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Relaxation Effects in Small
Critical Nozzles
We computed the flow of four gases (He, N2, CO2, and SF6) through a critical flow
venturi (CFV) by augmenting traditional computational fluid dynamics (CFD) with a rate
equation that accounts for �relax, a species-dependent relaxation time that characterizes
the equilibration of the vibrational degrees of freedom with the translational and rota-
tional degrees of freedom. Conventional CFD (�relax=0) underpredicts the flow through
small CFVs (throat diameter d=0.593 mm) by up to 2.3% for CO2 and by up to 1.2% for
SF6. When we used values of �relax from the acoustics literature, the augmented CFD
underpredicted the flow for SF6 by only 0.3%, in the worst case. The augmented predic-
tions for CO2 were within the scatter of previously published experimental data (±0.1%).
As expected, both conventional and augmented CFD agree with experiments for He and
N2. Thus, augmented CFD enables one to calibrate a small CFV with one gas (e.g., N2)
and to use these results as a flow standard with other gases (e.g., CO2) for which reliable
values of �relax and the relaxing heat capacity are available. �DOI: 10.1115/1.2137346�
1 Introduction
Critical flow ventruis �CFVs�, also called critical nozzles, have

been used for decades as secondary standards for measuring large
gas flows because they are passive, extraordinarily stable, and
easy to use �1,2�. In an effort to exploit these desirable qualities at
the lower flow ranges encountered in semiconductor processing
�10 to 300 standard1 cm3 s−1�, we used computational fluid dy-
namics �CFD� to predict the flow through a small, well-
characterized CFV �nominal throat diameter d=0.593 mm�.2 In
Fig. 1, we compare our CFD results with previously published
measurements for four gases �3�. The variables used for this com-
parison are those conventionally used to describe CFVs. Thus, the
ordinate is the discharge coefficient Cd� ṁ / ṁi, where ṁ is actual
mass flow and ṁi is the mass flow calculated using an idealized
one-dimensional, inviscid model. The abscissa is the inverse
square root of the Reynolds number: Re=4ṁi /�d�o where �o is
the viscosity evaluated upstream of the CFV at stagnation condi-
tions. As shown in Fig. 1, the present CFD model predicts the
mass flow through the small CFV for all four gases to within
±0.31% for flow rates spanning at least a factor of 4 for each gas.
Previously existing CFD models and analytical predictions �4–11�
account for several species-dependent effects �virial coefficients
and temperature-dependent heat capacity� and for boundary layers
and curvature of the sonic line. In order to obtain good agreement
with the measurements for CO2 and SF6, we had to augment
existing equilibrium CFD models to account for �relax, the species-
dependent relaxation time that characterizes the equilibration of
the vibrational degrees of freedom with the translational and ro-
tational degrees of freedom. The relaxation time must be com-
pared to �transit, the average time required for a fluid element of
fixed mass to move from the CFV inlet to the CFV throat. For any
ISO standardized CFV geometry �12� �Fig. 2�, the approximate
transit time is �transit�10d /c where d is the diameter of the throat
and c is the speed of sound in the gas at the CFV throat. Thus,
small CFVs, such as the one considered here for use at low flow
rates, have short transit times and can encounter larger values of
the ratio �=�relax/�transit. Conventional CFD and analytical theo-

1Standard reference conditions are at 293.15 K and 101.325 kPa.
2The measured value of the throat diameter was adjusted by less than one micron

by matching the experimental Cd data to the computed results for N2.
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ries for CFVs assume �relax=0. Such theories agree with the
present results for N2 and He within their scatter �0.1%, root mean
square�; however, as shown in the lower panel of Fig. 1, conven-
tional theories ��relax=0� underpredict the flow through this small
CFV by up to 2.3% for CO2 and up to 1.2% for SF6. The aug-
mented CFD model provides better understanding of how gas spe-
cies effects influence the discharge coefficient for both CO2 and
SF6 in small CFVs. The results help to quantify the level of cor-
rection needed when a CFV is calibrated using a standard
gas �e.g., N2 or air, Ar, etc.� where �relax=0, but applied to other
gases �e.g., CO2 or SF6� where vibrational relaxation effects are
prevalent.

