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Abstract
This paper reports the first wide-ranging application of the free-mode measurement technique to a torsional
crystal viscometer. The viscous damping of the fluid on the surface of the crystal is detected in the time
domain by observing the freely decaying torsional oscillation of the crystal. Previously, the torsional crystal
viscometer was used exclusively in a forced mode of measurement, where the response of the crystal is
determined in the frequency domain by scanning through the resonance.

The free-decay measurement mode has many advantages over the previous technique. It enables a better
characterization of the sensor because the torsional displacement of the crystal can be observed directly.
Measurements can be carried out at smaller displacements as well as at constant amplitude in fluid and
in vacuo. Direct control over the crystal displacement is an important extension (especially at low external
damping of the crystal as in gases or in vacuo), because the measurements can be limited to the linear regime
of the crystal vibration and the nonlinear regime can be avoided. In addition, this extension allows for a more
complete characterization of the transducer by validating the consistency of its operation in the time and
frequency domains. Finally, free-decay measurements are much faster than resonance scans, thus eliminating
medium and large time constant variables that can affect the measurement. With these advantages, a second
metrological approach has been added to the utilization of torsional crystal viscometers.

Sulfur hexafluoride (SF6) was used as a test fluid to compare the two measurement modes in the presence
of external damping. The results of both methods are consistent up to a (viscosity × density) of
0.020 (Pa s)(kg m−3). With improved signal conditioning this limit can be increased substantially.

Both measurement techniques were also compared to determine the internal damping of the crystal
in vacuo. Nonlinear crystal oscillations were observed which can be interpreted in terms of Duffing and
Van der Pol nonlinearities with displacement-dependent stiffness and damping respectively. This insight
represents a substantial advance in our understanding of torsional crystal viscometers.

Keywords: torsional crystal viscometer, sulfur hexafluoride, viscosity, transient decay, free mode
measurement, rapid data acquisition, nonlinear oscillations

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Torsionally vibrating cylindrical piezoelectric crystal rods have
been employed for shear viscosity measurements of fluids.
Figure 1 illustrates schematically the oscillatory velocity field

1 Present address: Atmel Corp., 1150 E. Cheyenne Mtn. Blvd., Colorado
Springs, CO 80906, USA.
2 Author to whom any correspondence should be addressed.

that is generated by such vibrators. The measured damping of
the vibrator yields the information used to deduce the viscosity
of the surrounding fluid.

Such viscometers have been used for a wide range of
measurements from gas to polymer viscosities, low to high
temperatures, and to high pressures. Kestin and Wakeham [1],
Diller [2], and Meyer [3] reviewed many applications of the
technique since its conception in 1947. Later, Gundrum [4]
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Figure 1. Velocity field generated on the surface of the quartz
crystal by the torsional vibration of the cylindrical rod. The crystal
is shown at zero torsional displacement when the velocity at its
surface reaches a maximum. Ideally, no displacement occurs along
the x-axis or in the nodal plane.

extended the upper temperature limit to 623 K by using swept
quartz crystals [5] while Meier [6] analysed the torsional
crystal vibration in terms of equivalent electric circuits and
investigated the effect of fluid polarity on the measured
response of the piezoelectric crystal.

As with every vibrating system, the damping on the
torsionally vibrating crystal can be measured in two ways. The
predominant measuring mode for torsional crystal viscometers
has been that of mechanical spectroscopy in the frequency
domain. In that mode, the damping is obtained by measuring
the response of the vibrator to frequency modulations around
its resonance (forced mode). Ideally, the same damping
should be obtained by directly monitoring the decaying
amplitude of the vibration in the absence of a driving force
(free mode). This approach was attempted with torsional
crystal viscometers as early as 1958 [7], and was continued
in the following decade by Betts and co-workers [8–11].
These early investigations suffered primarily from slow data
acquisition capabilities. In these works, as in unpublished
attempts during helium measurements in this laboratory [12],
the decaying crystal vibration was photographed from an
oscilloscope screen for quantitative evaluation of the damping
constant. The limitations of this data acquisition method
are obvious considering the high resonant frequencies of
torsionally vibrating crystals of typically 40 kHz and the rapid
decay of their oscillations in the presence of liquids. No other
attempts to deduce viscosities from free decay measurements
have been reported since 1972.

