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ABSTRACT
On-road autonomous vehicle navigation requires real-time
motion planning in the presence of static and moving ob-
jects. Based on sensed data of the environment and the
current traffic situation, an autonomous vehicle has to plan
a path by predicting the future location of objects of in-
terest. In this context, an object of interest is a moving
or stationary object in the environment that has a reason-
able probability of intersecting the path of the autonomous
vehicle within a predetermined time frame. This paper in-
vestigates the identification of objects of interest within the
PRIDE (PRediction In Dynamic Environments) framework.
PRIDE is a multi-resolutional, hierarchical framework that
predicts the future location of moving objects for the pur-
poses of path planning and collision avoidance for an au-
tonomous vehicle. Identifying objects of interest is an aspect
of situation awareness and is performed in PRIDE using a
dangerous zone, i.e., a fuzzy-logic-based approach represent-
ing a hazardous space area around an autonomous vehicle.
Once objects of interest are identified, the risk of collision
between the autonomous vehicle and each object of inter-
est is then evaluated. To illustrate the performance of a
dangerous zone within PRIDE, preliminary results are pre-
sented using a traffic scenario with the high-fidelity physics-
based framework for the Unified System for Automation and
Robot Simulation (USARSim).
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1. INTRODUCTION
Road traffic driving for autonomous vehicles (AVs) is con-

tinuing to gain traction both with researchers and practi-
tioners. Funding for research in AVs has continued to grow
over the past few years, and recent high profile funding op-
portunities have started to push theoretical research efforts
into worldwide development of the most advanced projects.
A leading example of the state of the art in autonomous
driving is the Defense Advanced Research Projects Agency’s
(DARPA) series of grand challenges. In 2007, DARPA pre-
sented the Urban Challenge [1] (Victorville, CA, USA), a
research and development program on AVs with the goal
of developing technology that will keep warfighters off the
battlefield and out of harm’s way. This event required each
participating team to build an AV capable of executing sim-
ulated military supply missions while merging into moving
traffic, navigating traffic circles, etc.

As demonstrated by the DARPA challenges, one of the
main goal of AVs is to reduce the number of casualties in
traffic accidents. The National Highway Traffic Safety Ad-
ministration (NHTSA) [12] reported 42 642 killed people
and 2 575 000 injured in motor vehicle crashes for the year
2006. It was also reported that one cause (after speeding)
of these accidents is misjudgment due to carelessness. To
reduce fatalities, many efforts have led to the enhancements
of road designs, imposition of laws and regulations, and im-
provement of situation awareness (SAw) of the drivers.

Consequently, much effort has been directed towards try-
ing to understand the “human factors” component in vehicle
accidents. As pointed out by Sukthankar [20], a primary
challenge to create an AV that can competently drive in
traffic is the task of tactical reasoning, i.e., the AV should
be able to decide which actions to perform in a particular
driving situation, in real-time, given incomplete information
about the rapidly changing traffic configuration. Humans
are able to understand highly dynamic and complex envi-
ronments via their cognitive capabilities. One component
of these cognitive capabilities is SAw, namely, the human’s
ability to perceive the environment, comprehend the situa-
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tion, project that comprehension into the near future, and
determine the best action to execute [5, 6]. Researchers’
hypothesis is that an AV with human-like SAw capabilities
should improve the mission success of future AV systems [2].
Research has shown that poor SAw is an important cause of
driving accidents [22], hence, an AV should have good capa-
bility of early recognition of obstacles and danger prediction.
Adopting the idea that SAw is a key component in driving
safety, the AV community has given considerable amount of
attention on this topic.

The research interest of this paper bears upon a level of
SAw of how other vehicles in the environment are expected
to behave considering their situation. When humans drive,
they need to understand how each object in the environment
moves according to the situation they find themselves in. To
address this need, PRIDE (PRediction in Dynamic Environ-
ments), a multi-resolution hierarchical framework has been
developed. This framework provides an AV planning system
with information that it needs to perform path planning in
the presence of moving objects [16]. PRIDE supports the
prediction of the future location of moving objects at various
levels of resolution, thus providing prediction information at
the frequency and level of abstraction necessary for planners
at different levels within the hierarchy.