Our CFD model characterizes the vibrational degrees of free-
dom within each fluid element by its energy �vib�Tvib�, where Tvib
is the vibrational temperature. As the gas flows through the CFV,
the temperature of the external modes, Text, drops quickly while
Tvib lags behind for molecules where � is close to or greater than
unity. �Here, we follow Bhatia �13� who called the translational
and rotational degrees of freedom “external modes.”� To account
for the lag, our CFD model couples the Navier-Stokes equations
to a local relaxation equation that contains two species-dependent
parameters. One is �vib�Tvib� which is obtained from spectroscopy
�13,14� and the second is �relax which is obtained from ultrasonic
absorption and dispersion data �15,16�. The CFD flow field is
determined by solving the coupled equations simultaneously.

Our results show that relaxation effects must be considered
whenever small CFVs are used for slowly relaxing gases over
temperatures ranges for which the vibrational states are signifi-
cantly populated. Both CO2 and SF6 meet these conditions; how-
ever, N2 does not because, at ambient temperature, nearly all N2
molecules are in their lowest vibrational state.

2 CFV Geometry and Principle of Operation

2.1 CFV Geometry. Figure 2 shows the contour of an ISO
toroidal throat CFV that was used in this study. It consists of a
circular arc of radius Rc=2d that merges smoothly into a conical
section with a vertex half-angle of �=3°.

2.2 Baseline Mass Flow Model. For any CFV, the ratio of the
downstream pressure to upstream pressure is maintained so that
the gas velocity near the CFV throat reaches sonic velocity. This
condition is commonly referred to as choking the CFV. The larg-
est pressure ratio that just chokes the CFV is called the choking

pressure ratio, and CFVs must be operated at or below this thresh-
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old. For choked conditions, a long standing baseline mass flow
model has been developed that is capable of predicting the actual
mass flow to within 10% or better, depending on Reynolds num-
ber. This model is based on the following three assumptions: �1�
the flow field is one-dimensional, �2� the flow field is inviscid, and
�3� the gas behaves ideally and has constant heat capacities.
Herein, these assumptions are collectively called the baseline
CFV assumption. Several engineering texts �17–19� use this as-
sumption to derive a baseline mass flow

ṁi =
PoA*Cs

i

�RTo

�1�

where Po is the upstream stagnation pressure, To is the upstream
stagnation temperature, A*=�d2 /4 is the CFV throat area, R is the
gas constant for a given species �the universal gas constant di-
vided by the molecular weight�, and Cs

i is the ideal critical flow
function

Fig. 1 Comparison of experimental calibration data of four
gases with equilibrium „open symbols in „b…… and nonequilib-
rium CFD data „closed symbols… over a Reynolds number
range from 2000 to 40,000

Fig. 2 Critical nozzle used in this study. The diameter of the

throat was d=0.593 mm.
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Cs
i = ���� + 1

2
	�1+�/2�1−���

�2�

where the superscript “i” is added to denote the gas is ideal and
�=CP /CV is the ratio of the constant-pressure specific heat to the
constant-volume specific heat.

2.3 Experimental Calibration. In CFV applications, none of
the three assumptions used to derive the baseline mass flow are
perfectly satisfied, and consequently the actual CFV mass flow
does not equal ṁi. However, the baseline mass flow plays a vital
role in CFV calibrations, being used as the normalizing parameter
in the definition of the discharge coefficient

Cd �
ṁ

mi
=

ṁ�RTo

PoA*Cs
i �3�

where ṁ is the experimentally measured mass flow. Calibration
curves typically plot the discharge coefficient versus a function of
the Reynolds number

Re =
4ṁi

�d�o
�4�

where �o is the molecular viscosity evaluated at the stagnation
conditions.

The Cd values resulting from experimental calibration curves
are most reliable when they are applied using the same conditions
�i.e., gas species, stagnation conditions, ambient temperature, inlet
velocity profile, beta ratio, etc.� for which the CFV was calibrated.
This paper focuses on how species effects impact the discharge
coefficient when the calibration and application gas differ and one
or both of these gases experiences vibrational relaxation. It is
important to understand this phenomenon because this physical
mechanism is not captured by the standard Reynolds number pa-
rameterization. In a similar manner, species effects attributed to
real gas behavior �i.e., virial effects� also result in uncoupling
between the discharge coefficient and Reynolds number. While
the physical mechanisms differ, we introduce linear CFV theory
and use it to show that the methodology used to account for real
gas behavior can also be applied to correct for vibrational relax-
ation phenomenon.

