
2008 International IEEE Symposium on Precision Clock Synchronization (ISPCS)
for Measurement, Control and Communication
Ann Arbor, U.S.A Sept. 22-26, 2008.

An Application Framework for the IEEE 1588 Standard

Eugene Y. Song, Kang Lee
National Institute of Standards and Technology

100 Bureau Drive, Stop 8220
Gaithersburg, Maryland 20899-8220 USA

E-mail: kang.lee@nist.gov, ysong@cme.nist.gov

Abstract: This paper introduces an application framework
for the Institute of Electrical and Electronics Engineers
(IEEE) 1588 standard. This application framework,
developed at the National Institute of Standards and
Technology (NIST), consists of five layers: hardware layer,
operating system layer, middleware and tools layer, IEEE
1588 layer, and application layer. A prototype application
system has been developed based on the established IEEE
1588 application framework using the Unified Modeling
Language (UML) tool. A case study of the IEEE 1588 Delay
Request-Response mechanism based on the application
framework is presented. The object-oriented application
framework can ease integration and simplify the development
of new IEEE 1588 applications by reducing the amount of
time and errors to design and develop the IEEE 1588
standard infrastructure. Another benefit of this application
framework is to enable developers to achieve standards
compliance more readily.

Keywords: Application framework, IEEE 1588, Object-
oriented framework, UML

I. INTRODUCTION

The Institute of Electrical and Electronics Engineers
(IEEE) 1588 standard defines a precision time protocol (PTP)
enabling precise synchronization of clocks in measurement
and control systems implemented using distributed
architectures comprised of evolving technologies in network
communication, localized computing and distributed objects
[1-2]. The IEEE 1588 protocol is applicable to distributed
measurement and control systems consisting of two or more
nodes communicating over a network. Figure 1 shows an
example of clock synchronization based on a packet network.
The slave clocks can synchronize with the master clock
through packet network communications. Most measurement
systems share similarities in the fundamental components.
However, these systems are often developed from scratch,
without reusing the available designs and implementations
[3]. Since these designs are also costly to implement, object-
oriented development (OOD) promises to increase code reuse
while reducing development time and cost. A framework is a
reusable application foundation that can be customized for a
particular customer application [4, 5]. An object-oriented
framework provides an important enabling technology for
reusing software components [6]. Object-oriented
frameworks allow reusing analysis, design, implementation,

and testing for applications within a certain domain or a
certain family of problems [7]. The object-oriented
framework focuses on code and design reuse. Hence the
object-oriented development methodology plays a key role in
the design of the framework. The object-orient methodology,
when applied to application frameworks, enables higher
productivity and shorter time-to-market of application
development.

Packet Network

Master
Clock

Slave
Clock

Slave
Clock

Slave
Clock

Packet Network

Master
Clock

Slave
Clock

Slave
Clock

Slave
Clock

Fig. 1. Example of clock synchronization.

The Unified Modeling Language (UML) was designed to

be compatible with the leading object-oriented software
development methods [8]. UML is a powerful tool for
object-oriented modeling and design, and development of
complex software systems. Developing an application
framework for the IEEE 1588 standard using UML
significantly reduces the development time of IEEE 1588
applications. The current implementation focuses on the
IEEE 1588 layer and application layer. Section II discusses
related works. In section III, an application framework for the
IEEE 1588 standard is described. Section IV shows a
prototype system of an IEEE 1588 application. The
conclusion is provided in Section V.

II. RELATED WORKS

The use of application frameworks is a promising
approach for reusing and integrating proven software designs
and implementations in order to reduce the cost and improve
the quality of software. The framework concept can be found
in Smalltalk** systems, which has been attributed as the first
widely used framework [9]. MacApp was Apple Computer's
primary object-oriented application framework for the Mac
operating system during the 1990s [10]. An object-oriented
framework is also used for developing distributed
applications [11]. Object-oriented real-time frameworks have
been used for building distributed real-time control systems
in robotics and automation [12]. A framework-based
approach to real-time development is used for code

978-1-4244-2275-3/08/$25.00 ©2008 IEEE 23

2008 International IEEE Symposium on Precision Clock Synchronization (ISPCS)
for Measurement, Control and Communication
Ann Arbor, U.S.A Sept. 22-26, 2008.

