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Abstract
We determined the zero-density viscosity ηAr

0,T and thermal conductivity λAr
0,T

of argon with a standard uncertainty of 0.084% in the temperature range
200 K to 400 K. This uncertainty is dominated by the uncertainty of helium’s
viscosity ηHe

0,T, which we estimate to be 0.080% based upon the difference
between ab initio and experimental values at 298.15 K. Our results may
improve (1) the argon–argon interatomic potential, (2) calculated
boundary-layer corrections for primary acoustic thermometry, and (3)
calibrations of laminar flow meters as well as instruments for
measuring transport properties. At 298.15 K, we determined the
ratio ηAr

0,298/η
He
0,298 = 1.138 00 ± 0.000 13 from measurements of the flow

rate of these gases through a quartz capillary while simultaneously
measuring the pressures at the ends of the capillary. Between 200 K
and 400 K, we used a two-capillary viscometer to determine
ηAr

0,T/ηHe
0,T = 1.211 67 − 0.820 34 exp(−T/123.78 K) with an uncertainty of

0.024%. From ηAr
0,T/ηHe

0,T, we computed ηAr
0,T using the values of ηHe

0,T
calculated ab initio. Finally, we computed the thermal conductivity of argon
from ηAr

0,T and values of the Prandtl number that we computed from
argon–argon interatomic potentials.

1. Introduction

Argon-based, primary acoustic thermometry and acoustic
redeterminations of the universal gas constant require accurate
values of the thermal conductivity λAr

0,T of low-density argon
[1–4]. These needs motivated us to determine λAr

0,T by
combining experimental and theoretical viscosity data for
helium, experimental data for the ratio of the viscosity of argon
to the viscosity of helium, and theoretical values for the Prandtl
number for argon. The uncertainty of λAr

0,T determined by this
method is smaller than the uncertainty of direct measurements
of the thermal conductivity. (The notation uses a superscript
to denote the gas; the first subscript is the pressure, and the
second subscript is the kelvin temperature.)

3 Author to whom any correspondence should be addressed.

We started with a reference value for the viscosity of
helium at zero density and 298 K (ηHe

0,298) deduced from the
best experimental data and the best value calculated ab initio.
As the temperature departs from 298 K, the uncertainty of the
ratio (ηHe

0,T/ηHe
0,298)ab initio, as calculated ab initio, grows more

slowly than the uncertainty of the measurements; therefore, we
used the ab initio values of (ηHe

0,T/ηHe
0,298)ab initio as references at

other temperatures. We obtained the viscosity of argon ηAr
0,T

with the small relative standard uncertainty of 0.084% from
the expression

ηAr
0,T = ηHe

0,298

(
ηHe

0,T

ηHe
0,298

)
ab initio

(
ηAr

0,298

ηHe
0,298

)
R

Ar,He
T,298 . (1)

Equation (1) has four factors: (1) our reference value
ηHe

0,298 for helium’s viscosity, (2) the temperature-dependent
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ratio (ηHe
0,T/ηHe

0,298)ab initio calculated ab initio from quantum
mechanics and statistical mechanics [5, 6], (3) the argon–
helium viscosity ratio ηAr

0,298/η
He
0,298 that we measured at

298.15 K, and (4) our measurements of the temperature-
dependent ratio of viscosity ratios,

R
Ar,He
T ,298 ≡

(
ηAr

0,T

ηHe
0,T

)/(
ηAr

0,298

ηHe
0,298

)
. (2)

We then obtained the thermal conductivity from

λAr
0,T = 5R

2

ηAr
0,T

M PrAr
0,T

. (3)

Equation (3) contains the ideal-gas molar heat capacity of
argon Cp = 5R/2, where R is the universal gas constant,
the molar mass M , and the Prandtl number Pr ≡ ηCp/(λM)

that we calculated from argon–argon interatomic potentials.
The uncertainty of λAr

0,T computed from equation (3) is smaller
than the uncertainty of direct measurements of the thermal
conductivity.

We combined two approaches to measure viscosity ra-
tios. First, we determined the reference ratio ηAr

0,298/η
He
0,298 =

1.138 00 ± 0.000 13 by measuring the flow rate of helium and
argon through single quartz capillaries at 298.15 K while mea-
suring the pressures at the ends of the capillary. Then, we
measured the ratio of viscosity ratios R

Ar,He
T,298 in the tempera-

ture range 200 K < T < 400 K without additional, manual,

Figure 1. Schematic diagram of the two-capillary viscometer. The
impedances Zup and Zdown were coiled nickel capillaries with a
length of 7 m and an inside diameter of 0.8 mm. The variable
impedances Z1 and Z3 were piezoelectric gas leak valves and Z2

was either a leak valve or a mass flow controller.

Table 1. Contributions to the uncertainty of the transport properties of argon.

Relative
Source standard uncertainty Estimator Section

Reference value ηHe
0,T 0.000 80 Inconsistency of ab initio and measured values 2.3

Ab initio ratio ηHe
0,T/ηHe

0,298 0.000 06 Differences among He potentials 2.3
Reference ratio ηAr

0,298/η
He
0,298 0.000 11 Scatter of data; helium slip correction 3.1

Dependence of R
Ar,He
T,298 on De 0.000 17 Extrapolation to zero Dean number 4.3

Scatter in R
Ar,He
T,298 0.000 05 Scatter of pressure difference data Figure 4

Argon viscosity virial 0.000 10 Spread among literature measurements 4.2
Argon Prandtl number 0.000 04 Differences among argon potentials 6

Root sum of squares 0.000 84

flow-rate measurements by using the automated, two-capillary
viscometer sketched in figure 1. The upstream capillary was
thermostatted at 298.15 K; the downstream capillary was ther-
mostatted at test temperatures T . We alternately flowed helium
and argon through the two-capillary viscometer while measur-
ing the pressures at the ends of both capillaries. Combining
the results from the two-capillary viscometer with those from
the single-capillary viscometer produced the argon–helium
viscosity ratio ηAr

0,T/ηHe
0,T with the temperature dependence

ηAr
0,T/ηHe

0,T = 1.211 67 − 0.820 34 exp(−T/123.78 K);
200 K < T < 400 K (4)

and the small relative uncertainty of 0.024%. The rms devia-
tion of the data from equation (4) was 0.005%.

Frequently, gas viscometry has used careful measure-
ments of the viscosity of nitrogen as a standard. In contrast,
we used the viscosity of helium calculated ab initio as a viscos-
ity standard. At zero density, the uncertainty claimed for the
ab initio value [5, 6] is comparable to the uncertainty claimed
for the most accurate measurements [7–10]. As one departs
from the ambient temperature, the uncertainty advantage of
the helium standard grows because measurement uncertainties
grow faster than those of the ab initio values [5].