Here, we present the quantitative implementation of the
measurement mode where the decay of the crystal vibration
is monitored in the time domain. Throughout this paper, the
terms ‘free mode’ and ‘free decay’ refer to the time-domain
measurements, and the terms ‘forced mode’ and ‘resonance
scan’ are synonymous for frequency-domain measurements.
Following introductory theoretical considerations about the
equivalence of the two measurement modes, the main features
of the employed viscometer and the hardware implementation
for the free-mode measurement are described. The data
analysis of free-decay measurements will be discussed and

sample results in vacuo and in sulfur hexafluoride will be
presented. The new measurement method revealed nonlinear
vibrational behaviour of the quartz crystal, which is interpreted
in the final part of this paper.

2. Working theory for both measurement modes

The forced-mode and the free-mode technique both attempt to
measure the viscous damping of a fluid on the crystal surface by
determining the logarithmic decrement of the crystal vibration.
In resonance-scan measurements, it is obtained by measuring
the response of the vibrating crystal to variations of the drive
frequency near its resonance and determining from that the
resonant frequency ( f ∗) and half-power bandwidth (� f ) of
the resonance curve. For such systems, ‘resonance’ is defined
by the physical properties of the system (mass and elasticity);
and for real systems (which always include damping) this
corresponds to the frequency of maximum power dissipation.
The half-power points are the two frequencies where the
dissipated power is half that of the maximum. In the time
domain (free-mode measurement), the damping is determined
by direct observation of the decaying amplitude of the crystal
oscillation.

The working equation for absolute viscosity measure-
ments in the forced mode was derived in detail by Webeler [13]
and Meier [6]:

η × ρ =
(

m

S

)2

(π f ∗)
(

� f

f ∗ − � f0

f ∗
0

)2

. (1)

Here, η represents the viscosity of the fluid, ρ its density, m
the mass, S the surface area of the crystal, f ∗ the resonant
frequency and � f the bandwidth. The subscript 0 indicates
vacuum conditions. Other working equations have been pro-
posed, where the viscosity of the fluid is deduced only from the
resonant frequency shift between vacuum and fluid [14–16].
It was found that these working equations are not suitable for
absolute viscosity measurements.

The working equation to obtain the product (viscosity ×
density) from the free decay of the crystal vibration is [11]

η × ρ =
(

m

S

)2( f ∗

π

)
(χ − χ0)

2, (2)

where χ is the logarithmic decrement of the free decay. This
equation is equivalent to equation (1) with the substitution

χ = π
� f

f ∗ . (3)

Equation (2) was adopted as the working equation for the free-
decay viscosity measurements in this work.

There are three different frequencies characterizing the
frequency response of a damped system. These are (1) the
‘undamped natural frequency’, (2) the ‘damped natural
frequency’ and (3) the ‘frequency of maximum forced
amplitude’. The derivation of these frequencies may be
found in reference textbooks on acoustics or vibrations, such
as those by Kinsler et al [17] or den Hartog [18]. The
difference between the three frequencies is extremely small
for piezoelectric quartz crystals even at the highest measurable
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damping, where it amounts to about 100 mHz at an operating
frequency of approximately 40 kHz. Thus, the frequency
difference is negligible in the calculation of the viscosity
according to equation (1) or (2), and throughout this paper
no distinction between the damped and the undamped natural
frequencies will be made. The term ‘resonant frequency’ will
be used throughout.

Since this technique measures the product (η × ρ), the
density of the fluid must be known in order to extract its
viscosity. Densities are obtained either from an equation of
state or from experimental data. The uncertainty in the density
thus affects the uncertainty of the reported viscosity.

3. Experimental details

3.1. Apparatus and implementation

The free-decay measurement technique was implemented in
the low-temperature viscometer as shown schematically in
figure 2. The instrument can be operated in a temperature
range from 60 to 330 K at pressures from vacuum to 35 MPa. In
the present work, experiments in vacuo and with helium were
carried out from 78 to 330 K. The bulk of the measurements
were carried out on sulfur hexafluoride (SF6) from 225.18 K
near its triple point to 325.60 K slightly above the critical point,
and at pressures from 0.0923 to 34.47 MPa. The transducer
with the quartz crystal is enclosed in a beryllium + copper
pressure vessel. The cylindrical quartz crystal (designated
WMH1) has a mass of 2.5121 ± 0.0002 g, a length of
49.9008 ± 0.006 mm, and a diameter of 4.920 ± 0.006 mm.
The surface area is thus 8.093 ± 0.011 cm2. The mass has
been measured to 0.01% and the surface area to 0.1%. The
surface area is further corrected for thermal expansion and
pressure effects at the experimental conditions. The resonant
frequency of the crystal is 39.461 06 kHz in vacuo at 298.15 K.
It depends inversely on the length of the crystal. Knowledge
of its variation with temperature is a necessary prerequisite for
absolute viscosity measurements with this instrument.

