of the coldest liquid on earth, and the many new
research opportunities offered by the then-ultimate cryogenic coolant, set
new directions for the laboratory. Nevertheless, some members of the staff,
supplemented by visitors such as Mathias, continued work on P-V-T proper-
ties of fluids until the 1920s. They worked mostly on one-component cryo-
genic fluids such as argon, and the work no longer had the novelty and
vibrancy prevalent in the days of Kuenen and the early Keesom. After the
Second World War, however, fine experimental work on the molecular
physics of fluids, in particular the effect of magnetic fields on transport prop-
erties of molecular fluids, was carried out in Jan Beenakker’s group.
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In Amsterdam around 1900, Van der Waals not only was involved in his
theoretical work on fluid mixtures, but also ran a modest-scale laboratory in
the Physics Department, where he studied fluid phase equilibria in mixtures
at elevated pressures. In 1898, at the occasion of the 25t anniversary of his
doctorate, Van der Waals’s friends established a fund allowing him to expand
his laboratory. Van der Waals decided to use this opportunity to extend the
pressure range. Up to that time, experimental pressures in the Amsterdam
and Leiden laboratories were limited by the strength of glass.

Van der Waals purchased a press and several deadweight gages in 1900. In
1911, Van der Waals retired and Philipp Kohnstamm, his closest pupil, took
over his laboratory. Capabilities for P-V and phase equilibrium measure-
ments were put into place. The pressure limit was set at 3000 atmospheres,
following Amagat, the leading French high-pressure expert. Kohnstamm is
mainly remembered for his co-authorship with Van der Waals (1912) of a
two-volume text on thermodynamics. This is a compendium of Van der
Waals’s lecture notes on the thermodynamics of fluids and fluid mixtures. It
is clearly written, in a somewhat elaborate and flowery style, and was still an
obligatory text for physics and chemistry students in Amsterdam in the
19208.

After 1915, Kohnstamm’s interest took a different direction, and the
laboratory was moribund by the end of the First World War. The laborato-
ry was rescued from oblivion by Anthonius M.J.E Michels (1891-1969),
Kohnstamm’s assistant and later his successor. He shaped the Van der Waals
laboratory into a premier high-pressure institute, where the thermophysical
properties of fluid were measured with unsurpassed accuracy. During that
period, relatively few studies were carried out in fluid mixtures and the pres-
sure limit remained at 3000 atmospheres. In the last part of the 20 century,
however, Schouten and collaborators expanded the pressure range in a major
way, and pioneered the observation of phase separation in fluid mixtures in
diamond anvil pressure cells, work that was referred to in Ch. 8. For more
details on the history of the Van der Waals Laboratory, see Levelt Sengers
(1993, 2001).

The chemistry department in Amsterdam became a world-renown center
of phase studies under the direction of Bakhuis Roozeboom, who succeeded
Van ’t Hoff in 1897. Van der Waals had triggered the interest in the phase
rule when Bakhuis Roozeboom was still a student in Leiden. Until his death
in 1907, Bakhuis Roozeboom directed an active experimental group, with
the study of phase equilibria in chemically active systems including solid
phases as a primary objective. He, too, carried out these studies at elevated
pressures, and to rather high temperatures. Phase theory became the princi-
pal focus of the department. Van ’t Hoff characterized Bakhuis Roozeboom
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in a memorial speech shortly after the death of this very devout man: “To
the Almighty in his [BR’s] philosophy of life, corresponded the phase rule in
chemistry.” See Cohen’s (1913) biography of Van 't Hoff.

Bakhuis Roozeboom (1901) wrote the first two books in the series ‘Hetero-
geneous Equilibria from the Perspective of the Phase Rule.” Over the years, his
former pupils FA.H. Schreinemakers, A.H.W. Aten and E.H. Biichner added
volumes. By that time, they were all professors of chemistry. This book was
highly influential. It introduced Gibbs’s phase rule as a foundation for disci-
plines such as metallurgy, mineralogy and geophysics. Schreinemakers was a
professor of chemistry in Leiden, and is well known for ‘Schreinemaker’s rule,’
which sets limits on the angles at which phase boundaries can meet in a phase
diagram.

Van Laar could have been a natural mediator between the scientific inter-
ests of the physicist Van der Waals and the chemist Bakhuis Roozeboom, but
Van der Waals resisted. Thus, early in the 20t century, the two groups
diverged, with the chemists becoming the world’s experts on phase theory
including solid phases, and the Van der Waals laboratory turning to accurate
property measurements at high pressures, mostly in pure fluids.