The recently revised ab initio value at 298.15 K [6]
and the most accurate measured value [10] disagree by
twice their combined uncertainty. We therefore anchored
the ab initio temperature-dependent ratio (ηHe

0,T/ηHe
0,298)ab initio

to the reference value ηHe
0,298 = (19.833 ± 0.016) µPa s that

encompasses both values. The uncertainty of our results
for ηAr

0,T and λAr
0,T is dominated by the uncertainty of the

reference value (see table 1). If more accurate ab initio
calculations reduce the uncertainty of the reference value,
we will recalculate ηAr

0,T and λAr
0,T from the present ratio

measurements with a reduced uncertainty.
We are not aware of any precedent for our use of the

calculated viscosity of helium as a standard for viscosity
ratio measurements. However, there are many precedents for
our viscosity ratio measurements; we cite several. Around
1970, the advantages of measuring viscosity ratios were
widely appreciated and applied to many gases over very wide
temperature ranges [11–16]. For example, Camani [16] used a
four-capillary differential viscometer to measure the difference
between the viscosities of ortho-hydrogen and para-hydrogen
with the remarkable resolution of 0.004%. Today, a group at
Loughborough University and the University of Strathclyde is
using viscosity-ratio measurements to measure the change in
the viscosity of a gas upon the addition of an impurity [17].
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The remainder of this manuscript is organized as follows.
Section 2 outlines the principles of the measurements and
discusses the uncertainty of the viscosity of helium. Section 3
describes the apparatus and the procedures. Section 4
describes the analysis of the two-capillary viscometer data.
Section 5 includes a performance test of the two-capillary
instrument and compares the present viscosity ratio data with
results from the literature. The uncertainties of the present
results are small enough to distinguish among various models
for the argon–argon interatomic potential. In particular, the
present results are in better agreement with the Boyes potential
[18] than with the more frequently cited potential Aziz [19]
generated at about the same time. Section 6 discusses the
small uncertainty of the Prandtl number and the calculation
of the thermal conductivity of argon. In section 7, we show
that our results for ηAr

0,T and λAr
0,T are consistent with a recent,

comprehensive review [20] of the transport properties of argon;
however, the present results have much smaller uncertainties.

2. Principles of the measurements

2.1. The hydrodynamic model

We used the hydrodynamic model developed by Berg [9], who
measured the pressures just upstream (p1) and downstream
(p2) of a coiled capillary while gas flowed through the capillary
at various, accurately measured, molar flow rates ṅ. Berg
applied Poiseuille’s law to a compressible fluid to derive the
equation

ṅ = (p2
1 − p2

2)

ZTη
gas
0,TRT

Cgas(T , p1, p2), (5)

with the definitions

ZT ≡ 16L/(πr4) (6)

and

Cgas(T , p1, p2) ≡
(

1 +
5∑

i=1

c
gas
i

)
fcent(De, r/Rcoil). (7)

Here, r , L, and Rcoil are, respectively, the bore radius,
length, and radius of curvature of the capillary coil, and
ZT is the capillary’s (fluid-independent) impedance at the
temperature T . In equation (7), the five terms c

gas
i are small

corrections to Poiseuille’s law for the flow of an ideal gas
through a straight capillary. They account for (1) the density
virial coefficients Bρ and Cρ and the viscosity virial coefficient
Bη, (2) the slip at the capillary wall, (3) the increase in the
kinetic energy of the gas as it enters the capillary, (4) the
gas expansion along the length of the capillary, and (5) the
radial temperature distribution within the gas resulting from
gas expansion and viscous dissipation. In equation (7), the
function fcent accounts for the centrifugal effect due to coiling
of the capillary. Reference [9] provides explicit forms for the ci

and for fcent. Here, De ≡ (r/Rcoil)
1/2Re is the Dean number;

Re ≡ 2Mṅ/(πrη̄) is the Reynolds number; M is the molar
mass, and η̄ is the viscosity at an average pressure defined by
equation (7) of [9].

Berg tested the understanding of the correction terms
by conducting flow measurements in the ranges: 30 kPa <

p2 < p1 < 300 kPa; 0 < Re < 1200, 0 < De < 66,
and 0 < Kn < 0.002. Here Kn ≡ λ1/2/r is the Knudsen
number, and λ1/2 is the mean free path for the gas molecules
at pressure (p1 + p2)/2. Remarkably, Berg’s result ηHe

0,298 =
(19.842 ± 0.007) µPa s [10] for the viscosity of helium at
298.15 K differed from Hurly and Moldover’s revised ab initio
value ηHe

0,298 = (19.823 ± 0.007) µPa s [6] by only 0.10%,
or twice the combined standard uncertainty. Thus, coiled
capillary flow meters are well understood when the pressure,
the Reynolds number, the Knudsen number and the Dean
number are all within experimentally useful bounds. Even
if the 0.10% difference had been caused solely by an unknown
measurement error, the corresponding error of the present ratio
measurements would be negligible.

2.2. Viscosity ratios

Figure 1 shows the two-capillary viscometer that we used to
measure relative viscosity ratios. We denote the impedance of
the upstream capillary, which was maintained at the reference
temperature 298.15 K, by Zup,298 ≡ 16Lup,298/(πr4

up,298). In
analogy, we denote the impedance of the downstream capillary
at the test temperature T by Zdown,T. We operated the two-
capillary viscometer in two modes that we call (1) the flow-
meter mode and (2) the helium-standard mode.

2.2.1. Flow-meter mode. In the flow-meter mode, the
upstream capillary acted as an uncalibrated but highly
reproducible flow meter. (Calibration requires at least a
single, accurate, flow measurement.) While the argon flows
through both capillaries, p1 and p2 are maintained at constant,
predetermined values by controlling the impedances Z1 and
Z2. Thus, the flow meter maintains a constant, unknown
gas flow rate that is identical through both capillaries. If
the time-averaged molar flow rate 〈ṅ〉 and the impedance
Zdown were known, the downstream capillary could determine
the viscosity at the temperature T using equation (5) and
accurate measurements of p3 and p4. Since 〈ṅ〉 and Zdown are
unknown, we apply equation (5) separately to the upstream and
downstream capillaries and eliminate 〈ṅ〉 to obtain the ‘flow-
meter mode’ working equation:

ηAr
0,T

ηAr
0,298

=
[
(p2

3 − p2
4)

(p2
1 − p2

2)

CAr(T , p3, p4)

CAr(298.15 K, p1, p2)

]

×298.15 K

T

Zup,298

Zdown,298

(
1 + 3

�L(T )

L

)
. (8)

This expression for the viscosity ratio requires two kinds
of auxiliary data: (1) the thermal expansion �L(T )/L of
the downstream capillary between 298.15 K and T and (2)
the impedance ratio Zup,298/Zdown,298. We obtained the
thermal expansion from the literature [21], and we obtained
Zup,298/Zdown,298 by applying equation (8) to data taken while
both capillaries were maintained at 298.15 K.

The flow-meter mode requires that the impedance ratio
Zup,298/Zdown,298 and the calibrations of the pressure gauges
be stable during the intervals (weeks) between calibrations.
Unfortunately, the impedance ratio increased from 1.000 05 to
1.000 44 during an interval of five months, perhaps because
oil or particles accumulated in the upstream capillary. The
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requirements for long term stability are relaxed in the helium-
standard mode of operation, which makes it an attractive
alternative to the flow-meter mode.