The implementation of the free-mode technique required
no modification of the transducer itself, but only additions
to the data acquisition instrumentation outside the cryostat.
While the crystal is forced to vibrate torsionally when an
ac voltage is applied to its surrounding electrodes (converse
piezoelectric effect), the free decay of the crystal vibration
can be measured by recording the voltage that is induced
in the electrodes proportional to the crystal deformation
(piezoelectric effect). Therefore, the additional hardware
components include a triggered relay, a fast analogue-to-
digital (A/D) data acquisition board, and an intermediate
amplifier. The triggered relay serves the purpose of switching
the electrodes of the transducer from the driving impedance
analyser to the A/D board, and the amplifier increases the
signal strength during measurements in compressed fluids and
liquids. These modifications are indicated in figure 2.

An alternative way of measuring the free decay of the
crystal vibration is by using a lock-in amplifier. In this bead
frequency technique, the measured signal is superimposed to
a reference signal in what could be considered as analogue
preprocessing to reduce the amount of digital data. The
objective of this work was to explore a fully digital technique

because it was anticipated that the limits of data acquisition
and processing speed, memory demand and storage capacity
would relax soon. The fully digital technique can be realized
with very compact data acquisition that offers the possibility
of developing this viscometer into a portable instrument for
field use, such as down-hole measurements in oil reservoirs.

3.2. Prerequisites for free-decay measurements

The forced-mode technique has been the primary method
of determining the fluid damping on the crystal surface
in the torsional crystal viscometer since 1947. Initially,
such measurements were carried out with radio bridges by
manually determining the resonance frequency and the half-
power point frequencies. The shape of the resonance was
not fully resolved and nonlinearities remained undetected.
When impedance analysers became available, it was possible
to measure a resonance curve completely instead of only three
points of interest. This work represents the first quantitative
implementation of the free-mode method in the torsional
crystal viscometer. Free-decay measurements require different
resources for accurate data acquisition and analysis than
resonance scans. Due to the resonant frequency of the crystal
at approximately 40 kHz, the decay of the crystal vibration has
to be recorded with a data acquisition sampling rate of at least
2 million voltage samples per second (MS s−1), so that each
cycle is resolved with 50 data samples. The induced voltage
is the measured quantity. In vacuo, measurement durations of
50 s or more are needed to observe the decay to approximately
95% of the maximum amplitude. Such a measurement at a
sampling rate of 2 MS s−1 and a resolution of 12 bits/sample,
generates a data volume of approximately 147 Mb, which has
to be analysed to obtain the damping constant of the decay.

Hardware with such data recording and processing
capabilities became available in the mid-1990s at an acceptable
cost. A 1012 PCI data acquisition board by GaGe Applied
Sciences Inc. was used to record the induced voltages3.
Although the board is capable of rapid data acquisition, its
implementation into the data acquisition system was involved.
The transfer of the recorded data from the add-on board to
the computer during a measurement requires an interface with
a sufficiently high peripheral data-transfer rate such as the
PCI bus. Finally, the data storage and analysis requires a
processor with significant computational speed. Computer
memory (RAM), disk space, and processor speed are critical
in recording and storing several megabytes of decay data, and
in their analysis to determine the damping constant.

A Pentium II processor with a clock speed of 200 MHz
and 128 Mb of RAM was used as the data acquisition
computer. Software limitations reduced the practical amount
of data which could be recorded in a single experiment
to a measurement duration of 7.5 s. While this duration
was sufficient to record decays in liquids and even dilute
gases, complete decays in vacuo could not be captured at
once. Instead, multiple experiments with different initial drive

3 In order to describe materials and experimental procedures adequately, it
is occasionally necessary to identify commercial products by manufacturers’
names or labels. In no instance does such identification imply endorsement
by the National Institute of Standards and Technology, nor does it imply that
the particular product or equipment is necessarily the best available for the
purpose.
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Figure 2. Schematic diagram of low-temperature viscometer for temperatures from 60 to 330 K and maximum pressures of 35 MPa.
Equipment in the bold lined circuit was added for the free-decay measurement. Resonance measurements are carried out with the equipment
in the dashed circuit.

voltages (amplitudes) were carried out to infer the behaviour
of the vibrating crystal over the entire decay.