generation in the Rhapsody UML tool [13]. An object-
oriented framework is used for developing distributed
manufacturing architectures [14]. Roberts & Johnson
describe the evolution of a framework as starting from a
white-box framework that is reused by sub-classing, and
developing into a black-box framework that is mostly reused
through parameterization [15]. Hayase introduced a three-
view model for developing object-oriented frameworks. The
three-view model consists of a domain analysis view, a layer
view, and a mechanism view. The layer view is used to
divide a framework into three layers: an infrastructure layer, a
generic layer, and a domain layer [16]. Bosch describes a
framework consisting of a core framework design, and its
associated internal increments with accompanying
implementation, such as framework internal increments and
application specific increment [17]. The verifiable embedded
real-time application framework (VERTAF) is an object-
oriented application framework for embedded real-time
systems [18]. An object-oriented application framework for
the IEEE 1451.1 standard has been established [19].
Specifier, extractor, scheduler, allocator, and generator
(SESAG) is an object-oriented application framework for
real-time systems [20]. Becker introduces an object-oriented
framework for the development of real-time industrial
automation systems [21]. In summary, object-oriented
application frameworks have been widely used in many
different domain and cross-domain applications, especially in
distributed real-time measurement and control systems.

III. APPLICATION FRAMEWORK FOR
IEEE 1588 STANDARD

A. Architecture of Application Framework for IEEE 1588
Standard

A software framework is a code library that is designed
to help software development and a reusable design for a
software system or subsystem [22]. A software framework
may consist of support programs, code libraries, a scripting
language, or other software to help develop and integrate
heterogeneous components of a software project. The various
parts of the framework may be exposed through an
Application Programming Interface (API). An application
framework is a software framework that is used to implement
the standard structure of an application for a specific
application [23]. Figure 2 shows the layer architecture of an
application framework for the IEEE 1588 standard. This
framework consists of five layers: hardware layer, operating
system layer, middleware and tools layer, the IEEE 1588
layer and the application layer.
• The hardware or firmware layer focuses on which hardware

can be used to deploy IEEE 1588 standard applications.
The hardware may include those from Freescale**,
Hirschmann, Imsys, National Semiconductor,

Symmetricom, or other manufacturers of IEEE 1588
compliant hardware.

• The operating system layer focuses on the platform or
operating system to which applications can be ported, such
as, but not limited to, Windows (NT/2000/XP/Vista),
Linux, Unix, Windows CE, and VxWorks.

• The middleware and tools layer focuses on middleware and
modeling tools for implementing the framework and
domain applications. Examples of such middleware
includes, Common Object Request Broker Architecture
(CORBA), Component Object Model (COM)/Distributed
Component Object Model(DCOM), Microsoft .Net, Java 2
Platform Enterprise Edition (J2EE) middleware, and UML
modeling tools.

• The IEEE 1588 layer focuses on object model of the IEEE
1588 standard, which includes data types, datasets, entities,
messages, services, devices and profiles of the IEEE 1588
standard.

• The application layer focuses on the design and
development of IEEE 1588-based application systems that
are the composition or aggregation among objects in
systems, such as a remote monitoring system and
distributed measurement and control system.

This application framework has been developed at the
National Institute of Standards and Technology (NIST) using
UML. The IEEE 1588 layer has been built, which currently
consists of Java and C++ class libraries of the IEEE 1588
standard.

IEEE 1588 API
(C/C++/C#, Java)

IEEE 1588
Data Types

IEEE 1588
Datasets

IEEE 1588
Entities

IEEE 1588
Messages

IEEE 1588
Services

IEEE 1588
Devices

IEEE 1588 Applications in Java & C/C++/C#
(IEEE1588 Objects & Non-IEEE1588 Objects)

Middleware & Tools

CORBA, COM/DCOM, MS .Net
Java RMI, JMS, Java.net.* J2EE

UML Tools

Profile 1 Profile 2 Profile 3 Profile 4

Operating Systems
(Windows

Vista/XP/2000,
Windows CE,

Linux, Unix, VxWorks)

Hardware

Freescale

HirschmannNational
Semiconductor National

Instrument

Meinberg

SymmetricomWestermo
OnTime

Teletronics
Zurich

University

Imsys

IEEE 1588 API
(C/C++/C#, Java)

IEEE 1588
Data Types

IEEE 1588
Datasets

IEEE 1588
Entities

IEEE 1588
Messages

IEEE 1588
Services

IEEE 1588
Devices

IEEE 1588 Applications in Java & C/C++/C#
(IEEE1588 Objects & Non-IEEE1588 Objects)