2.2.2. Helium-standard mode. In the helium-standard
mode, the impedance ratio Zup,298/Zdown,T is determined when
needed by flowing helium through the instrument just before
or just after the argon flows through the instrument. In effect,
this procedure replaces the assumption of long term stability of
the impedance ratio Zup,298/Zdown,298 with the viscosity ratio
ηHe

0,T/ηHe
0,298. (The uncertainty of ηHe

0,T/ηHe
0,298 is discussed in

section 2.3.2.) We apply equation (8) twice, once to argon and
then to helium, and divide the results to obtain the ‘helium-
standard mode’ working equation:

R
Ar,He
T,298 = (p2

3 − p2
4)

Ar

(p2
1 − p2

2)
Ar

(p2
1 − p2

2)
He

(p2
3 − p2

4)
He

CAr (T , p3, p4)

CHe (T , p3, p4)

×CHe (298.15 K, p1, p2)

CAr (298.15 K, p1, p2)
. (9)

The dimensions of the capillaries appear only in the correction
terms of equation (9); therefore, approximate values of the
dimensions are sufficient.

We used the variable impedances Z1 and Z2 (figure 1)
to maintain p1 and p2 at constant, identical values when both
helium and argon flowed through the two capillaries. Although
the two gases flowed at slightly different rates through the
apparatus, this scheme has the benefit that the (p2

1 −p2
2) terms

drop out of equation (9). We also used the variable impedances
Z2 and Z3 to achieve several different values of p2 and p4; data
taken at several average pressures and at several flow rates
were used to verify that the flow was well described by the
hydrodynamic model. Consequently, the ratio measurements
required several hours at each temperature as the apparatus
stepped through two identical sets of {p2, p4} values, first for
helium and then for argon, or vice-versa.

The uncertainty contributed by the pressure measurements
in the helium-standard mode can be identified by eliminating
the (p2

1 − p2
2) terms from equation (9) and ignoring the

correction terms to obtain an approximate equation:

R
Ar,He
T,298 ≈ (p3 − p4)

Ar(p3 + p4)
Ar

(p3 − p4)He(p3 + p4)He
. (10)

In equation (10), the pressure-difference ratio (p3 −
p4)

Ar/(p3−p4)
He is the major contributor to the uncertainty of

R
Ar,He
T,298 . Increasing the pressure differences will decrease this

contribution, but only if the flow-dependent correction terms
remain small. We reduced the uncertainty in the pressure-
difference ratio by correcting for the relative zero drifts of the
two pairs of transducers monitoring {p1, p2} and {p3,p4}. To
do so, we ‘tared’ the zeros just before and just after every
flow measurement by closing isolation valves (not shown in
figure 1) between the transducers and the viscometer and
opening bypass valves connecting the transducer pairs. The
apparent values of (p3 −p4) and (p1 −p2) in this tare state (at
the average pressures of the measurement) were used to correct
the pressure differences recorded when gas flowed through the
capillaries. Due to partial cancellation within the pressure-
sum ratio (p3 + p4)

Ar/(p3 + p4)
He, the uncertainty of R

Ar,He
T,298 is

smaller than the relative uncertainties of the individual values

/

Figure 2. Accurate determinations of the viscosity of helium in the
limit of zero pressure at 298.15 K. Kestin and Leidenfrost used an
oscillating disc [7], Evers et al used a rotating cylinder [8], and Berg
used a quartz capillary [9, 10]. In 2005, Hurly and Moldover [6]
used the model potential φB to revise the ab initio value obtained in
2000 with the model potential φ00 [5].

of p3 and p4. The uncertainty of (p3 −p4)
Ar/(p3 −p4)

He was
less than 0.01%; it was dominated by the instability (≈2 Pa)
of the uncontrolled pressure p3.

To achieve small uncertainties in (p3−p4)
Ar/(p3−p4)

He,

it was necessary to maintain stable flow-rates ṅ, which, in turn,
required stable temperatures because ṅ varies as (ηT )−1 when
the entrance and exit pressures are fixed. As an example, con-
sider argon, for which ηT ∝ (T /K)1.87. To achieve an insta-
bility as small as 10−4ṅ, a fractional temperature instability of
10−4T/1.87 or less is required. (This corresponds to 11 mK at
200 K.) We achieved temperature stability by immersing each
capillary in its own well-stirred, thermostatted bath.

2.3. Viscosity of helium

Equation (1) requires a reference value for the viscosity of
helium at zero density and 298 K (ηHe

0,298). In this section, we
obtain the reference value and its uncertainty by examining
the best measurements and the best values calculated ab initio.
Equation (1) also requires values of (ηHe

0,T/ηHe
0,298)ab initio. For

this ratio, we use ab initio values instead of measured values
because the uncertainty of the ab initio values grows more
slowly than the uncertainty of measurements as the temperature
departs from 298 K. In the present temperature range, the
fractional uncertainty of (ηHe

0,T/ηHe
0,298)ab initio is smaller than the

fractional uncertainty of (ηHe
0,T)ab initio.

2.3.1. Viscosity of dilute helium at 298.15 K: ηHe
0,298. In this

section we discuss the value and uncertainty of ηHe
0,298, the

viscosity of helium in the limit of zero pressure at 298.15 K.
Figure 2 shows selected primary measurements of ηHe

0,298. In
1959, Kestin and Leidenfrost [7] used an oscillating disc
viscometer to measure the viscosity of helium at 20 ◦C. (The
value in figure 2 is adjusted to 298.15 K.) During the next
40 years, all accurate measurements of helium’s viscosity were
made with viscometers calibrated with respect to the viscosity
values of [7], which had a claimed uncertainty of 0.05%. The
first accurate measurement that was independent of [7] was in
2002 by Evers et al [8], who used a rotating cylinder to obtain
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a relative uncertainty of 0.07%. In 2005, Berg [9, 10] used a
quartz capillary to obtain a relative uncertainty of 0.04%.

Also shown in figure 2 are values of helium’s viscosity
calculated ab initio from quantum mechanics and statistical
mechanics. In the year 2000, Hurly and Moldover [5] tabulated
ab initio values of ηHe

0,T that they had calculated using the
model ϕ00(r) of the He–He interatomic potential φ(r). Their
calculation began with theoretical ‘data’, i.e. values of ϕ(r)

calculated by several research groups at discrete values of r .
The uncertainty of their results came from two sources: (1)
the data from different research groups were inconsistent, and
(2) the functional form used to fit the theoretical data was not
known. To estimate the effects of these sources, Hurly and
Moldover used six model potentials to represent ϕ(r) data at
several levels of approximation. Three potentials (ϕ00, ϕA,
ϕB, in their notation) were fitted to different consistent subsets
among the inconsistent data. Four potentials (ϕA, ϕA+, ϕA−,
ϕSAPT) used different functions to fit a particular subset of the
ab initio data. (The functional forms of ϕA and ϕSAPT differ.
The forms of ϕA, ϕA+ and ϕA− are identical. This form was
used three times, once to fit the data to obtain ϕA, then twice
to obtain ϕA+ and ϕA− by fitting the data plus and minus their
claimed uncertainty bounds.)