In CFV flows, real gas behavior is taken into account by using
the real gas critical flow function, Cs

r, in the place of the ideal
critical flow function, Cs

i , in Eq. �3�. When real gas behavior is
accounted for in this way, the corresponding discharge coefficient
depends predominantly on Reynolds number.3 In a similar man-
ner, we introduce an effective critical flow function, Cs

eff, to correct
for vibrational relaxation effects. The effectiveness of this correc-
tion parameter, like the correction for real gas behavior, depends
on vibrational relaxation phenomena being uncoupled from the
other higher order effects �i.e., boundary layer development, the
shape of the sonic line, and virial effects�. Higher order CFV
models, which correct the baseline mass flow model, can be used
to justify the use of this correction factor.

2.4 Higher Order CFV Models. Higher order CFV models
improve upon the baseline mass flow model by eliminating the
three assumptions used to derive ṁi. These higher order models
are based on solutions of the Navier-Stokes equations that govern
the fluid dynamics of conventional CFV flows. Because of the
complexity of the Navier-Stokes equations, no analytical solutions
have been found when all three of the baseline CFV assumptions
are eliminated simultaneously. Instead, researchers have found
three different solutions by removing only one of the three base-
line CFV assumptions while enforcing the other two. These three
solutions include �1� a solution to account for the boundary layer

3Even after correcting for real gas behavior the discharge coefficient has a weak

dependence on � that diminishes with increasing Reynolds number.
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development along the CFV wall �6–8�, �2� an inviscid axisym-
metric solution to account for the curvature of the sonic line at the
CFV throat �4�, and �3� a solution to account for real gas behavior
�20–24�. We briefly discuss each of these three solutions.

In the late 1960s and early 1970s both Tang �6,7� and Geropp
�8� independently developed models predicting how the discharge
coefficient is affected by boundary layer development along the
CFV wall. The viscous discharge coefficient developed by these
researchers

Cd1
= f1�Re,�,�� �5�

is denoted by the subscript “1” and is a function of the Reynolds
number, the specific heat ratio, and the CFV geometry which is
accounted for via the curvature parameter �=d /2rc where rc is
the throat radius of curvature.

The second model, developed by Hall in 1962, predicts the
effects of sonic line curvature on the discharge coefficient. Hall
eliminated the one-dimensional assumption by considering the
flow to be axisymmetric, but he retained the assumptions that the
fluid behaves as a perfect gas and the flow is inviscid. The axi-
symmetric inviscid discharge coefficient

Cd2
= f2��,�� �6�

is denoted by the subscript “2” and is a function of the specific
heat ratio and the curvature parameter. The third model was de-
veloped by Johnson �20–24� who included real gas behavior, but
assumed that the flow was inviscid and one-dimensional. This
solution requires an accurate thermodynamic database and is typi-
cally implemented numerically as described in Refs. �20–24�. For
convenience, Johnson expressed the numerically calculated mass
flow in the same format as the baseline model

ṁ3 =
PoA*Cs

r

�RTo

�7�

and lumped all of the real gas effects into the parameter Cs
r, which

replaces the ideal critical flow function. The real discharge coef-
ficient is denoted by the subscript “3” and is defined as the ratio of
ṁ3 and the baseline mass flow

Cd3
�

ṁ3

ṁi

=
Cs

r

Cs
i �8�

but by Eqs. �1� and �7� is also equal to the ratio of the real gas
critical flow function to the ideal critical flow function. The real
gas critical flow function, which is often called the Johnson coef-
ficient, is generally either tabulated as a function of Po and To or
given as a surface fit of these parameters for various gas species.