This paper presents a fuzzy-logic-based methodology to
identify objects of interest within a dangerous zone for an
AV. A dangerous zone is defined as a space with a potential
of hazard. Once objects of interest have been identified, the
risk of collision is then evaluated for an AV with each object
of interest inside the dangerous zone. A simulated scenario
using the Unified System for Automation and Robot Simu-
lation (USARSim) [4] shows preliminary results and demon-
strates the performance of a dangerous zone within PRIDE
for identifying objects of interest.

The remainder of this paper is organized as follows: sec-
tion 2 gives an overview of the PRIDE framework. Sec-
tion 3 describes SAw within PRIDE and goes into detail
about objects of interest. Section 4 describes the concept
of dangerous zone used to identify objects of interests in
the environment. Section 5 discusses the performance of a
dangerous zone and section 6 concludes this paper.

2. THE PRIDE FRAMEWORK
PRIDE is a multi-resolutional hierarchical framework that

provides an AV planning system with information required
to perform path planning in the presence of moving objects.
This framework supports the prediction of the future loca-
tion of moving objects at various levels of resolution. PRIDE
is based on the 4D/RCS architecture [8], which provides a
reference model for unmanned vehicles on how their software
components should be identified and organized.

The PRIDE framework provides moving object predic-
tions to planners running at any level of the 4D/RCS hier-
archy at an appropriate scale and resolution. The underly-
ing concept of PRIDE lies in the incorporation of multiple
prediction algorithms into a single, unifying framework.

At the higher levels of the framework, the prediction of
moving objects needs to occur at a much lower frequency
and a greater level of inaccuracy is tolerable. At these lev-
els, moving objects are identified as far as the sensors can
detect and a long-term (LT) prediction algorithm predicts
where those objects will be at various time steps into the
future. Higher-level reasoning processes need a global rep-

resentation of the environment to compute the future loca-
tion of an AV. PRIDE uses the road network database [14]
(RND) to access different information about the road net-
works, including individual lanes, lane markings, intersec-
tions, legal intersection traversability, etc. The lower levels
of the framework use estimation theoretic short-term (ST)
predictions based on an extended Kalman filter (EKF) to
predict the future location of moving objects with an as-
sociated confidence measure. Complete details on the LT
and ST prediction algorithms can be found in previous ef-
forts [11,16].

PRIDE currently integrates the Mobility Open Architec-
ture Simulation and Tools (MOAST) framework along with
USARSim [17]. This integration provides predictions incor-
porating the physics, kinematics and dynamics of AVs in-
volved in traffic scenarios. MOAST is a framework that pro-
vides a baseline infrastructure for the development, testing,
and analysis of autonomous systems1. MOAST implements
a hierarchical control technique which decomposes the con-
trol problem into a hierarchy of controllers with each echelon
(or level) of control adding additional capabilities to the sys-
tem. USARSim is a high-fidelity physics-based simulation
system that provides the embodiment and environment for
the development and testing of autonomous systems. US-
ARSim utilizes high-quality 3D rendering facilities to cre-
ate a realistic simulation environment that provides the em-
bodiment of a robotic system. The system architecture on
the integration of PRIDE with the MOAST and USARSim
frameworks is described in previous work [11].

PRIDE also handles drivers’ aggressivity. In this context,
the aggressivity represents the style and driving preferences
of a driver. For example, one would likely assume that a
conservative driver will remain in his lane whenever possi-
ble and will keep a gap between his vehicle and the lead-
ing vehicle. Conversely, an aggressive driver would have a
higher probability of changing lanes and would be more apt
to tailgate the leading vehicle. One may also find that the
aggressivity of the driver may change over time, e.g., the
driver can be very aggressive when trying to get to a cer-
tain lane, but become more passive when he gets there. The
PRIDE framework addresses all the driver types and sit-
uations mentioned above. Experiments and corresponding
results performed on aggressivity can be found in previous
work [15].