3.3. Data analysis

The data analysis for either measurement with the torsional
crystal viscometer extracts the resonant frequency and the
system damping (either in terms of bandwidth � f or
logarithmic decrement χ) from the experimental data. These
values are then used in the calculation of the product (η × ρ)
according to equations (1) and (2).

A sample resonance scan is presented in figure 3 where the
dissipated power of the oscillator was measured as a function of
frequency. With our instrumentation, the complex admittance
Y of the crystal is measured as a function of frequency, with
conductance G being the real part and susceptance B being the
imaginary part, Y = G + jB. The resonant frequency f ∗ is the
frequency where G has a maximum (Gmax). The bandwidth

� f is determined by linear interpolation between data points
around G1/2 (the value of G that is one half of Gmax).
Equation (1) is then used to determine the product (η × ρ).

As mentioned in section 3.2, the analysis of the data from
a free-decay measurement was computationally demanding at
the time when this work was carried out. Sample recordings
of decays in SF6 and in vacuo are shown in figures 4 and 5.
The measured quantity is the piezoelectrically induced voltage
in the transducer electrodes as a function of time. This signal
is proportional to the torsional displacement of the crystal.
Figure 4 shows the response of the transducer in supercritical
SF6 at approximately 325 K, while figure 5 shows a decay
in vacuo without external damping at the same temperature.

For the purpose of this initial investigation, a two-step
data-analysis procedure was chosen. First, the decay data
were analysed with a peak-detection algorithm to determine the
maxima and minima of the induced voltage. This is illustrated
in figure 6 for a magnified portion of the SF6 decay shown in
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Figure 3. Crystal resonance recorded in supercritical sulfur
hexafluoride (SF6) at 325 K and 4.3 MPa. Shown are the the
conductance G and the susceptance B with the resonant frequency
f ∗ and the bandwidth � f .

Figure 4. Free decay of the torsional crystal vibration recorded in
supercritical SF6 at 325 K and 4.3 MPa. Shown are 250 000 data
points which are not discernible individually. The drive voltage was
150 mV before the decay was triggered and the induced voltages
were amplified by a factor of 5.52.

figure 4. The maxima and minima of the induced voltage were
averaged per cycle to find the set of cyclic amplitudes, which
were in turn fitted to an exponential decay function to deter-
mine the damping coefficient β . An example of the agreement
between experimental data and correlation is shown in figure 7.
Each measurement was analysed by sequentially taking parcels
of decay data and treating them separately. This allowed the
observation of the damping coefficient as a function of time.
The resonant frequency and the logarithmic decrement χ were
then used with equation (2) to obtain the product (η × ρ).

4. Results

4.1. Vacuum measurements

Absolute viscosity measurements with the torsional crystal
viscometer require an accurate characterization of the internal

Figure 5. Free decay of the torsional crystal vibration in vacuo at
325 K. Shown are 15 million data points which are not discernible
individually. The drive voltage was 1.1 V before the decay was
triggered. The induced voltages were not amplified. Nonlinear
effects are apparent in the first 4 s of the decay.

-1.5

-1.0

-0.5

0

0.5

1.0

1.5

Einduced,  V

0.00 0.05 0.10 0.15

t, ms

Data

Minima

Maxima

Figure 6. Analysis of free-decay data for a measurement in SF6 at
325 K and 4.3 MPa as shown in figure 4. The data are analysed in a
first step by detecting the maxima and minima of the induced
voltages. The drive voltage was 1.1 V before the decay was
triggered, and the induced voltages were amplified by a factor of
5.52.

damping of the crystal in vacuo, i.e. the bandwidth � f0

and resonant frequency f ∗
0 which appear in the working

equations (1) and (2). In gases with a low (η × ρ), the
contribution of the internal damping becomes appreciable
relative to the external damping by the fluid and cannot be
neglected, as is often done in the analysis of measurements of
liquids.

Resonance scans in vacuo and at low external damping
deal with inherent difficulties. These consist of:

(i) considerable ring-down times �t� f which have to be
allowed after a frequency step before the admittance is
measured and

(ii) an increased sensitivity to the drive voltage Eosc which
should be as low as possible.
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Figure 7. Deviation between exponential fit and free-decay data
during 3000 cycles recorded in supercritical SF6 at 325 K and
4.3 MPa. Other conditions as in figure 4.