2.5 Linear CFV Theory. For simplicity, in this paper, the
three CFV models are referred to as models 1, 2, and 3, respec-
tively. Linear CFV theory is used to combine the individual results
of these three models into a single model capable of predicting the
discharge coefficient for a general CFV flow where none of the
baseline CFV assumptions apply. The results of the linear theory
�11� show that to second-order accuracy the discharge coefficient
equals

Cd = Cd1
Cd2

Cd3
�9�

the product of the Cd’s from models 1, 2, and 3, respectively. This
expression clearly shows how the discharge coefficient depends
on real gas behavior via Cd3

. This dependence can be eliminated
by dividing Eq. �9� by Cd3

, and modifying the discharge coeffi-
cient definition to be

Cd� � Cd/Cd3
= Cd1

Cd2
. �10�

Based on the functionality of Cd1
and Cd2

given in Eqs. �5� and �6�
the modified discharge coefficient is completely free of virial ef-

fects, being a function of Re, �, and �. Physically, Cd� is made
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independent of real gas behavior by using ṁ3 as the normalizing
parameter

Cd� �
ṁ

ṁ3

=
ṁ�RTo

PoA*Cs
r , �11�

which is equivalent to using the real gas critical flow function in
place of the ideal critical flow function. Mathematically, Eq. �11�
is derived by substituting Eqs. �3� and �8� into Eq. �10�.

The definition of the discharge coefficient given in Eq. �11� is
preferred over the definition in Eq. �3� because the real gas be-
havior in Eq. �3� has the undesired quality of possibly permitting
the discharge coefficient to be greater than unity. That is, depend-
ing on the gas and CFV operating conditions, Cd3

could either be
greater than or less than unity. In cases where Cd3

	1, it could
cause the discharge coefficient in Eq. �3� to be greater than unity.
On the other hand, the definition in Eq. �11� is only dependent on
boundary layer effects and curvature of the sonic line as shown in
Eq. �10�. Both of these effects cause the discharge coefficient to
be less than unity. The boundary layer introduces a region of fluid
where both the density and velocity are reduced relative to the
core flow. The density is lower because of the higher temperatures
in the boundary layer attributed to viscous heating as the flow
stagnates at the CFV wall, and the fluid velocity is lower due to
the no-slip condition imposed by the wall. In the axisymmetric
core flow, the curvature of the sonic line stipulates that the Mach
number distribution across the CFV throat cross section is not
uniformly equal to unity, but has values both below and above this
value. Since compressible flow theory requires that the maximum
mass flux coincide with a unity mach number �17�, the predicted
mass flow will be lower than ṁi.

3 Methodology
In this section, we present the Navier-Stokes equations that are

solved in a conventional equilibrium CFD analysis �9�. We then
introduce the extensions required to account for molecular relax-
ation and we conclude with a description of the numerical algo-
rithms that we used.

3.1 Conventional CFD Equations. For Reynolds numbers
below 106, the axisymmetric, steady, compressible flow in a CFV
is governed by the laminar Navier-Stokes equations �9�. The large
favorable pressure gradient in the converging section of the CFV
is believed to relaminarize what would otherwise be a turbulent
flow �25�. Evidence that the flow is laminar is observed in myriads
of calibration data where, as predicted by laminar flow theory, the
discharge coefficient scales linearly with the inverse square root of
the Reynolds number �e.g., Fig. 1�.

In CFD, the four scalar conservation equations, including con-
tinuity, axial and radial momentum, and energy that constitute the
axisymmetric Navier-Stokes equations, are often combined into a
single vector equation as explained in Refs. �26,27�. In the present
numerical investigation the vector form of the Navier-Stokes
equations is expressed as



�Qv

�t
+

�E

�x
+

�F

�r
= H + ��Qv� �12�

where the time derivative is retained to facilitate a time marching
numerical procedure to the desired steady-state solution.4 This
vector representation of the Navier-Stokes equations is developed
by grouping the appropriate variables from the four scalar conser-
vation equations. In particular, those variables having like deriva-
tive operators are combined into vectors. For example, the time
derivative vector, Qc= �� ,�ux ,�ur ,e�T, consists of the temporal
terms from continuity, axial and radial momentum, and energy
equations where e=���+1/2�ux

2+ur
2�� is the sum of the internal

4The time marching approach differs from commonly used iterative approaches

which omit the time derivative term when applied to steady state problems.