We use the upper panel of figure 3 to discuss contribu-
tions to the uncertainty of ab initio values of ηHe

0,T. In the range
200 K < T < 400 K, the values of ηHe

0,T computed from the
potentials (ϕ00, ϕA, ϕB) span a fractional range of approxi-
mately 0.0006; the values computed from the potentials (ϕA,
ϕA+, ϕA−, ϕSAPT) span the fractional range 0.0003. Thus, the
uncertainty from the inconsistent sets of ab initio data is twice
the uncertainty from fitting a particular subset with different
functions that allow for the claimed uncertainty of the data.

Since the year 2000, there has been considerable progress
in the values of ϕ(r) for helium, ab initio. (See, for example,
[22–24].) Some of the new ab initio data replace earlier data
with the effect of greatly reducing the inconsistencies among
the data. Also, a preliminary analysis of the new data indicates
that the true He–He potential is much closer to the model
potential ϕB than to the potential ϕ00 that was believed to be best
in 2000 [6]. However, some uncertainty from fitting the data
with diverse functions remains. Here, we use ϕB to calculate
ηHe

0,T and we estimate that the fractional uncertainty of ηHe
0,T is

0.000 30.
Unfortunately, the revised ab initio value and the

capillary measurement value disagree by twice their combined
uncertainty of 0.05%, and the existence of a significant
unidentified error seems likely. The simplest assumption is that
only one of the values has such an error, so that its correction
would bring it close to the other value. We therefore assign to
the reference value ηHe

0,298 the intermediate value

ηHe
0,298 = (19.833 ± 0.016) µPa s. (11)

The relative standard uncertainty of 0.08% encompasses the
standard uncertainties of the calculated and measured values.
Equation (11) is consistent also with the oscillating disc
measurement [7] and the rotating cylinder measurement [8].

2.3.2. Viscosity ratio of helium: ηHe
0,T/ηHe

0,298. In the helium-
standard mode, we used the ab initio viscosity ratio ηHe

0,T/ηHe
0,298

to remove the requirement of knowing the impedance ratio

Figure 3. Top: an enlargement of figure 3 from [5]. The curves
display the ratio of the viscosity computed using various He–He
potentials to the viscosity computed from ϕ00 in [5]. Bottom: ratio
of ratios. The temperature-dependent viscosity-ratio ηHe

0,T/ηHe
0,298

computed from various potentials is divided by the same ratio
computed using ϕ00.

Zup,298/Zdown,T. In this section we use the lower panel
of figure 3 to estimate the uncertainty of ηHe

0,T/ηHe
0,298 in the

temperature range 200 K < T < 400 K. The fractional
uncertainty of the ratio ηHe

0,T/ηHe
0,298 is much smaller than the

fractional uncertainty of ηHe
0,T itself because the values of ηHe

0,T
at nearby temperatures are highly correlated. The lower panel
of figure 3 shows that the ratios ηHe

0,T/ηHe
0,298 computed from the

six potentials span a fractional range of only 0.000 09 and that
the span of different fits to the same ab intio data (ϕA, ϕA+,
ϕA−, ϕSAPT) is 0.000 06, or less. Thus, we estimate that the
relative uncertainty of ηHe

0,T/ηHe
0,298, as computed from ϕB, is

0.000 06 or less in the range 200 K < T < 400 K.

3. Apparatus, materials and procedures

3.1. Reference, single capillary measurements at 298.15 K

The measurements of the ratios R
Ar,He
T,298 made with the two-

capillary viscometer require at least one reference datum to
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convert the ratios to values of ηAr
0,T/ηHe

0,T. We used the reference
datum

ηAr
0,298/η

He
0,298 = 1.138 00 ± 0.000 13. (12)

Equation (12) is the average of two sets of measurements made
at 298.15 K. The first set was made by Berg to determine
the values of ηHe

0,298 and ηAr
0,298. He used a flow meter and

a quartz capillary of accurately known dimensions [9]. His
corrected result is 1.138 07 × (1 ± 0.000 16) [10]. Here,
the relative uncertainty is the sum in quadrature of three
terms: the adjusted relative uncertainties of ηHe

0,298(0.000 10)

and ηAr
0,298(0.000 08) plus a term (0.000 10) that comes from

the momentum accommodation Kslip of helium on the quartz
capillary. The adjustments accounted for the uncertainty
components that were common to both gases. The component
for Kslip was not discussed in [9].

The second set of measurements of ηAr
0,298/η

He
0,298 was

made for this work. It used different thermometers, different
(unthermostatted) pressure transducers, and a different
(unthermostatted) quartz capillary, whose dimensions were
known only approximately. The result was 1.137 93 × (1 ±
0.000 16). The uncertainty in equation (12) was estimated
independent of the individual uncertainties by assuming that
the two results sampled a normal distribution with an unknown
standard deviation. The best estimate of the standard deviation
of that normal distribution is the standard deviation of the two
results multiplied by the factor 1.84 derived from Student’s t

distribution [25, 26].

3.2. Two-capillary viscometer

The two-capillary viscometer comprised two coils of electro-
formed nickel tubing, each with a nominal internal diameter
of 0.762 mm, a length of approximately 7.45 m, and a coil
curvature radius of 0.100 m. (The length and curvature radius
were estimated using an ordinary ruler and tape.) The tubing
was designed for gas chromatography, and the manufacturer
claimed that it had an extremely smooth internal surface.

Each coiled capillary started and finished with a straight
section approximately 10 cm long that terminated at a T-union.
(The side branch of each union led to a pressure transducer.)
The internal bore of the T-unions matched that of the capillary
tube. This matching minimized the disruption of the flow
by the union and allowed us to set the entrance correction
term in equation (5) to zero. The first 20 cm of the tubing
leading from the T-unions to the variable impedances (and to
the pressure transducers) were the same as the tubing used
for the capillaries. Thus, the parabolic flow profile was well
established within the bore before the gas reached the coiled
capillary.

The capillaries were wound 11.5 times around an
aluminium cylinder to form a helix approximately 4 cm
long and clamped in several places to prevent inadvertent
unwinding. The axis of the capillary helix was horizontal.
The straight sections at the ends of the capillary coils were
oriented so that the T-unions were at the same height. An
aluminium base plate mounted in a vertical plane supported
each aluminium cylinder, the T-unions, the 20 cm long straight
sections of tubing, and adapters that connected the nickel
straight sections to stainless steel tubes that led to the pressure
transducers and variable impedances.

Each base plate was immersed in the thermostatted bath.
Approximately 1 m of each stainless steel tube was coiled so
that it was also immersed in the bath. For helium and argon at
flow rates �100 µmol s−1, the characteristic length for thermal
equilibration with the bath was less than 10 cm.

The upstream, reference bath was maintained at 298.15 K.
The design of this 60 L water-filled bath follows that of
the much larger bath described by Wright et al [27]. The
temperature fluctuations and inhomogeneities were less than
±2 mK. The downstream bath was a stainless steel Dewar
similar to the one described by Wilhelm et al [28]. Below
300 K, it was filled with 25 L of ethanol; above 300 K,
it was filled with silicone oil. When this bath was well
above or well below the ambient temperature, the temperature
fluctuations and inhomogeneities were of the order of 0.01 K
as determined by moving a thermometer. The temperature of
each bath was monitored with a long-stem, standard platinum
resistance thermometer. Far from the ambient temperature, the
uncertainty of the tabulated temperatures was approximately
0.01 K.