These difficulties are amplified at cryogenic temperatures
when the quality factor of the crystal is much higher than
at ambient or higher temperatures. Figure 8 shows as an
example the resonance of crystal WMH1 at 75.896 ± 0.001 K
which was resolved in this work for the first time at such
low temperatures. The measurement was carried out with a
ring-down time of �t� f = 270 s before the admittance Y
was recorded after each frequency step of � f = 1 mHz.
Even if the measurement were to have been limited to the
immediate frequency range around the resonance as indicated
in figure 8, the execution of the scan would have lasted more
than an hour. Temperature fluctuations of the thermostating
system may affect such measurements so that the resonant
frequency shifts with time. Such a shift can also result from a
temperature rise of the crystal due to the internal dissipation of
the applied power. Consequently, forced-mode measurements
can yield incorrectly shaped response curves and even multiple
‘resonances’. For example, the bandwidth of the resonance
in figure 8 is approximately 2 mHz. Even if the resonance
frequency f ∗

0 shifts during a resonance scan by only 1 mHz
(in this case 50% of the true bandwidth), the measurement
of this narrow bandwidth is considerably compromised. Note
that this shift in resonant frequency is not due to a different
measurement technique (i.e. forced mode versus free mode,
see section 2), but rather due to non-idealities in the system.
This long-time shift in resonant frequency is avoided entirely
by the free-decay measurement, which takes less than a minute
in the case shown in figure 8.

Another limitation of resonance measurements is the
identification of nonlinear vibrations of the crystal. These
depend on the applied drive voltage during a scan. The present
transducer exhibits nonlinear behaviour at drive voltages as low
as 100 mV. To measure nonlinearities, scans with different
drive voltages have to be executed. Besides being very
time consuming this was not possible to the required extent
with the impedance analyser that has been used for such
measurements because the resolution with which the device
measures conductance and susceptance is tied to the applied
drive voltage. The lower the drive voltage, the lower the
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Figure 8. Resonance of crystal WMH1 in vacuo at
75.896 ± 0.001 K.

resolution. Due to its high quality factor, resonances of the
torsionally vibrating crystal in moderately dense gases and
in vacuo fall in a range that requires low drive voltage at
sustained resolution to avoid nonlinear contributions. The free-
decay measurement circumvents this limitation as it can be
used in the present set-up down to 1 mV induced voltage, well
within the linear regime of the operation of the instrument.

As discussed in the previous two paragraphs, forced-
mode measurements at low external damping and in vacuo
are demanding (especially at low temperatures) and an
alternative measurement method is desired which avoids time-
and amplitude-dependent effects. The free-decay technique
overcomes both of these limitations. The example in figure 5
shows how the vacuum decay reduces the measurement time
to the order of seconds.

Results of free-decay measurements in vacuo at 325 K
are summarized in figures 9 and 10, showing the logarithmic
decrement χ0 and the resonant frequency of the free decay, f ∗0,
versus the induced voltage E . Each series represents a decay
measurement of 7.5 s duration with each data point based on the
analysis of one half-second parcel of decay data. The decays
were measured with drive voltages (initial amplitudes) between
5 mV and 1.1 V. Figure 9 shows the internal damping of the
crystal as a function of induced voltage E . The damping χ0

begins to increase strongly with the amplitude of the torsional
vibration above induced voltages of 200 mV, corresponding to
initial drive voltages between 30 mV and 0.1 V. This increase
is indicative of nonlinear effects which are not covered by the
linear theory of the instrument. A similar behaviour is observed
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Figure 9. Internal damping of the crystal as obtained from
free-decay measurements in vacuo at 325 K. Each data series
represents one continuous measurement over 7.5 s. Each data point
represents 0.5 s of a free-decay measurement. Nonlinear responses
occur as the forcing of the crystal increases.

in the dependence of the resonant frequency f ∗
0 on the induced

voltage E in figure 10. Above a certain induced voltage, the
resonant frequency decreases. An explanation of the increase
in damping and the change in resonant frequency in terms of
nonlinear oscillators is offered in section 5. The noteworthy
insight is gained with these experiments in the range of induced
voltages below 0.2 V where the damping does not vary with the
amplitude. Compared with forced-mode measurements, this
range can be resolved by free-decay measurements with greater
precision and independent of hardware constraints between
drive voltage and impedance resolution limits.

4.2. Measurements in sulfur hexafluoride

Sulfur hexafluoride (SF6) was selected as a test fluid to
validate the free-decay measurement technique under external
damping. Although both compounds differ in their molecular
architecture, SF6 has, like carbon dioxide, a comparably
narrow vapour–liquid coexistence region between the triple
and critical point (Tt = 223.554 K [19], Tc = 318.729 K [20]),
so that fluid states from dilute gas to compressed liquid and
supercritical fluid could be explored comprehensively in one
instrument. Viscosity measurements were carried out in both
modes over a temperature range from 225 to 325 K with
pressures up to 35 MPa. The full set of experimental data
is reported elsewhere [21].