The Delft Polytechnic Institute was only a minor player in this field in the
early 1900s. Notwithstanding the difference in curricula between the Polytech-
nic Institute and the academic institutions, however, there was always an
exchange of graduate students and professors. Kamerlingh Onnes, for instance,
was an assistant to physics professor Bosscha in Delft from 1878 to 1882. Kor-
teweg began his studies at the Delft Polytechnic and then transferred to Ams-
terdam. The Polytechnic Institute firmly entered the field of fluid phase equi-
libria studies in 1917, when it appointed the chemist Scheffer as a professor of
analytical and organic chemistry. Scheffer was a research assistant at Van der
Waals’s Laboratory, having obtained his doctorate with Bakhuis Roozeboom.
Scheffer was a professor at Delft from 1917 to 1953, and created a bridge from
the work of Van der Waals and Bakhuis Roozeboom to the modern age. He
also aided the transfer of the purely scientific knowledge acquired in the early
part of the 20t century to chemical process technology. The impact of his text-
book on this topic could have been larger, had it been written in English
instead of Dutch.

The textbook by the industrial chemist J. Zernike (1955) is a practical,
English-language compilation of the work of the Dutch School.

The phase equilibria studies in fluid mixtures on the basis of the method
of the Cailletet tube continue to the present day. The Delft group of De
Swaan Arons, Peters, and De Loos has made numerous contributions to
chemical process technology, in particular to the natural gas industry, poly-
mer processing, and processing by means of supercritical solvents.
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In addition to the work in these experimental groups, a high degree of
expertise in statistical mechanics, kinetic theory, non-equilibrium thermody-
namics and molecular physics accumulated at several of the Dutch universi-
ties and science institutes, growing naturally from the foundations laid by Van
der Waals and Kamerlingh Onnes. Ornstein and Zernike’s (1914) influential
treatment of fluctuations was mentioned in Ch. 9. Theorists such as Ehren-
fest, Kramers and Uhlenbeck in Leiden, De Boer in Amsterdam (Ch. 3.7.4),
and Van Hove and Van Kampen in Utrecht, all built strong theory groups,
entertaining a steady stream of foreign visitors and lecturers. De Groot and
Mazur’s (1962) book on nonequilibrium thermodynamics is a classic.

The chemists Kruyt and Overbeek at the University of Utrecht founded
modern colloid science in the early part of the 20t century, in strong interac-
tion with industry. Kruyt raised Casimir’s interest in the role of Van der Waals
forces between colloid particles, resulting in the calculation of what is present-
ly known as the Casimir effect. Experiments by Vrij and by Lekkerkerker on
solutions of colloidal particles of controlled shape and charge in the later part
of the 20t century have demonstrated a variety of novel phase separations.

Koningsveld and Kleintjens at the laboratory of the Dutch State Mines
pioneered the use of lattice models for modeling phase separation in polymeric
fluids. Meijering at Philips Laboratories adapted Kortewegs methods to phase
separation in solids. The ground prepared by the Dutch School around the turn
of the 19 century has indeed proved its fertility throughout the 20t century.

12.5 The Dutch School and physical chemistry in Russia

Kipnis et al. (1996) describe in detail the influence of the Dutch School of
fluid phase behavior on Russian scientists. Since two of the authors are Russ-
ian, their story is a treasure-trove of interesting facts not well known in the
West. A summary relevant to this book follows, supplemented by additional
information.

The cosmopolitan physicist A.G. Stoletov (1839-1896), who studied at sev-
eral major universities in Germany before becoming a professor at Moscow
University, taught his students about the Van der Waals equation shortly
after the German translation of Van der Waals’s thesis appeared in print in
1881. Famous Russian chemists D.I Mendeleev and D.P. Konovalov also stud-
ied the thesis. As early as 1886, Konovalov took a stand in favor of Van der
Waals and against the view that molecules in the liquid are compounds dif-
ferent from those in the vapor. Konovalov became an expert on the proper-
ties of coexisting phases in liquid mixtures and a strong force in carrying over
Van der Waals’s ideas to Russian physical chemistry. M.P. Avenarius, a pro-
fessor of physics at the University of Kiev, was the first to publish an account
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of critical opalescence in 1873. We encountered Golotsin (Galitzine) in
Ch. 10, one of many scientists reporting experiments that disagreed with
Andrews and Van der Waals’s view of criticality. Stoletov was one of the first
to criticize Galitzzine’s work. In Ch. 9, we introduced a pupil of Stoletov,
D.A. Goldhammer, who, as early as 1910, formulated a corresponding-states
coexistence curve equation for pure fluids with a non-classical critical expo-
nent of 1/3.

N.M. Vittorf (1869-1929), an organic chemist at the Artillery Academy,
spent the year 1903/04 in Géttingen, where he met Bakhuis Roozeboom. In
1909, Vittorf published a detailed account of the geometric approach to
phase diagrams, as developed by Bakhuis Roozeboom, and used it to con-
struct and classify phase diagrams of alloys. He defined nine classes, five of
which had been found by Bakhuis Roozeboom. Thanks to Vittorf’s transla-
tion, the series of books by Bakhuis Roozeboom and his pupils has had a
major and well recognized influence on the development of metallurgy and
mineralogy in Russia.