The pressure transducers measuring p1, p2 and p3 had
a span of 300 kPa. The transducer monitoring p4 had a
span of 150 kPa, and at the start of these measurements the
manufacturer’s calibration was still valid. The manufacturer
claimed an uncertainty of 0.008% of full scale (±12 Pa). We
measured all four pressures with a resolution of 0.16 Pa. An
intercomparison of the four transducers was conducted several
times over the course of six months. A significant change
was found on only one occasion: a −9 Pa shift of p3 that was
removed by taring. Furthermore, over the range of 12 kPa to
150 kPa, the slopes of the four transducers remained consistent
within 4 × 10−5.

Each pair of pressure transducers ({p1, p2} and {p3, p4})
was housed in a thermostatted enclosure similar to the air bath
described by Berg [29]. Each enclosure also housed a bypass
valve that was used to tare the transducer pair. (The valve,
like others used in this apparatus, was pneumatically actuated
and remotely controlled.) The first metre of tubing leading
from each transducer to its respective isolation valve was also
housed in the enclosure.

Voltage-driven piezoelectric gas leak valves were used
as the variable impedances Z1, Z2 and Z3 (see figure 1).
A mass flow controller was used as Z2 for the majority of
the measurements below the ambient temperature. It was
replaced by the piezoelectric valve, which was slightly faster
and allowed a greater dynamic range of flow.

The pressures p1, p2 and p4 were controlled at their set-
points by adjusting the voltage supplied to Z1,Z2 and Z3 by
a multi-channel digital voltage source. The voltages were
updated by a discrete PID algorithm at a rate of approximately
1 Hz. Typically, the set-point for p1 was fixed at 140 kPa
while p2 was stepped through the values 115 kPa, 120 kPa,
125 kPa, and 130 kPa. The resulting flow rates varied between
26 µmol s−1 and 73 µmol s−1. At each flow rate, p4 was
controlled sequentially at one of six different set points within
the range 13 kPa to 75 kPa. At each {p2, p4} combination, the
system was given 20 min to achieve steady-state conditions.
Figure 4 shows the stability of the four pressures for a
helium flow through the two-capillary viscometer when both
capillaries were at 298.15 K.
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/
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Figure 4. Top: time dependence of the pressures during a typical
helium flow. Each curve is plotted relative to the pressure in the
label, which is the mean pressure. The noise in the controlled
pressures, p1, p2 and p4, originated in the transducers and was less
than 0.16 Pa, rms. Bottom: fractional fluctuations of p2

3 − p2
4

generated by noise in the uncontrolled pressure p3. In this example,
the rms fluctuation was 0.000 04 after the flow and the exit pressure
stabilized.

To improve the stability of p1 and p4, gas-filled ballast
volumes of 4 L and 0.5 L were connected just after Z1 and just
before Z3, respectively. A bypass flow circuit was constructed
from 6 mm ID stainless steel tubing so that each end of every
high-impedance element (Z1, Z2, Z3, Zup,298 and Zdown,T)

within the viscometer could be rapidly evacuated. This bypass
flow circuit was used also to flush the entire system with
helium or argon (typically, three times) prior to the start of
a run. After the first gas had been measured at each of the
24 {p2, p4} combinations (four flow rates, six exit pressures),
the viscometer was evacuated and flushed several times with

the second gas, and then the 24 {p2, p4} combinations were
repeated. Each combination was maintained for 20 min and
followed by a 3 min tare, and so a typical run at one temperature
lasted 20 h. Evacuation, gas changing, flushing, flow control,
taring and data acquisition were all automated.

The supplier of the helium stated its purity was 99.9999%
by volume, and that it had a water content of less than 0.2 ppm.
The supplier of the argon stated that its purity was 99.9995%
by volume, with the dominant impurity being nitrogen. The
gas impurity contributes an uncertainty that is an order of
magnitude smaller than the other uncertainties in the present
viscosity ratio measurements.

4. Analysis

The average values of the four pressures over the last 5 min of
each 20 min flow period were converted to difference pressures
(�p34 ≡ p3−p4, �p12 ≡ p1−p2) and mean pressures [p̄12 ≡
(p1 + p2)/2, p̄34 ≡ (p3 + p4)/2]. Each difference pressure
was corrected by the tare value measured at the corresponding
mean pressure. The nominal capillary dimensions were then
used to calculate for every point the ratio

�(T ) ≡ �p34p̄34

�p12p̄12

Cgas(T , p3, p4)

Cgas(T , p1, p2)

= Zdown,T

Zup,298

η
gas
0,T

η
gas
0,298

T

298.15 K
, (13)

which corresponds to the quantity in square brackets in
equation (8). For a given flow rate, adjusting all the values
of p̄34 by +9 Pa decreased the scatter of the six values of �(T )

corresponding to the six different exit pressures. Since this
adjustment was within the experimental pressure uncertainty,
it was applied to all the data reported here. (Adjusting p̄12

within its uncertainty did not have a similar effect.)

4.1. Calibration for flow-meter mode operation

When the temperature of both capillaries was 298.15 K,
equation (13) reduced to �(298) = Zdown,298/Zup,298,
allowing a calibration of the impedance ratio from pressure
measurements. The first calibration used helium and indicated
that Zdown,298/Zup,298 = 0.999 95; thus, the capillaries were
almost identical. To account for their slight difference, we
increased Lup from its nominal value of 7.4520 m by 0.0004 m.
This adjustment had a negligible effect on the value of �(T ); it
was convenient when using equation (8) to interpret the flow-
meter mode data taken at temperatures other than 298.15 K.

Viscosity ratios were measured using the two-capillary
viscometer over a period of eight months. During that period,
six calibration runs, separated by at least several weeks,
were conducted. With one exception, the impedance ratio
Zdown,298/Zup,298 decreased between calibrations. To account
for the decreasing impedance ratio, we decreased the nominal
value of rup following each calibration. Consequently, rup

used in equations (5) and (8) decreased from 0.381 mm to its
minimum value, 0.380 963 mm; this corresponds to a change
of 0.000 38 in the impedance ratio. We speculate that the
gradual decrease in rup resulted from the accumulation of
particles or of an oil film in this capillary although the gas from
the supply cylinders always passed through particulate filters
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before entering the capillaries. The exception to the gradual
decrease in rup occurred after a set of measurements during
which the flow was reversed by interchanging the locations of
the gas supply cylinders and the vacuum pump in figure 1.

The drifting impedance ratio limited the accuracy of data
acquired in the flow-meter mode; however, it did not affect the
data acquired in the helium-standard mode.

4.2. Parameters for the hydrodynamic model

Evaluation of the correction terms c
gas
i required six parameters

for each fluid: the molar mass M , the zero-density viscosity
η

gas
0,T, the density virial coefficient Bρ , the thermal conductivity

λ, the temperature derivative of the zero-density viscosity
dη

gas
0,T/dT , and the viscosity virial coefficient Bη ≡

limρ→0(∂η/∂ρ)T. (We ignored the third density and viscosity
virial coefficients for helium and argon because the densities
in this work were so low.) We calculated the parameters η

gas
0,T,

Bρ , λ and dη
gas
0,T/dT from pair potentials and confirmed that the

uncertainty of these parameters made a negligible contribution
to the uncertainty of the measured viscosity ratios.