A comparison revealed agreement within±2% at densities
above 1200 kg m−3 between the viscosities deduced from the
resonance measurements and those literature data that were
deemed most reliable. The uncertainty of the resonance-scan
measurements was evaluated according to the procedure of
Taylor and Kuyatt [22]. From observing the deviation of the
data from the average at a state point for densities greater than
100 kg m−3, a type A standard uncertainty of 1% was deduced.
The type A uncertainty is associated with the precision
of the instrument. ‘Precision’ denotes the error inherent
in the instrument and measurement technique in producing
repeatable results. Type B uncertainties of 0.5% for the density
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Figure 10. Free-decay resonant frequencies in vacuo at 325 K for
the measurements shown in figure 9.

and 1% for systematic deviations are assumed. The type B
uncertainty characterizes the accuracy of the instrument as an
estimate of the error of the measured value from the true value
due to systematic deviations. This evaluation gives a relative
combined standard uncertainty of 1.5% for the resonance-scan
SF6 measurements in the torsional crystal viscometer. With a
coverage factor of 2, the expanded relative uncertainty is ±3%
for densities greater than 100 kg m−3.

The free-decay measurements can be evaluated similarly.
The type A uncertainty of these data is similar to that of the
forced-mode data, but the free-decay data are systematically
6% lower than the corresponding resonance-scan data at
an upper (viscosity × density) product (η × ρ)max of
0.020 (Pa s) (kg m−3).

A comparison between the two methods is shown in
figure 11 along a supercritical isotherm at 325 K for SF6.
The results indicate that the new method is successful in
determining the viscous damping on the crystal surface.
The free-decay measurement data are systematically lower
at higher damping due to an inability to properly quantify
the damping coefficient β . The aforementioned limit of
(η × ρ)max corresponds for SF6 to a state point of 325 K
and 4.3 MPa, with a density of 767 kg m−3 and a viscosity
of 34.7 µPa s. This is far below the present forced-mode
measurement range of approximately 30 (Pa s) (kg m−3). It is
believed that the deteriorating performance of the free-decay
measurement technique under increased external damping is
mainly due to a decreasing signal to noise ratio with the present
data acquisition system. The recording of the induced voltages
can be improved with a low-noise switching mechanism,
an improved amplifier, and better signal transmission from
the transducer in the pressure vessel to the data acquisition
board in the computer. Further noise reduction is possible by
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Figure 11. Experimental results for the viscosity of supercritical
SF6 at 325 K. The free-decay data are systematically lower than the
resonance-scan data at densities above 800 kg m−3. At that density
the deviation is about 6%.

integrating the data acquisition board in the computer so that
electromagnetic interference is minimized. The present results
suggest that free-decay measurements are advantageous at low
densities to avoid parasitic modes of the crystal vibration.
These may be excited in forced-mode measurements if the
drive voltage cannot be lowered sufficiently due to hardware
constraints between drive voltage and impedance resolution.

5. Nonlinear effects

5.1. Observations of the torsionally vibrating crystal

As discussed in section 4.1, the vacuum characterization of
the crystal vibration revealed several interesting phenomena.
Asymmetric resonance curves with resonant frequency shifts
and decreases of the conductance maxima with increasing drive
voltage were observed in this work. The conductance curves
are skewed to lower frequencies and their maxima decrease
with increased forcing at constant temperature. These effects
are fundamentally the same as those which have been described
for other crystal cuts and piezoelectric materials [23]. In the
context of quartz resonators with high-frequency stability, the
shift of the resonant frequency with amplitude is known as the
amplitude–frequency effect [24].

In the free-decay measurements, similar phenomena have
been observed. Sample free-decay data are shown in figures 9
and 10 and were discussed in section 4.1. The two observations
in the free mode are a decrease of the resonant frequency
and an increase of the apparent damping with increasing
drive voltage. These observations are not consistent with the
linearity of the crystal vibration on which the working theory
of the viscometer is based. At amplitudes above a certain
threshold, the torsional deformation of the crystal follows a
nonlinear stress–strain relationship. In fact, measuring the
shift of the resonant frequency due to the applied electric
field allows the determination of the nonlinear, third-order
piezoelectric coefficient d311 [25]. In the following, the
nonlinear characteristics will be discussed in view of how they
change the dissipation of the vibrator rather than in view of

the material properties of the crystal. The dissipation of the
vibrator is of interest for accurate viscosity measurements.