Between 1910 and 1960, the interest of physicists in phase behavior of flu-
ids waned in Russia just as it did in the West, but physical chemists kept the
tradition alive. One of these, A.V. Rakovskii (1879-1941) at Moscow Universi-
ty, edited the Russian translation of the book by Van der Waals and Kohn-
stamm in 1927.

Physical chemist I.R. Krichevskii (1901-1993), whose long life spanned
most of the twentieth century, formed a key conduit between the Dutch
School and the modern age. At the Institute of the Nitrogen Industry in
Moscow, he built a large-scale laboratory for the study of phase equilibria
under high pressure. Krichevskii was thoroughly familiar with the work of
the Dutch School, and always displayed the two volumes by Van der Waals
and Kohnstamm on his desk. He and his group of mostly female researchers
were the first to measure gas-gas equilibrium in the strict sense, namely,
above the critical temperatures of both components (Ch. 8). They also were
the first to study an asymmetric tricritical point (Ch. 7.2.4). They criticized
the work on the derby-hat region by Mayer and Maas (Ch. 10) and studied
dilute-mixture properties near critical points (Ch. 11.3.6, 11.4.5). In the 1960s,
Krichevskii hosted a seminar at his Institute attracting many external speak-
ers and visitors.

It is well known that Russian physicists such as Landau and Voronel lead
the revival of interest in fluid criticality in the Soviet Union and in the
world. Curiously, the work of physical chemists and physicists had diverged
to such an extent that the knowledge passed from the Dutch School to
Russian physical chemists was completely unfamiliar to physicists. Thus,
Landau’s work on the Taylor expansion of the free energy at the critical
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point, mentioned above, did not build on the foundation laid by Korteweg,
but was developed independently. The physics community in Moscow,
very active in the field of critical phenomena, kept itself aloof from physi-
cal chemistry in general, and from Krichevskii in particular. Physicist
Alexander Voronel was an exception. His discovery of the divergence of the
isochoric heat capacity in argon near its critical point in 1962 (Ch. 9)
brought fluid criticality back to the center of interest. Voronel was a regu-
lar participant at the seminar and fully appreciated Krichevskii’s knowledge
and expertise. Krichevskii, on the other hand, immediately recognized the
importance of Voronel’s experiment. The physical chemist Mikhail Anisi-
mov, at that time postdoctoral researcher with Voronel and another regular
at Krichevskii’s seminar, helped bridge the gap separating Soviet physicists
and physical chemists, and contributed to the generalization of the modern
ideas on critical-point universality to fluid mixtures. Thus, by a circuitous
route, the Dutch School seeded Russian physical chemistry and ultimately
cross-fertilized Russian physics.

12.6 The Dutch School and the chemical process industry
In the Netherlands, phase equilibria studies shifted to the Delft Polytechnic

Institute, and a similar change of direction took place in other countries.

In the United States, a prolonged silence followed Gibbs’s pioneering work
on the equilibrium of heterogeneous substances. After the First World War,
however, chemical engineers and physical chemists set up the scaffolding for
the modern approach to fluid phase equilibria. Lewis and Randall, in a clas-
sic textbook first published in 1923, introduced the universally adopted char-
acterization of fluid mixtures by means of activity coefficients and partial
molar properties. Between the two World Wars, studies of the properties and
phase equilibria of hydrocarbon and their mixtures flourished in the United
States, driven by the practical needs of the explosively growing petroleum
industry. As oil and gas drilling extended to greater depth and higher pres-
sures, the phenomenon of retrograde condensation was rediscovered, rekin-
dling interest in Kuenen and the Dutch School. During the Second World
War, a study of several years took place at the University of Michigan, col-
lecting all material on the behavior of hydrocarbons under pressure in
records dating back to 1860. The report by Katz and Rzasa (1946) contains
literature references and reprints of the most important papers by European
scientists in this field from 1875 to 1910. A large part of this report is taken
up by the work of the Dutch School presented in this book.

In the United Kingdom, Rowlinson served as an effective conduit
between the Dutch School and the chemical process industry. Rowlinsons’s
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(1958) book extensively references work of the Dutch School on fluid mix-
tures, and introduces Korteweg’s equations for fluid mixture criticality in
terms of the Helmholtz energy. Rowlinson enlightened engineers drilling
for gas in the North Sea on Kuenen’s retrograde condensation. Freeman
and Rowlinson (1960) studied lower critical end points in polymeric solu-
tions, and drew attention to the fact that Kuenen and Robson first
observed this type of phase behavior.