Transactions of the ASME



and kinetic energy per unit volume. In Eq. �12� the time derivative
is multiplied by the Jacobian matrix, 
=�Qc /�Qv, so that via the
chain rule of vector calculus �28�, Qc= �� ,�ux ,�ur ,e�T, is replaced
by Qv= �P ,ux ,ur ,T�T. This transformation to the dependent vec-
tor, Qv, conveniently allows thermodynamic properties to be
evaluated explicitly as a function of temperature and pressure in
the numerical procedure.

The remaining vectors, E and F, on the left-hand side of Eq.
�12� are determined in a manner analogously to Qc. These vectors,
commonly called the inviscid flux vectors, are defined as

E = 

�ux

�ux
2 + P

�uxur

�e + P�ux

�, F = 

�ur

�urux

�ur
2 + P

�e + P�ur

� �13�

and account for the convective terms in the mass, momentum, and
energy equations. On the right-hand side of Eq. �12�, the viscous
operator, �, is defined by

� =
�

�x
�Rxx −

�

�x
	 +

�

�x
�Rxr

�

�r
	 +

�

�r
�Rrx

�

�x
	 +

�

�r
�Rrr

�

�r
	

�14�

where the viscous matrices, Rxx, and Rxr are given by

Rxx = 

0 0 0 0

0 4
3� 0 0

0 0 � 0

0 4
3�ux �ur 

� Rxr = 

0 0 0 0

0 0 − 2
3� 0

0 � 0 0

0 �ur − 2
3�ur 0

�
�15�

with Rrx and Rrr having analogous forms. Finally, the vector H
contains the axisymmetric source terms as given in Ref. �27�.

3.2 Thermodynamic and Nonequilibrium Considerations.
We follow conventional CFD for dilute gases by computing the
density from the equation of state, �= P / �RT�1+B���, where the
second virial coefficient B�T� accounts for real gas behavior. Data
for the second virial coefficient and its temperature derivatives
were obtained from Refs. �29,30�. We used the transport property
data as a function temperature �at P=101.325 kPa� from Refs.
�31,32�. In conventional CFD, the equilibrium internal energy
�eq�� ,T� is calculated from a reference state by integrating the
ideal-gas constant-volume specific heat CVi

and subtracting a cor-
rection term to account for real gas effects

�eq��,T� =�
Tref

T

Cvi
dT − R�T2dB

dT
�16�

This formula for �eq�� ,T� is unsatisfactory for the CFV in Fig. 2
for certain gases. For this CFV, �transit�20 �s. Vibrational relax-
ation times range from 0.0001 to 10 �s depending on gas species,
temperature, and density. Thus, the conventional CFD assumption
�=�relax/�transit=0 is a poor approximation for gases with slowly
relaxing vibrational modes, especially near the throat of the CFV
where the acceleration of the gas is largest. The increase in kinetic
energy near the CFV throat is balanced by a decrease in the inter-
nal energy of the translational and rotational modes. This reduces
the temperature Text that characterizes these modes. Because the
vibrational modes relax slowly, the temperature characterizing
them, Tvib, is significantly higher than Text. Consequently, the
value of internal energy is not accurately predicted by Eq. �16�.
To accurately predict the internal energy when Tvib�Text, we

Journal of Fluids Engineering
sum the relevant molecular components including contributions
from translational, rotational, and vibrational modes5

���,Tvib,Text� � �ext��,Text� + �vib�Tvib� �17�

The second term, �vib�Tvib�, accounts for the vibrational modes.
We assume that the vibrational modes are always in internal equi-
librium with each other and we compute �vib�Tvib� by summing
the contribution of each vibrational mode

�vib�Tvib� = 
n=1

N
gnR�n

exp��n/Tvib� − 1
�18�

where gn is the degeneracy for the nth vibrational mode, �n is the
characteristic vibrational temperature for the nth mode, and N is
the number of active vibrational modes �13,14�. The first term in
Eq. �17�, �ext�� ,Text�, is called the external molecular energy,
which consists of both the translational and rotational molecular
components. Both of these components are taken to be fully
equilibrated so that Text equals the thermodynamic temperature T.
The external molecular energy can be defined by subtracting the
equilibrium vibrational energy from the equilibrium internal
energy

�ext��,Text� = �eq��,Text� − �vib�Text� . �19�

In this way �ext�� ,Text� consists only of the translational and ro-
tational components, yet retains real gas behavior that traditional
ideal gas models of the translational and rotational components
omit.