3. SITUATION AWARENESS
To make assumptions of the future positions of moving

objects, PRIDE has access to a level of SAw of how other
vehicles in the environment are expected to behave consider-
ing the road traffic situation. An AV should be able to plan
a path while avoiding any collision with obstacles or other
moving objects on the road. The AV also requires knowledge
of the environment and knowledge on the status of other ob-
jects in the environment to be able to drive tactically. The
modeling of other vehicles is the most important aspect of
tactical driving [20]. It is straightforward to model speed
and relative positions, however, it is a challenging task to
model the future behavior of the drivers.

SAw was first discussed in connection with pilot perfor-

1Autonomous systems in this context refer to embodied in-
telligent systems that can operate fairly independently from
human supervision.
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mance in air-to-air combat and was seen as the critical differ-
ence between fighter aces and ordinary pilots [7, 10]. Since
its original conception, numerous definitions of SAw have
been proposed. The work presented in this paper uses the
formal definition from Endsley [6] where SAw is described as
[An expert’s] perception of the elements in the environment
within a volume of time and space, the comprehension of
their meaning and the projection of their status in the near
future.

3.1 Situation Awareness Model
The model of SAw within the PRIDE framework is being

developed based on a three-level model provided by Endsley
[6], as sketched in Figure 1.

Figure 1: Endsley’s model of situation awareness
(from [19]).

• Perception: this level of awareness is achieved if AVs
are able to perceive different elements (e.g., vehicles,
roads) in the environment as well as their characteris-
tics (e.g., size, color, location).

• Comprehension: not only the AVs must perceive rel-
evant information in the environment, they also must
combine the perceived data to interpret the situation
correctly.

• Projection: at this level, the AVs have the ability to
anticipate the actions of other vehicles and predict the
future states of the environment.

The perception level for an AV in PRIDE is addressed
through the MOAST/USARSim framework [17] and the RND
[14]. MOAST queries USARSim to retrieve the character-
istics of the AVs, such as the speed, the cartesian coordi-
nates, the orientation, and the speed rotation of the wheels.
PRIDE then compares the collected information to the RND
to determine the position of the AV in the environment. The
query returns the type of the road where the AV is posi-
tioned, the ID of the lane, the speed limit, and the traffic
flow on the lane.

At the comprehension level, PRIDE combines the ele-
ments from the perception level to present a situation for
the AV. For example, a vehicle with high speed (as com-
pared to the speed limit of the road) and high acceleration
could be considered as aggressive for example. Likewise, a
vehicle driving at high speed toward the same uncontrolled

intersection as the AV has a higher probability of collision
than if its speed was lower. Hereby, PRIDE has the ability to
understand the situation by gathering different information
from different sources.

At the projection level, the LT prediction algorithm com-
putes the future position of each AV by first computing all
realistic action sequences. Then, based on a final cost for
performing each action sequence, the LT algorithm chooses
the action with the lowest cost, i.e., the one with the highest
probability (see [16] for more details). The selected action
sequence is based on the actions of other moving objects
and on the situation of the AV itself. The output of the LT
prediction algorithm is a collision-free path for the AV.

3.2 Object of Interest
The goal of PRIDE is to emulate human drivers’ behav-

iors for AVs. As such, to achieve autonomous driving with
human-like SAw capabilities in the presence of moving ob-
jects, the AVs have first to identify objects of interest in the
environment. This section establishes the idea of identifica-
tion of objects of interest, which is part of the state of the
environment step, as depicted in Figure 1.