Thus, the fundamental contributions by the Dutch School, although per-
haps not always explicitly recognized, permeate the modern chemical
process industry, providing the framework for understanding and modeling
the phase behavior of multicomponent fluid mixtures.
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Notes on referencing

Conventions used. The year following the author’s name in the text is printed bold-
face, again in parentheses, in the corresponding reference in the following list. The
references are listed alphabetically by last name of the first author. If an author has
more than one paper referred to in a given year, these papers are ordered chronolog-
ically to the extent possible, and distinguished by lower-case letters a, b, ezc.

In frequent cases of multiple versions of a particular paper, the version quoted in
the text corresponds with the one carrying the boldface year in the reference list.

Most papers by the Dutch School were published in more than one language.
Not all versions of a given paper are given in the reference to it. In case an Eng-
lish-language version is available, this is the primary, and often only reference
given. If no English version is available, or if the English version appeared consid-
erably later than the original version, the bold-face version quoted, and referred to
in the text, has been chosen in the following order of preference: German, French,
or Dutch.

Referencing to the periodicals of the Royal Netherlands Academy of Sciences. The “Ver-
slagen’ and ‘Proceedings’ of the Academy are printed as issues, each covering a
monthly session. The issues are bundled in volumes, which are numbered in chrono-
logical order and usually cover an academic year. Within a volume, pages are num-
bered consecutively. At the beginning of each volume, the starting page numbers for
the individual session issues are prominently displayed. Each session issue, in turn,
is preceded by a one-page detailed listing of all the communications in the session.
Therefore, in this book the references to “Verslagen’ and ‘Proceedings” are given for
the session under which the particular article is published. This date may occasion-
ally differ from that of the session in which the article was actually communicated.
If this is the case, the date of communication is added to the reference. Since the
date of print of the session is, at best, indicated inconspicuously in a hard-to-find
place at the end of the session issue, this date is not given in this book.

From 1898 onwards, an English version of the Academy presentations, the Pro-
ceedings, was published. For Academy presentations from 1898 onwards, only the
English version is given in the reference.

The “Verhandelingen’ of the Academy are usually more substantial papers, which
may or may not have been presented in individual sessions. Roughly half a dozen
‘Verhandelingen’ are published in a volume, in which each “Verhandeling’ is numbered
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starting with page 1. A listing of the papers appearing in a volume is included in the
Volume, but the papers are not always numbered. They are therefore somewhat
awkward to find or to refer to. In this book, the volume number, year, and page
numbers (1-X) are given, and, if it is known, the session in which the paper was
presented.

Referencing to the Communications of the Physical Laboratory at Leiden. The Leiden
Communications bundle all of the publications of the Physical Laboratory starting
around 1890. They were printed in English almost exclusively, and are numbered
sequentially. For almost all Dutch-language Academy presentations published
by Kamerlingh Onnes and his laboratory, a corresponding English-language Com-
munication exists. If it does, it serves as the prime reference. In the case of the Eng-
lish-language Academy Proceedings, the Leiden Communications number, if
known, is included in the reference.

Particular usages. Dutch last names are alphabetized while skipping definite articles
and propositions such as De, Den, Van, Van de, Van der, Van ’t. Examples: Van
Hoff is found under H, and Van der Waals is found under W. Note that, following
present-day custom in the Netherlands, the first of the articles or prepositions that
are part of the last name are capitalized in the text and references as long as only the
last name is stated. If the first name or first initial is included, the articles/proposi-
tions are not capitalized. In the case of a double last name, the reference is alpha-
betized according to the first letter of the first of these two names. Thus, Kamerlingh
Onnes is found under K, and Levelt Sengers is found under L.

Frequently used sources for biography and bibliography. The Dictionary of Scientific
Biography has been a major source of biographical information given in this book.
The Dictionary is an 18-volume series published, under various editors, by Scribner’s
Sons, New York, from 1970 to 1990. In addition, the following biographies have
been consulted. Each of these contains a complete bibiliography. For Van der Waals,
that by Kipnis ez al. (1996) — for Van ’t Hoff, that by Cohen (1912) — for Van Laar,
that by Van Emmerik (1991) — and for Verschaffelt, that by Henriot (1957).

Journal Abbreviations

Ann. Acad. Roy. Belg. Annuaire de '’Académie Royale de la Belgique
Ann. Chim. et Phys. Annales de Chimie et de Physique

Ann. Physik Annalen der Physik

Ann. Physik und Chem. Annalen der Physik und Chemie

Ann. Rev. Phys. Chem. Annual Review of Physical Chemistry

Arch. Musée Teyler Archives du Musée Teyler

Arch. néerl. Archives néerlandaises des sciences exactes et

naturelles
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