The exchange of energy between vibrational modes and the
combined translational and rotational modes was modeled using
the vibrational rate equation �13�

D�vib�Tvib�
Dt

=
�vib�Text� − �vib�Tvib�

�relax
�20�

where D /Dt is the time derivative following a fluid element of
fixed mass. Bhatia developed this equation for diatomic molecules
having only a single vibrational degree of freedom and therefore
only one relaxation time �13�. However, Eq. �20� works well for
polyatomic molecules at temperatures low enough so that only the
lowest vibrational degree of freedom is active �e.g., CO2 near
ambient temperature�. Often Eq. �20� is used to model relaxation
in sound and shock propagation through polyatomic gases, such as
SF6, where the highest vibrational modes relax quickly so that the
entire heat capacity relaxes at a single relaxation time. However,
for certain polyatomic gases �e.g., C2H6� more than one relaxation
time is needed as discussed by Lambert �33�.

For steady flow along a streamline the vibrational rate equation
is given by

�
d�vib�Tvib�

dz
= �vib�Text� − �vib�Tvib� �21�

where �=�relax/�transit is the ratio of the local relaxation time to
the local flow transit time, and z=s /L is the normalized distance
along a streamline where s is the distance along a streamline
starting at the CFV entrance, and L is the total distance along
the streamline. Here, �transit=L / �u�� is the time that it takes for a
fluid particle to move a distance L along a streamline, and �u�� is
the magnitude of average velocity over that distance. The relax-
ation time changes with the local thermodynamic conditions ac-
cording to the phenomenological Landau and Teller relation �34�

5The contribution of the electronic energy is negligible over the temperature range

of interest.
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�relax =
K1 exp��K2/Text�1/3�

P
�22�

where the constants K1 and K2 were obtained by fitting ultrasonic
relaxation data �15,16�.

3.3 Numerical Solution. The vibrational rate equation and
the Navier-Stokes equations must be solved as a coupled system
of equations. In this work these equations are solved by globally
iterating between the Navier-Stokes equations and the vibrational
rate equation until both are simultaneously satisfied. The iterative
procedure begins by solving the Navier-Stokes equations with a
guessed value of the molecular vibrational energy, �vib�Tvib�. From
the latest solution of the Navier-Stokes, the input parameters, �
=�relax/�transit and �vib�Text�, are determined for the vibrational rate
equation. Next, the vibrational rate equation is integrated along
streamlines to determine the updated vibrational energy, �vib�Tvib�,
which is used to determine the modified internal energy,
��� ,Tvib ,Text�, in the next iteration of the Navier-Stokes equa-
tions. Consequently, the Navier-Stokes solution and the vibra-
tional rate solution are co-dependent.

3.4 Numerical Solution of the Navier-Stokes Equations.
The Navier-Stokes equations are solved in a conventional body-
fitted coordinate system �35� with a physical domain equivalent to
the CFV geometry shown in Fig. 2. Grid-independent solutions
are obtained using a mesh with 201 axial grid points and 101
radial grid points. The axial grid points are uniformly spaced
while the radial grid points are spaced exponentially with a higher
grid density near the CFV wall to resolve the boundary layer.

An alternating-direction implicit �ADI� numerical algorithm
�26,27� is used for integrating the Navier-Stokes equations. Time
advancement is obtained using first-order, backward finite differ-
ences. Both inviscid and viscous time-derivative preconditioning
�36–38� are employed for accelerated convergence rates over a
wide range of Mach numbers and Reynolds numbers. Spatial dis-
cretization is accomplished using third-order up-winded flux dif-
ferences for the convective terms and central differences for the
diffusive terms. The resulting numerical scheme consists of two
tridiagonal matrices that are inverted at each time step using a
block version of the Thomas algorithm �26,27�.

In these computations boundary conditions are specified at the
CFV inlet, at the CFV exit, along the CFV wall, and on the cen-
terline. At the inlet, the stagnation pressure, stagnation tempera-
ture, and flow angle are specified. Characteristic boundary condi-
tions �39� are specified at the supersonic CFV exit. On the CFV
centerline, symmetry boundary conditions are used. The CFV wall
is taken to be adiabatic with a zero normal pressure gradient and a
no-slip velocity boundary condition.