At its current state, PRIDE first takes into account all
moving objects in the environment and then tests if any fu-
ture collision is likely possible. It is obvious here that there
is a need for identifying only specific objects (moving or
static) and then evaluating the danger caused by each ob-
ject. In real world, a driver pays attention to only a few
objects around him, and obviously not to all of them. Since
time constraints prevent processing all of this information
at every time instant, the driver must intelligently select the
information most critical to the immediate task. Focusing
on some moving vehicles or static obstacles first reduces the
computation time for collision, especially for a large number
of vehicles and obstacles in the environment. Furthermore,
identifying these specific objects constitutes a step further
towards the simulation of a typical driving behavior. The
AV should first focus on objects of interest in the environ-
ment that most constrain its available actions [13]. For ex-
ample, when approaching an intersection with a STOP sign,
the AV can safely ignore the trajectories of the vehicles be-
yond the intersection, since the STOP sign forces the AV to
come to a halt. The AV should also make strong assump-
tions about objects in the environment. While observing an
oncoming vehicle, the AV could note its position and ve-
locity, then “forget” about the oncoming vehicle for some
time interval, knowing that the vehicle would not be able
to close the distance in that time. The AV focuses on par-
ticular objects at particular time in particular situations.
These objects are termed “objects of interest” and can be
defined as a moving or stationary object in the environment
that has a reasonable probability of intersecting the path of
the autonomous vehicle within a predetermined time frame.
The identification of objects of interest is performed with
the methodology presented in the next section.

4. METHODOLOGY TO IDENTIFY OBJECTS
OF INTEREST

The methodology for the identification of objects of inter-
est consists of two steps:

1. Building a dangerous zone around an AV to identify
objects of interest.

19



2. Evaluating the risk of collision of the AV (called driv-
ing risk level) with any object of interest.

4.1 Dangerous Zone
Moving vehicles are subject to physical hazards coming

from any direction, e.g., lateral impacts from the non-respect
of rights-of-way at intersections or from a non-detected ve-
hicle in the blind spot, and rear-end crashes usually due
to inattention, following too closely, or both. Some of these
accidents occur when the driver fails to maintain a safe head-
way from the leading car because of a perceptual inadequacy
in estimating headways [21].

To effectively model the importance of an object on the
road, PRIDE relates to the concept of dangerous zone (DZ)
[18] to identify objects of interest in the space area around
the AV. A DZ is defined as a space with a potential of hazard.
Within the DZ, objects of interest have a different degree
of risk according to different criteria such as the distance
between an object of interest and an AV.

In conventional methods, the classical definition of “mem-
bership”puts an object either inside our outside a zone. The
approach proposed in this paper tries to evaluate the degree
of severity of an object within the DZ by classifying this
object based on several criteria. One criterion would be for
example, the closeness of an object of interest to the AV,
which could be interpreted as close, very close, far, very far.
As such, the effort of this paper describes a DZ by apply-
ing multi-dimension fuzzy sets to model gradual changes in
collision severity. The concept of fuzzy space (FS) is used
to present the spatial consideration fuzzy sets in two dimen-
sions.

4.1.1 Fuzzy Space
The concept of FS is based on fuzzy logic and fuzzy sets.

Fuzzy logic is a superset of conventional (Boolean) logic that
has been extended to handle the concept of partial truth.
In 1965, Zadeh introduced fuzzy sets as an extension of the
classical notion of a set to represent uncertain and impre-
cise knowledge [23]. Fuzzy sets and fuzzy logic are used to
heuristically quantify the meaning of linguistic variables, lin-
guistic terms, and linguistic rules that are specified by the
expert.

Fuzzy logic uses graded statements rather than ones that
are strictly true or false. Fuzzy logic attempts to incorpo-
rate the “rule of thumb”2 approach generally used by human
beings for decision making. Thus, fuzzy logic provides an
approximate but effective way of describing the behavior of
systems that are not easy to describe precisely.

Definitions.
To define a FS, the universe of discourse is in the form

of R
2. The work proposed in this paper considers the lon-

gitudinal distance x and the lateral distance y as linguistic
variables from the relative coordinates of the AV. A typical
linguistic variable is expressed as:

Linguistic Variable(term 1, term 2,. . . , term n)

where n is the number of terms in the linguistic variable.
To define a FS, let X ⊂ R, and x, y ∈ X. Ax and Ay are

the fuzzy sets for the degree of risk as defined below:

2A method of procedure based on experience and common
sense.