The viscosity virial coefficient Bη does make a significant
contribution to the uncertainty budget (table 1); therefore, we
consider it in some detail. The viscosity ratio measurements
spanned a very limited pressure range (typically 43 kPa to
76 kPa); therefore, our results could not determine Bη for argon
and helium. We instead used values deduced from published
data. Since viscosity measurements are often reported as a
function of pressure, we discuss the related quantity b

gas
T ≡

limp→0(∂η/∂p)T/η. The variation among sources in the
literature of b

gas
T is of the order of 10% to 20%, for both helium

and argon.
At 298 K, the values of bAr

T derived from the high-pressure
viscosity data of Gracki et al [30], Evers et al [31], and Wilhelm
and Vogel [32] have the average (7.82 ± 0.03) × 10−9 Pa−1.
The spread among the values of bAr

T deduced using the model
of Rainwater and Friend and its most recent modification
by Vogel et al is wider. Rainwater and Friend [33] report
8.8 × 10−9 Pa−1; Vogel et al [34] report 6.8 × 10−9 Pa−1.
Therefore, we ignored the models and took bAr

T from the
recent η–ρ–p–T correlation by Lemmon and Jacobsen [20],
which takes into account a wide range of experimental data.
We estimated the uncertainty of bAr

T from the consistency
of the experimental references. At our coldest temperature
(203 K), where the viscosity ratio is most sensitive to bAr

T , the
values of bAr

203 derived from references [20, 30–32] lie in the
range (14.2–16.6) × 10−9 Pa−1. The corresponding fractional
uncertainty of ηAr

0,T/ηHe
0,T at 203 K is 0.000 10; it is smaller at

higher temperatures.
At the temperatures used here, bHe

T is an order of
magnitude smaller than bAr

T ; its effect on the viscosity ratio
is correspondingly smaller. At 298 K, the data of Gracki
et al [30] give bHe

298 = −3.4 × 10−10 Pa−1, the value derived
from the 293.15 K data of Evers et al [31] is statistically
indistinguishable from zero, and the Rainwater–Friend models
[33–35] yield values from −3.7 × 10−10 Pa−1 to −4.0 ×
10−10 Pa−1. At 203 K, the data of Gracki et al [30] differ
from the Rainwater–Friend model [33] by only 9×10−10 Pa−1.
We used the data of Gracki et al [30] to estimate bHe

T at all
temperatures; the corresponding uncertainty of ηAr

0,T/ηHe
0,T is

negligible.

In addition to the fluid parameters described above, the
hydrodynamic model contains three constants that are fixed
by theory (Kent, Kexp, Ktherm) and one constant (Kslip) that
describes the degree of momentum accommodation at the
capillary wall [9]. Our data for helium in the quartz capillary
are consistent (independent of pressure) with the value Kslip =
1.18, which is similar to the values found previously [9]. For
argon in the quartz capillary and for both gases in the nickel
capillary, our results are consistent with Kslip = 1.00, which
corresponds to complete momentum accommodation. For
the two-capillary viscometer, we set Kent = 0 because the
matching bores of the T-unions and capillaries suppressed the
kinetic energy change of gas entering the impedances. The
values of Kexp and Ktherm were the same as those used by Berg.

Four of the correction terms c
gas
i required an estimate

of the Reynolds number. The initial values for these
corrections were based on an estimate of ṅ0, the molar flow-
rate obtained without applying corrections to Poiseuille’s law
for a compressible fluid. Obtaining the final values required
only three iterations of the model.

4.3. Capillary ellipticity and extrapolation to De = 0

Here, we consider the interaction of centrifugal effects
(characterized by the Dean number) and the possibility that
the nickel capillaries had a slightly elliptical cross section.
For a given flow rate, the Reynolds and Dean numbers in the
downstream capillary increased as the temperature decreased
because of the decreasing gas viscosity. For helium, the
maximum Dean number was 1.95 (corresponding to Re = 32);
for the more dense argon, the maximum Dean number was
16.4 (corresponding to Re = 265). The hydrodynamic model
extends to Dean numbers well in excess of 16 if the capillary
bore is sufficiently circular and uniform [9]. In practice,
the quartz capillaries met this criterion; however, the nickel
capillaries did not.

We assumed that the capillary bore had a slightly elliptical
cross section. From Srivastava’s [36] analysis of this situation,
we derived the lowest order correction to the centrifugal
function fcent.

fcent(De, r/Rcoil, ε)

fcent(De, r/Rcoil, 0)
≈ 1 + Kε De4. (14)

In equation (14), K is a constant given by the theory and
ε ≡ 1 − b/a is the flatness of an ellipse with (unknown)
semi-radii a and b (see figure 6 of [9]). Equation (14) asserts
that the apparent flow ratio ṅup,298/ṅdown,T (calculated from the
measured pressures and the nominal capillary dimensions) is a
linear function of De4. Figure 5 shows that our data at 203 K,
where the Dean number is largest, are indeed consistent with
this assertion.

Our measured values of R
Ar,He
T,298 were obtained by

evaluating �(T ) for each gas in the limit De → 0. Two
extrapolation functions were tested. The first was a linear
function of De that made no physical assumption. The second
was a polynomial based on equation (14) that comprised a
constant plus a term quartic in De; it assumed that deviations
of �(T ) were due to an elliptical cross section of the capillary.
In cases where the Dean number was less than 11 (argon at
T > 298 K and helium at all T ), the difference between
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Figure 5. Apparent flow-rate ratio at 203 K (computed from the
measured pressures and nominal capillary dimensions using
equation (5)) as a function of De4. The dashed line is a fit to the
argon data.

the quartic fit and the linear fit was negligible (<0.0001).
However, the difference was significant when the Dean number
was larger. We investigated further by repeating the argon
measurements at smaller De values near 212 K and 248 K.
The original set had used De < 16; the repeated set, made
several months later, used De < 7. As might be expected from
figure 5, the quartic fit gave more consistent results: the values
of R

Ar,He
T,298 determined by quartic extrapolation differed by no

more than 0.000 13 between sets, whereas linear extrapolation
led to differences as large as 0.000 59. Therefore, we evaluated
�(T ) in the limit De → 0 at all temperatures by using the
quartic function for argon.

We measured R
Ar,He
298,298 ≡ 1 on five occasions and found

the average to be (0.999 98 ± 0.000 04) when we extrapolated
with the linear function, compared to (0.999 83 ± 0.000 04)
with the quartic function. We are unable to explain this small
inconsistency and, therefore, we estimate that the contribution
to the uncertainty of ηAr

0,T/ηHe
0,T from extrapolating to De = 0

is less than or equal to 0.000 17, despite having some evidence
that the uncertainty is smaller at temperatures higher and lower
than 298.15 K.