5.2. Generalized nonlinear oscillators

The asymmetric resonance, shift in f ∗, possible hysteresis,
change in maximum conductance, and variable damping are
explained by considering Duffing and Van der Pol oscillators.
Such oscillators exhibit displacement-dependent stiffness and
damping, respectively. Their characteristics are discussed and
analysed in detail by Thompson and Stewart [26], Moon [27],
and others. The generalized equation of motion for these two
types of forced oscillator is

I
d2θ

dt2
+ b

(
1 +

α

b
θ2

)
dθ

dt
+ k

(
1 +

γ

k
θ2

)
θ = F exp(jωt). (4)

Here, damping and stiffness are functions of the displacement
θ . The constants α and γ represent the nonlinearities of
Van der Pol and of Duffing oscillators respectively. In the
fully generalized case, the inertia I may be displacement-
dependent too [18]. Examples of oscillating systems with
displacement-dependent inertia are the inertial cavitation of
gas bubbles [28] or oscillations of thermally pumped vapour
bubbles [29]. The displacement dependences of stiffness and
damping are introduced in equation (4) as a Taylor series
truncated to the quadratic term (θ2). The expansion contains
only even powers, which follows from symmetry arguments.
If the oscillating system is symmetric with respect to the
equilibrium position then the displacement dependence can
include only even powers. Equation (4) reduces to the Duffing
oscillator for α = 0, and to the Van der Pol oscillator for
γ = 0. Both effects may be coupled because of the material
properties. However, in theory they may exist separately.

The following discussion presents a simple treatment of
these nonlinear oscillators in the frequency domain. The two
nonlinearities will be treated separately to discern which effects
arise from which type of oscillator. By such an analysis, the
observed behaviour of the torsionally vibrating crystal can be
interpreted.

The Duffing oscillator is considered first assuming α = 0.
Its displacement-dependent stiffness is governed by the value
of the constant γ . If γ > 0, the stiffness of the system increases
with increasing amplitude, and the resonance curve is skewed
to the right. If γ < 0, the stiffness of the system decreases with
increasing amplitude and the resonance curve is asymmetric
to the left. The linear harmonic oscillator is recovered in the
case γ = 0 and the resonance curve is symmetric. Thus,
the Duffing oscillator is evidenced by pronounced asymmetry
of the resonance curve and a substantial shift in the resonant
frequency. This behaviour has been observed in this work
in the frequency response of the torsionally vibrating crystal.
However, numerical analyses show that the Duffing oscillator
does not exhibit a significant increase in bandwidth or a
decrease in maximum conductance with increased forcing.

Figure 12 shows dissipation responses of a Duffing
oscillator as a function of frequency calculated on the basis
of equation (4). The dissipation 〈�〉 is normalized by F2 to
show the effect on the impedance due to the Duffing effect. The
figure compares results of an approximate solution outlined by
Ku [30] with the numerical integration of Duffing’s differential
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Figure 12. Normalized steady-state dissipation of a Duffing
oscillator for external sinusoidal forcing calculated with the
approximation of Ku [30]. The response is shown for three different
forcing levels and the limit of zero forcing (the linear oscillator,
dashed curve). The progress from symmetry, to asymmetry, and to
hysteresis is shown. The points represent the numerical solution to
the differential equation at a driving force of 0.10. The resonant
frequency of the linear oscillator is 1.

equation. Although the numerical integration differs from the
approximation of Ku at several points, the figure shows that
the Duffing nonlinearity dramatically affects the frequency
of maximum dissipation (i.e. the resonant frequency of a
linear oscillator) and the asymmetry of the curve when the
driving force increases. However, the maximum (〈�〉F−2),
corresponding to the maximum conductance Gmax in the
measurements with torsional crystals, is not changed.

Included in figure 12 is a calculated resonance for the
forcing amplitude F = 0.12 which exhibits a region of
multiple solutions. A hysteresis of a vibrator’s frequency
response would be observed in that region. When a scan
starts at low frequency, the amplitude increases slowly until
it reaches point 1. At this point, the amplitude of the
oscillator jumps rapidly to point 2 and continues from there
when the frequency is increased further. Conversely, when a
scan starts at high frequencies, the amplitude increases with
decreasing frequency until it reaches point 3 where it drops
to point 4. These jumps are an expression of the multiplicity
of the nonlinear differential equation of motion, equation (4).
Thus, hysteresis can be observed in a Duffing oscillator when
the forcing F exceeds a certain critical threshold. Below
this critical forcing threshold, the system does not exhibit
hysteresis but only an asymmetry of the resonance curve. This
corresponds to the available amplitudes in the torsional crystals
viscometer with the present instrumentation. Pronounced
hysteresis was observed in this laboratory in a vibrating wire
transducer [31] which has a much lower stiffness than quartz
crystals. It may be possible to observe hysteresis of the
torsionally vibrating crystal at higher forcing amplitudes than
can be applied with the present instrumentation.