3.5 Numerical Solution of the Vibrational Rate Equation.
In contrast to the Navier-Stokes equations, which are expressed in
a Eulerian sense, the vibrational rate equation is expressed in a
Lagrangian sense. Specifically, the vibrational rate equation de-
scribes the rate of relaxation of the vibrational modes of a gas
particle of fixed identity moving through the flow field. The La-
grangian paths of particles of fixed identity correspond to stream-
lines in the flow field. The trajectories of these streamlines must
be estimated from the Navier-Stokes solution before the vibra-
tional rate equation can be solved. In the coupling procedure be-
tween the two equation sets, the streamlines in the flow field are
computed after each time step using the most recent approxima-
tion to the Navier-Stokes solution. The vibrational rate equation is
then solved on each streamline by a space-marching procedure
that integrates between consecutive points on a streamline.

The space-marching procedure begins at the CFV inlet where
the vibrational energy on each streamline is equal to its equilib-
rium value. To find the value of the vibrational energy, �vib�Tvib�,
at the next adjacent grid point along the stream line, the vibra-

tional rate equation is analytically integrated using variation of
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parameters �40�. In turn, this value of �vib�Tvib� serves as an initial
condition for the next point, and so on, until the complete stream-
line has been updated. This process is then repeated for each
streamline in the flow field.

4 Results

4.1 Validation of CFD Model. The CFD methodology fol-
lowed the procedure used for the experimental calibration, where
the mass flow was controlled by varying the stagnation pressures
in the range 50 kPa� Po�200 kPa while maintaining the stagna-
tion temperature at 298.15 K. For these operating conditions, the
corresponding Reynolds number varied from 1000 to 40,000 for
the small throat ISO standardized CFV. The CFD results were
verified by comparisons with experimental data for four gases
including He, N2, SF6, and CO2.

The experimental data shown in Fig. 1 were obtained by Ja-
pan’s national flow standard, which measures flow using a gravi-
metric timed-collection technique with an uncertainty of 0.1% �3�.
As shown in Fig. 1, the nonequilibrium CFD model predicted the
discharge coefficient to better than 0.3% for all of the gases over
the entire Reynolds number range. In agreement with experimen-
tal results, the nonequilibrium CFD model predicted larger Cd
values for SF6 and CO2—gases affected by relaxation. As ex-
pected, the nonequilibrium CFD model correctly predicted Cd for
He and N2, gases that are not influenced by vibrational non-
equilibrium.

4.2 Increase in Cd due to Vibrational Nonequilibrium
Flow. When slowly relaxing gases are used in small CFVs, the
measured mass flow exceeds the predicted value given by models
that assume �relax=0. Indeed, the discharge coefficient as defined
in Eq. �3� or �11� may even be greater than unity. To understand
this phenomenon, it is helpful to consider the limiting cases for
the ratio �=�relax/�transit. The limit �→0 is the case of equilib-
rium flow; the limit �→� is “frozen” flow in which energy in
vibrational modes remains constant. In both limiting cases, the gas
dynamic equations are uncoupled from the vibrational rate
equation.

In the limit of frozen flow, relaxation does not occur or, equiva-
lently �vib�Tvib�=�vib�To�=const throughout the flow field. Be-
cause �vib�To� is constant, the frozen flow heat capacity of the
vibrational degrees of freedom is zero �CVvib

=0�. Consequently,
the specific heat ratio for frozen flow, �fr, is larger than the equi-
librium value, �eq. The ideal gas model can be used to demon-
strate this fact. For an ideal gas, the specific heat ratio is express-
ible in terms of the translational, rotational, and vibrational heat
capacities �18�

�ideal = 1 +
R

Cvtrans
+ Cvrot

+ Cvvib

. �23�

where �fr is calculated by setting CVvib
=0. For diatomic or poly-

atomic gases, having a least one active vibrational mode, CVvib
	0 so that �fr	�eq.