Ax = (x, μAx)|x ∈ X, X → [0, 1]
Ay = (y, μAy )|y ∈ X, X → [0, 1]

Figure 2 depicts a trapezoidal membership function for
the longitudinal direction as defined by Equation 1.

μAx(x) = max(min(
x − a

b − a
, 1,

d − x

d − c
), 0) (1)

Figure 2: Longitudinal dangerous zone.

The parameters a and d correspond to the “feet” of the
function μAx(x). The parameter d represents the safe dis-
tance headway of the AV. This headway is typically defined
in terms of time rather than distance, and a commonly rec-
ommended minimum safe headway is 2 s. That way, if a
lead driver initiates a braking action, the following driver
has 2 s to initiate a braking response to the slowing down
of the vehicle ahead. Using several parameters (e.g., current
velocity of an AV, aggressivity, and weather), PRIDE con-
verts the safe time headway into the corresponding distance
headway.

Being able to modify the headway is an interesting point
for the LT prediction algorithm. The LT algorithm com-
putes the future location of moving objects at n seconds
in the future [16]. So far, the time of prediction was es-
tablished before running the simulation and could not be
changed thereafter. With the ability to change the head-
way regarding the situation of the AV and the environment,
the time of prediction is also modified in real-time. This
subjects is further discussed in the rest of this paper.

The parameters b and c represent the range of the mem-
bership function for which the degree of risk is the highest,
i.e., where the x values are closest to the AV. It is reasonable
to use the length of the AV (information from USARSim)
to define b and c.

For an object far from the AV, the risk of collision is low.
Conversely, for an object closer to the AV, the risk of colli-
sion increases to its maximum. The function increases faster
in the rear of the AV, thus describing a greater danger for a
vehicle too close to the leading AV.

Figure 3 shows the bell shape membership function for
the lateral distance as defined by Equation 2.

μAy (y) =
1

1 + | x−c
a

|2b (2)

The parameter b is linked to the width of the lane and is
defined using the RND. The risk of collision grows for any
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Figure 3: Lateral dangerous zone.

point approaching the AV on its sides. The parameter c lo-
cates the center of the curve (0 in this case). The value of
a determines the membership values of the extreme points
(0,1) of the universe when the crisp value, c, coincides with
the center of the universe (0 in this case). The member-
ship function μAy (y) shows an increasing risk of danger for
any object coming closer to the sides of the AV. Similar to
the definition of the longitudinal distance, the membership
function for the lateral distance has the ability to include
the dimension of the AV. In this case, the width of the lane
is taken into account, and thus the width of the AV within
the lane.

Construction of the Fuzzy Space.
Different methods exist for the construction of FSs to de-

scribe DZs, such as the minimum intersection, the multipli-
cation intersection, the rotational extension, and the cylin-
drical extension (see [9] for an exhaustive list).

In this paper, the construction of the FS Axy is per-
formed with the multiplication intersection method. The al-
gebra multiplication μAx(x) μAy (y) is preferred to the fuzzy
logic multiplication min(μAx(x), μAy (y)). As pointed out by
Shahrokhi and Bernard [18], the minimum intersection fuzzy
space is not sufficient to demonstrate all DZs. Furthermore,
the algebra multiplication is more efficient for risk detection.
The multiplication intersection fuzzy space Axy for the lon-
gitudinal and lateral distances is defined by Equation 3 and
is depicted in Figure 4.

Axy = μAxμAy (3)

It is important to understand that the fuzzy sets defined
previously are not a standard for all road structures. The
fuzzy sets are tuned according to the type of the road. The
membership functions defined by Equations 1 and 2 are ap-
propriate for a straight road. For a AV approaching an in-
tersection for example, the fuzzy space can be spread over a
larger area and can be represented by a semi-spherical shape
incorporating some parts of the intersection.

4.2 Fuzzy Expert System
As discussed previously, the membership functions depend

on different parameters, e.g., the aggressivity of the driver
to compute the safe distance headway d in Equation 1 (Fig-
ure 2). The designer has to intelligently choose relevant
parameters so that the FS could adapt to different situa-
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Figure 4: Fuzzy space Axy.

tions. A fuzzy expert system is used with these parameters
to compute the appropriate FS.