The Van der Pol nonlinearity, on the other hand, modifies
the damping of the system with the term α so that it depends
on the displacement of the oscillator. If α < 0, the

damping of the system decreases with increasing displacement.
Conversely, if α > 0 the damping of the system increases
with displacement. As with the Duffing oscillator, if α = 0
the resonance curve is unchanged. However, the frequency-
domain effects of the Van der Pol nonlinearity are different
from those of the Duffing nonlinearity. The most pronounced
example of this is the ‘relaxation oscillator’ which exhibits
self-excited oscillations [18] for certain values of α < 0. In
the case of small α > 0, the resonance curve is flattened
with a resultant higher apparent bandwidth. In addition,
the resonant frequency shifts very slightly higher. Thus,
the Van der Pol oscillator is evidenced by a decrease in
the maximum conductance and a pronounced increase in
measured damping. Both of these effects occur in the
resonance scans of the torsional crystal oscillator. Also, the
increase in damping with amplitude is obvious in the free-
decay measurements (see figure 9). The crystal exhibits
a linear response up to a displacement corresponding to
an induced voltage of 200 mV in vacuo, after which the
apparent damping increases substantially. This characteristic
of the torsionally vibrating crystal is commensurate with a
displacement-dependent damping according to the Van der Pol
nonlinearity.

In summary, the nonlinear behaviour of the torsional
crystal viscometer seems to be described by a combination of
the Duffing and of the Van der Pol nonlinearity. The Duffing
effect (γ < 0) is apparent in the pronounced asymmetry of
the resonance curve, the shift in resonant frequency and the
possible hysteresis. The Van der Pol characteristic is evidenced
by the increase in damping and decrease in conductance at
higher displacements (α > 0).

6. Conclusions and perspectives

This work presents substantial progress toward accurate
free-decay measurements in the torsional crystal viscometer.
This method has several advantages compared with
conventional resonance scans. It allows for measurements
at smaller torsional displacements which ensures that the
deduced viscosity is independent of the applied equilibrium
perturbation [32]. Applying smaller torsional displacements
is a prerequisite to extend the operating range of the instrument
to routine measurements in gases. Since the amplitude of the
crystal vibration is monitored directly, measurements of the
external damping in fluids can be matched with the correct
internal damping as determined in vacuo. This is particularly
valuable for absolute viscosity measurements. The mutual
validation of time- and frequency-domain measurements
allows for a more complete characterization of the instrument
and testing of its theory of operation [33]. Using these
capabilities it may be possible to develop the torsional crystal
viscometer into a primary instrument for the measurement of
viscosity standards. The measurement range of the free-decay
technique in fluid is currently smaller than that of the forced-
mode technique. However, with improved signal conditioning
and instrumentation this limit can be increased substantially.
The rapid advance of computer technology with regard to
processor speed and available memory increases the feasibility
of free-decay measurements further.
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For the first time, the nonlinear range of operation of
this viscometer type has been explained. The observed
nonlinear effects of the crystal oscillation have been interpreted
in terms of Duffing and Van der Pol oscillators, which
exhibit displacement-dependent stiffness and damping. This
novel insight extends the understanding of torsional crystal
viscometers.

The progression of the torsional crystal viscometer from
a steady-state method (forced mode measurement) to a
transient method (free-decay measurement) is analogous to the
development of hot-wire instruments for thermal conductivity
measurements of fluids. Initially, these were used in a steady-
state mode with a stationary temperature gradient across the
fluid [34]. As data acquisition capabilities increased, it
became possible to monitor the transient temperature rise
of the wire in response to a 1 s heat pulse [35, 36], while
steady-state measurements required equilibration times on
the order of hours. Due to this accelerated measurement
mode, transient hot-wire instruments have become a de facto
standard technique for thermal conductivity measurements of
fluids. Similar advantages may be gained with the free-decay
measurement technique in torsional crystal viscometers. They
appear particularly attractive as an alternative method for the
ubiquitous capillary viscosity measurements in industry.
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