The increased value of the specific heat ratio in the case of
frozen flow results in a higher sound speed in the gas than would
exist for equilibrium flow. In addition, as the gas expands and
accelerates through the CFV it cools to a lower temperature in the
case of frozen flow than it would for equilibrium flow. This lower
temperature subsequently results in a higher density. Both the
higher speed of sound and the higher density, in the case of frozen
flow, increase the mass flow through the CFV as shown by com-
bining Eqs. �1� and �2� using the larger frozen flow specific heat
ratio in place of normal value of �. Finally, in the intermediate
case of vibrational relaxation, previous CFD results have shown
that the mass flow is increased above the equilibrium value, but is
less than the frozen flow value �10�.

When vibrational relaxation is present, the discharge coefficient

as defined by either Eq. �3� or �11� is higher than would be pre-
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dicted by conventional equilibrium models. The larger discharge
coefficient results because the normalizing parameter ṁi or ṁ3
does not account for increased mass flow attributed to vibrational
relaxation. Moreover, these definitions allow values of the dis-
charge coefficient that are greater than unity �11�. To avoid this
nonphysical situation,6 the discharge coefficient should be defined
using a normalizing parameter that accounts for vibrational relax-
ation effects.

4.3 Generalizing the Critical Flow Function to Account for
Vibrational Relaxation. Vibrational relaxation can be accounted
for by generalizing the critical flow function, which itself is a
generalization of the discharge coefficient. Based on linear CFV
theory it can be shown that an effective critical flow function can
be defined as

Cs
eff � Cs

r�Cd
vib

Cd
eq 	 �24�

where Cd
vib is the discharge coefficient computed with the present

vibrational relaxation flow model, and Cd
eq is the discharge coef-

ficient computed with the equilibrium flow model.
Figure 3 shows the effective critical flow function for both CO2

and for SF6 gases as a function of �*�To , Po�=�relax
* /�transit

* where
�relax

* is evaluated at the throat conditions using Eq. �22� and
�transit

* =d /c* is the time required for a gas particle to travel one
CFV throat diameter at the speed of sound, c*=��RT*. The effec-
tive critical flow function defined in this way is valid for an ISO
standard CFV geometry for To near room temperature. For a given
gas, Cs

eff depends not only on �*, but also on Cvib/Cv= ��fr

−�eq� / ��fr−1�, the ratio of the vibrational specific heat to the total
constant-volume specific heat. This ratio, which gives an indica-
tion of the number of active vibrational modes, is strongly depen-
dent on temperature so that Fig. 3 is only valid for To near room
temperature.

The effective critical flow function defines an effective specific
heat ratio according to the relationship

Cs
eff = ��eff��eff + 1

2
	�1+�eff�/�1−�eff�

. �25�

For both gases CO2 and SF6 the effective specific heat ratio lies
between the equilibrium and frozen flow limit and can be used to
assess the degree of vibrational relaxation.

By using Cs
eff in the expression for the ideal theoretical mass

flow given in Eq. �1�, the generalized discharge coefficient ac-

6Greater than unity Cd values are sometimes caused by inaccurate values of the
CFV throat diameter. This is especially true for small-sized CFVs where the throat

Fig. 3 Effective critical flow function versus
throat for CO2 „left… and SF6 „right…
diameter is more difficult to measure.

Journal of Fluids Engineering
counts for vibrational relaxation. The resulting Cd curves for CO2
and SF6 will then agree with analytical Cd predictions, having Cd
values that are less than unity and that scale with the Reynolds
number and the specific heat ratio.

Conclusions
A model for flow through CFVs that incorporates the influence

of the relaxation time of vibrational degrees of freedom has been
presented. The model agrees with experimental measurements of
the discharge coefficient for four gas species �including CO2 and
SF6� within 0.31% whereas prior models differed from experi-
ments by as much as 2.3%. The new model couples nonequilib-
rium thermodynamics with the equations of flow. The pertinent
quantities are the energy of vibrational modes and the ratio of the
vibrational relaxation time to the transit time for the gas to move
from the CFV entrance to its throat. The nonequilibrium phenom-
ena causes an increase in mass flow through the CFV that can be
explained by the limiting cases of “frozen” and equilibrium flow.
Linear CFV theory is introduced and used to define the appropri-
ate form of the effective critical flow function necessary to cancel
the effects of vibrational relaxation. The effective values of the
specific heat ratio and the critical flow function, presented herein,
allow a user to use calibration data performed with N2 to calculate
the flow of CO2 or SF6 through a CFV without utilizing the com-
putational model.
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