Fuzzy expert systems are rule based controllers where the
inference mechanism is grounded on fuzzy logic. The general
architecture of a fuzzy expert system is depicted in Figure 5.

Figure 5: Architecture of a fuzzy expert system.

• The fuzzification module takes real input values (crisp
values) and maps them to the terms by assigning a
degree of membership. For continuous variable, the
degree of membership is expressed by a membership
function. There is a degree of membership for each
linguistic term that applies to the linguistic input vari-
able.

• The rule base holds the knowledge in the form of a
set of rules, of how best to control the system. In
general, fuzzy controllers are based on control rules
of the type “IF condition” THEN “control” where
condition and control are always fuzzy propositions
(formula of fuzzy logic) of the type “x is A”, where
x is a linguistic variable and A is a linguistic term.
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condition tells when the rules should be applied and
control describes the action to apply.

• The inference mechanism is the kernel of the fuzzy
controller. The inference mechanism evaluates which
control rules are relevant at the current time and then
decides the fuzzy commands to apply to the process.

• The defuzzification module is needed to translate the
fuzzy output of a fuzzy controller to a numerical rep-
resentation. Intuitively, defuzzification can be done
using an averaging technique. The work described in
this paper uses the center of gravity method [9], which
is the same method employed to calculate the center
of gravity of a mass.

4.2.1 Linguistic Variables
In this paper, PRIDE uses the aggressivity, the speed, the

weather, and the acceleration as input linguistic variables
and the safe distance headway as the output. The linguistic
variables and the linguistic terms are presented in Table 1.

Variables

Input Output

Speed Aggressivity Weather Acceleration Headway

T
e
r
m

s

Zero Passive Rainy Zero Very Low

Small Normal Snowy Small Low

Medium Aggressive Stormy Medium Medium

Big Sunny Big Big

Very Big

Table 1: Linguistic variables used by the fuzzy ex-
pert system.

Once the linguistic variables are established, a set of rules
for the inference mechanism has to be defined. Example of
rules are shown below:

1. IF“Speed is Small”AND“Aggressivity is Normal”
AND“Weather is Sunny”AND“Acceleration is Zero”
THEN “Headway is Low”.

2. IF “Speed is Medium” AND “Aggressivity is Nor-

mal” AND “Weather is Snowy” AND “Acceleration
is Small” THEN “Headway is Medium”.

4.3 Evaluation of Driving Risk Level
Any object of interest is likely to lead to a potential col-

lision. To evaluate the driving risk level (DRL) of the AV,
the distribution of the objects of interest within the DZ is
taken into account. Each object of interest is represented
by its position Oxi,yi in the environment. The DRL for each
object of interest Oxi,yi is computed by maximizing the FS
Axiyi as shown by Equation 4 [3].

DRL = max(Axiyi) (4)

Since the time of prediction coincides with the headway,
the LT cost-based approach computes the cost for an AV to
perform an action sequence. When an object of interest is
identified in the DZ, the LT algorithm computes the cost of
collision of the AV with the object of interest. At this point,
this cost is modified by the value of the DRL computed using
Equation 4.

5. PRELIMINARY RESULTS AND DISCUS-
SION

This section describes a traffic scenario and demonstrates
the performance of the DZ for an AV. In the following sce-
nario, the dimension of the AV is Length× Width=3.686
m×1.799 m (from USARSim). According to the RND, the
width of the lane is 3.75 m. Finally, the weather is set to
“snowy”.

The chosen scenario is a lane-change maneuver over an
obstacle. The AV and the static obstacle are in lane L1 as
shown in Figure 6.

Figure 6: Vehicle avoiding a static obstacle.

Figure 7 shows the current positions of the AV and the
static obstacle. The negative values for the Y coordinates
are due to the coordinates of this particular road network in
USARSim.