The measurements of the ratio of viscosity ratios have the
empirical temperature dependence

R
Ar,He
T,298 = 1.064 65 − 0.720 78 exp(−T/123.78 K);

200 K < T < 400 K. (15)

5. Results

5.1. Performance test: helium in flow-meter mode

Figure 6 compares our data for the viscosity ratio ηHe
0,T/ηHe

0,298
with the ratios calculated ab initio from the potential ϕB [6].
The data were obtained using the two-capillary viscometer
in the flow-meter mode and they were analysed using
equation (8). Thus, the comparison is limited by the stability
of the impedance ratio Zup,298/Zdown,298 between calibrations
at 298.15 K and by our assumption that the thermal expansion
of the downstream capillary is the same as that measured for
pure nickel by Nix and McNair [21]. In the range 200 K
to 400 K, the viscosity ratio varies from 0.77 to 1.21. The

Figure 6. Comparison of the ratio ηHe
0,T/ηHe

0,298 measured using the
two-capillary viscometer in flow-meter mode (equation (8)) with the
ratio calculated from the ab initio potential ϕB [5, 6] and published
data for the thermal expansion of pure nickel [21]. If the thermal
expansion of the nickel alloy capillaries were 0.9 × 10−6 K−1 larger
than the literature data, the dashed line would become the baseline.
Our results for ηAr

0,T and λAr
0,T use the helium-standard mode

(equation (9)) and do not depend on the thermal expansion data.
Inset: viscosity ratio as a function of temperature.

data depart fractionally from the calculated ratio by, at most,
0.000 45. This small difference is evidence that the two-
capillary viscometer is well understood, even when operated
over a fairly wide temperature range.

In figure 6, the dashed line indicates what would happen
to the baseline if the thermal expansion of the downstream
capillary exceeded the thermal expansion for pure nickel
[21] by 0.9 × 10−6 K−1. The thermal expansion of pure
nickel has an anomalous temperature dependence that peaks
at its ferromagnetic Curie temperature (635 K). The Curie
temperature changes with alloying and is sensitive to heat
treatments; the thermal expansion is correspondingly sensitive.

Table 2 lists two ratios (ηHe
0,T/ηHe

0,298, ηAr
0,T/ηAr

0,298) measured
with the two-capillary apparatus operating in flow-meter mode,
together with their ratio, R

Ar,He
T,298 = (ηAr

0,T/ηHe
0,T)/(ηAr

0,298/η
He
0,298),

which is equivalent to operation in the helium-standard mode.

5.2. Results for viscosity ratios: helium-standard mode

Figure 7 compares our measurements of the viscosity ratio
ηAr

0,T/ηHe
0,T with other measurements and with calculations of the

same ratio that used several argon–argon and helium–helium
potentials. The baseline of figure 7 is equation (4), which fits
the data with the rms deviation of 0.005%. The uncertainty of
our ratio data is 0.024%.

In 1968 and 1969, Clarke and Smith [11,12] published two
remarkable papers that included tabulated experimental values
for ηAr

0,T/η
N2
0,T and ηHe

0,T/η
N2
0,T (as well as ratios for other gases).

Figure 7 shows that their data (except for a single outlier that
is not plotted) fall within 0.17% of our own.

Each smooth curve on figure 7 was computed from one
argon–argon potential and one helium–helium potential. The
solid curve that crosses our data used the potential of Boyes
[18] for argon and ϕB from Hurly and Moldover [5] for helium.
The dot–dash curve substitutes the helium potential ϕ00 for ϕB.
This substitution moves the curve downwards 1.6 times the
standard uncertainty of our data. In contrast, replacing Boyes’
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Table 2. Ratio measurements made with the two-capillary
viscometer. The relative standard uncertainty is 0.024%.

Flow-meter Flow-meter Helium-standard
mode mode mode

T/K ηHe
0,T/ηHe

0,298 ηAr
0,T/ηAr

0,298 R
Ar,He
T,298

202.71 0.769 92 0.711 79 0.924 51
210.75 0.790 17 0.737 50 0.933 35
213.19 0.796 53 0.745 44 0.935 87
223.66 0.822 75 0.778 53 0.946 25
230.29 0.839 07 0.799 22 0.952 51
248.14 0.882 64 0.853 97 0.967 52
248.25 0.882 66 0.854 22 0.967 78
273.15 0.942 05 0.928 24 0.985 33
298.14 1.000 20 1.000 00 0.999 80
298.14 1.000 02 0.999 83 0.999 81
298.15 1.000 00 0.999 89 0.999 89
298.15 0.999 99 0.999 85 0.999 85
298.15 0.999 99 0.999 78 0.999 79
315.33 1.039 06 1.047 60 1.008 22
330.48 1.072 96 1.088 77 1.014 74
335.96 1.085 11 1.103 39 1.016 84
351.08 1.118 53 1.143 54 1.022 36
371.45 1.162 99 1.196 47 1.028 79
391.56 1.206 42 1.247 63 1.034 16
391.57 1.206 42 1.247 66 1.034 18
394.20 1.211 88 1.254 15 1.034 88

Figure 7. Comparison of the ratio ηAr
0,T /ηHe

0,T measured in this work
with the ratio calculated from various argon–argon and
helium–helium potentials. The baseline is equation (4). Our data
agree best with the ratio calculated from Boyes’ [18] potential for
argon and ϕB for helium from [5].

argon potential with that of Aziz [19] or the ab initio argon–
argon potential of Patkowski et al [37] has a much greater
effect. Thus, the present data have the power to discriminate
between sophisticated models of the argon–argon potential.

5.3. Results for the viscosity of argon: helium-standard mode

The third column of table 3 presents values of ηAr
0,T deduced

from our measurements in the helium-standard mode, i.e.
analysed using equation (9). We used the helium-standard
mode because this mode does not rely on the literature value
of nickel’s thermal expansion or upon the stability of the
impedance ratio Zdown,298/Zup,298. In section 7, we compare
our values of ηAr

0,T with the correlation by Lemmon and
Jacobsen [20].

Table 3. Argon’s transport properties at zero density. The relative
standard uncertainty is 0.024% for the viscosity ratio and 0.084%
for the viscosity and thermal conductivity.

T/K ηAr
0,T/ηHe

0,T ηAr
0,T/µPa s λAr

0,T/mW m−1 K−1

202.71 1.052 09 16.075 12.557
210.75 1.062 15 16.660 13.013
213.19 1.065 02 16.835 13.150
223.66 1.076 84 17.581 13.734
230.29 1.083 96 18.050 14.101
248.14 1.101 04 19.284 15.067
248.25 1.101 33 19.294 15.075
273.15 1.121 31 20.962 16.381
298.14 1.137 77 22.577 17.646
298.14 1.137 79 22.577 17.646
298.15 1.137 87 22.579 17.648
298.15 1.137 83 22.578 17.647
298.15 1.137 76 22.577 17.646
315.33 1.147 36 23.656 18.492
330.48 1.154 78 24.586 19.221
335.96 1.157 16 24.916 19.481
351.08 1.163 44 25.821 20.189
371.45 1.170 76 27.012 21.124
391.56 1.176 87 28.160 22.025
391.57 1.176 90 28.161 22.025
394.20 1.177 69 28.312 22.143

6. Thermal conductivity of argon

We require values of the Prandtl number to calculate λAr
0,T using

equation (3). Here, we discuss the source of these values and
we estimate their uncertainty.

Hirshfelder et al [38] provide algorithms for calculating
the transport properties of a gas at zero pressure from
intermolecular potentials. In the lowest order approximation,
the Prandtl number at zero pressure is 2/3 for the monatomic
gases, independent of the intermolecular potential. Higher
approximations yield values for the Prandtl number that have a
weak dependence on the potential, as illustrated by the results
for six potentials in figure 8. The dotted line (hard-sphere
potential) and the dashed curve (Lennard-Jones potential) were
calculated by Viehland et al [39]. (We scaled Viehland et al’s
Lennard-Jones results using ε/kB = 124 K for argon.) The
solid curve represents the values of the Prandtl number that
we calculated from four, more accurate, potentials. They are
(1) the three-parameter potential by Maitland and Smith [40],
(2) the multiparameter potentials developed by Aziz [19],
(3) Boyes’ modification of the Aziz potential to account for
speed-of-sound data [18], and (4) the potential constructed ab
initio by Patkowski et al [37]. In figure 8, the results for these
four potentials are indistinguishable from the solid curve in the
third, fourth and fifth order approximations for the transport
properties. The effects of adding quantum corrections to the
calculation are also too small to be detected on the figure.
A convenient representation of the fifth order result from the
Boyes potential is

Pr = 0.658 155 + 0.210 68(T /K)−1/2 − 1.379 75(T /K)−1,

200 K < T < 400 K. (16)

We estimated that the fractional uncertainty of the Prandtl
number for argon at 200 K is 0.000 04 from the maximum
difference among the four more accurate potentials. The
uncertainty is lower at higher temperatures.
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Figure 8. Prandtl number of argon computed from various model
potentials.

Figure 9. Ratio of measured transport properties of argon to those
calculated from Boyes’ potential [18]. The plotted points (this
work) for the thermal conductivity and viscosity are superimposed
because our values for the Prandtl number (equation (16)) came
from fits to Boyes’ results. The curves represent Lemmon and
Jacobsen’s extensive correlation of experimental data [20].

Table 3 lists the values of the thermal conductivity of argon
at zero pressure. The relative uncertainty of 0.000 84 is the
sum in quadrature of the terms in table 1. In section 7, we
compare our values of λAr

0,T with the correlation by Lemmon
and Jacobsen [20].

7. Discussion

In 2004, Lemmon and Jacobsen (L & J) reviewed and
correlated the extensive experimental data for the viscosity
and the thermal conductivity of argon [20]. Their ηAr

0,T and
λAr

0,T results are available in a user-friendly computer program
[41]. At low densities, L & J graphically compared their
correlation of the viscosity of argon with 47 of 71 primary data
sources. They also compared their correlation of the thermal
conductivity of argon with 47 of 62 primary data sources. Due
to this plethora of primary sources, we use figure 9 to compare
our results to the L & J correlation. Figure 9 uses values
of ηAr

0,T and λAr
0,T computed from Boyes’ potential [18] as a

baseline.

In figure 9, our plotted points for the thermal conductivity
and viscosity are superimposed because our values for λAr

0,T
were calculated using equation (16) for the Prandtl number and
equation (16) is a fit to values of the Prandtl number calculated
from Boyes’ potential. The curves in figure 9 represent the
correlation of L & J. Near 300 K, our viscosity values are 0.2%
smaller than the values from L & J. This difference grows to
0.7% near 200 K. This difference is reasonable considering that
L & J estimated the uncertainty of their viscosity correlation
to be 0.5% at low densities. L & J’s viscosity-deviation
plot (their figure 2) spans ±2%. Near 300 K, our thermal
conductivity values are 0.5% smaller than the values from the L
& J correlation and this difference becomes 0.9% near 200 K.
These differences are consistent with L & J’s estimate that
the uncertainty of the thermal conductivity correlation is 2%
at a low density. L & J’s thermal conductivity deviation plot
(figure 10 of reference [20]) spans ±5%.

The contrast between the L & J correlation (2%
uncertainty of λAr

0,T) and the present results (0.08% uncertainty
of λAr

0,T) suggests that future correlations for the noble gases
anchor λ

gas
0,T to the values obtained by combining viscosity

measurements with the Prandtl number computed from a
model potential.

The remarkable agreement between the present viscosity
ratio measurements and those of Clarke and Smith (figure 7)
leads us to recommend the routine use of viscosity ratio
measurements with helium as a standard to determine the
viscosity of gases at low densities.
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[8] Evers C, Lösch H W and Wagner W 2002 Int. J. Thermophys.

23 1411
[9] Berg R F 2005 Metrologia 42 11

[10] Berg R F 2006 Metrologia 43 183 (Erratum)

Metrologia, 43 (2006) 247–258 257

http://www.bipm.fr/cc/CCT/Allowed/23/CCT_05_02.pdf
http://www.bipm.fr/cc/CCT/Allowed/23/CCT_05_02.pdf


E F May et al

[11] Clarke A G and Smith E B 1969 J. Chem. Phys. 51
4156

[12] Clarke A G and Smith E B 1968 J. Chem. Phys. 48
3988

[13] Dawe R A and Smith E B 1969 J. Chem. Phys. 52 693
[14] Guevara F A, McInteer B B and Wageman W E 1969 Phys.

Fluids 12 2493
[15] Gough W W, Matthews G P and Smith E B 1976 J. Chem. Soc.

Faraday Trans. I 72 645
[16] Camani M 1970 Helv. Phys. Acta 44 437
[17] Russell P A, Buffham B A, Mason G, Richardson D J and

Heslop M J 2004 Fluid Phase Equilib. 215 195
Russell P A, Buffham B A, Mason G and Heslop M J 2005

Chem. Eng. Sci. 60 2943
[18] Boyes S J 1994 Chem. Phys. Lett. 221 467
[19] Aziz R A 1993 J. Chem. Phys. 99 4518
[20] Lemmon E W and Jacobsen R T 2004 Int. J. Thermophys. 25

21
[21] Nix F C and MacNair D 1941 Phys. Rev. 60 597
[22] Cencek W, Jeziorska M, Bukowski R, Jaszunski M, Jeziorski B

and Szalewicz K 2004 J. Phys. Chem. A 108 3211
[23] Gdanitz R J 2001 Mol. Phys. 99 923
[24] Komasa J J 2001 Chem. Phys. 115 158
[25] Zwillinger D (ed) 1996 Standard Mathematical Tables and

Formulae (Boca Raton, FL: CRC Press) section 7.8.1.2
[26] Taylor B N and Kuyatt C E 1994 Guidelines for evaluating

and expressing the uncertainty of NIST measurement results
NIST Technical Note 1297

[27] Wright J D, Johnson A N and Moldover M R 2003 J. Res.
Natl. Inst. Stand. Technol. 108 21

[28] Wilhelm J, Gillis K A, Mehl J B and Moldover M R 2000 Int.
J. Thermophys. 21 983

[29] Berg R F 2004 Rev. Sci. Instrum. 75 772–9
[30] Gracki J A, Flynn G P and Ross J 1969 J. Chem. Phys.

51 3856
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