During its trajectory, the AV starts to switch to the left
lane L2 at X=103.6 m and Y=-220 m. At this time, the
distance between the AV and the static obstacle is approx-
imately 5.5 m. The average speed of the AV on this track
was 4 m/s. Since the weather is snowy for this scenario,
the headway is greater (about 6.6 m) than it would be for a
sunny weather.

40 60 80 100 120 140 160 180
−221.5

−221

−220.5
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−219.5

−219

−218.5

X [m]

Y
 [m

]

Current Positions

Obstacle
Vehicle

X: 109.1
Y:−220.1X: 103.6

Y: −220

Figure 7: Current positions of the autonomous ve-
hicle and the static obstacle.

Figure 8 depicts the variation of the DRL computed using
Equation 4 with the static obstacle as object of interest. The
negative values refer to the distance while the AV drives
toward the obstacle (before reaching the obstacle), and the
positive values indicate the distance when the AV drives
away from the obstacle.

It can be seen that the DRL is null while the AV is far
away from the obstacle, before and after passing the obsta-
cle. During this time period, no object of interest is detected
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Figure 8: Driving risk level compared to the dis-
tance from the obstacle.

by the AV. However, at a distance of 6.586 m from the ob-
stacle, the DRL starts to increase when the object of interest
is identified within the DZ of the AV. The closer the AV is
to the obstacle, the faster the DRL increases, meaning the
higher is the risk of collision. The AV starts to gradually
move to L2 as soon as the value of the DRL is high enough
for a possible danger of collision. The DRL starts to increase
at a distance of 6.5 m from the obstacle, however, the AV
starts to switch to L2 only at a distance of 5.5 m from the
obstacle, i.e., when the DRL is in [0.6 - 0.7] (Figure 8). The
DRL value within this range modifies the cost associated
to the straight path of the AV and thus the LT algorithm
chooses a less expensive action, i.e., swerving to L2 in that
case.

The DRL reaches its highest level (0.9982) for the AV
being at around 3.5 m from the obstacle. While the AV is
moving to L2, the value of the DRL decreases and reaches
0 at 6.27 m away from the obstacle. At this point, since
no object of interest is identified within the DZ, the LT
algorithm modifies the cost associated to the AV driving in
lane L2. A penalty is given to the AV for not being in the
right-most lane, hence the lane switching to L1 at X=120 m
and Y=-218.7 m as depicted in Figure 7.

6. CONCLUSION
The work presented in this paper enhances situation aware-

ness within the PRIDE framework by identifying objects of
interest in the environment. Autonomous driving requires
human-like situation awareness capabilities. Consequently,
autonomous vehicles (AVs) must consider objects of interest
in the environment in order to plan a collision-free trajec-
tory. Identifying objects of interest can be assimilated to a
driver who only focuses on some objects that most constrain
his available actions.

The identification of objects of interest is performed by
a dangerous zones (DZs). In this context, a DZ is a fuzzy
space which represents a hazard area for an AV. The DZ is
built by first assembling relevant parameters, which are then
processed through a fuzzy expert system to adapt the fuzzy
space to different situations. Any object that falls inside
the DZ is identified as object of interest. Once the objects
of interest are identified, the risk of collision of the AV is

evaluated.
The fuzzy space has the advantages in considering the

dimension of the AVs, thus improving collision avoidance.
Another advantage is the modifications of the time of pre-
diction for the LT prediction algorithm in real-time. This
second point is useful to emulate driving tasks taking into
account the current forecast and the variation of the ag-
gressivity for example. Lastly, by first identifying objects
of interest, and only then evaluating the danger pertinent
to these objects, the time of computation of the LT algo-
rithm is theoretically reduced, as compared with the former
version of the LT algorithm.

The concept of DZ has demonstrated reasonable results
with a new way to identify any danger in the environment.
However, the preliminary results were obtained for a single
AV on a simple straight road with a static obstacle. Identify-
ing objects of interest in more complex traffic situations is a
challenge and should be developed in the near future. Since
the concept of DZ was first introduced in industrial systems,
PRIDE already has the capacity of considering DZs before
moving towards simulation in industrial facilities.
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