IEEE 1588 Applications in Java & C/C++/C#
(IEEE1588 Objects & Non-IEEE1588 Objects)

Middleware & Tools

CORBA, COM/DCOM, MS .Net
Java RMI, JMS, Java.net.* J2EE

UML Tools

Profile 1 Profile 2 Profile 3 Profile 4

Operating Systems
(Windows

Vista/XP/2000,
Windows CE,

Linux, Unix, VxWorks)

Hardware

Freescale

HirschmannNational
Semiconductor National

Instrument

Meinberg

SymmetricomWestermo
OnTime

Teletronics
Zurich

University

Imsys

Fig. 2. Application framework architecture for IEEE 1588.

B. The IEEE 1588 Layer

As shown in Figure 2, the IEEE 1588 layer is one kind of
white-box framework that relies heavily on static inheritance
relationships. The framework user is supposed to customize
the framework behavior through sub-classing of framework

24

2008 International IEEE Symposium on Precision Clock Synchronization (ISPCS)
for Measurement, Control and Communication
Ann Arbor, U.S.A Sept. 22-26, 2008.

classes. This layer mainly focuses on the object model of
IEEE 1588, which consists of data types, datasets, entities,
messages, services, devices and profiles of the IEEE 1588
standard [24-25].

B.1 Data Types of IEEE 1588

The IEEE 1588 data types consist of primitive data types
and derived data types. The primitive data types include
boolean, integers (signed and unsigned 8 bits, 16 bits, and 32
bits), and octet (one byte). The primitive data types can be
mapped into the primitive data types of the C/C++/Java/C#
programming language, or defined as an individual class. The
derived data types of the IEEE 1588 standard are derived
from these primitive data types. The derived data types of
IEEE 1588, including arrays of primitive data types,
enumerations, and structs, can be also defined as an
individual class.

B.2 Datasets of IEEE 1588

A Precision Time Protocol (PTP) clock has two types of
data sets: clock data sets and port data sets. The clock data set
describes the attributes of clocks, such as default dataset,
current dataset, time property dataset, and parent dataset. The
port data sets describe the attributes of clock ports. There are
three kinds of port datasets defined in IEEE 1588, including
port data set of ordinary clock, port data set of boundary
clock, and port data set of transparent clock.

PTPMessage

GeneralMessageEventMessage

originTimestamp:Timestamp

Sync Pdelay_Req

Pdelay_Resp

Signaling

Management

Announce

Delay_Resp Pdelay_Resp_Follow_Up

Delay_Req

Follow_Up

1suffix

Suffix

1suffix1messageHeader 1messageHeader

MessageHeader

transportSpecific :Nibble
messageType:MessageType
versionPTP:UInteger4
messageLength:UInteger16
domainNumber:UInteger8
Flags:OctetArray
correctionField:Integer64
sourcePortIdentity:PortIdentity
sequenceId:UInteger16
controlField:UInteger8
logMessageInterval:Integer8

Announce

originTimestamp:Timestamp
currentUTCOffset:Integer16
timeSource:Enumeration8
stepsRemoved:UInteger16
grandmasterIdentity:ClockIdentity
grandmasterClockQuality:ClockQuality
grandmasterPriority1:UInteger8
grandmasterPriority2:UInteger8

Fig. 3. PTP message.

B.3 Messages of IEEE 1588

All PTP-related communications occur via PTP
messages. The PTP messages have a header, body and suffix.
Figure 3 shows the class definition of PTP messages. The

PTPMessage can be subdivided into two types:
EventMessage and GeneralMessage, which can inherit all
the attributes of PTPMessage. The EventMessage with a
timestamp attribute can be subdivided into Sync,
Delay_Req, Pdelay_Req, and Pdelay_Resp messages,
which inherit the timestamp attribute from EventMessage.
The GeneralMessage can be subdivided into Announce,
Follow_Up, Delay_Resp, Management, Signaling, and
Pdelay_Resp_Follow_Up messages. Each specific PTP
message inherits the common attributes (message header and
suffix) from the general PTP message, and also has its own
attributes.

B.4 PTP Services for IEEE 1588

Fig. 4 shows the definition of PTPService that we
propose. The PTPService can be divided into
EventService and GeneralService. The EventService
includes Sync, DelayRequest, PDelayRequest and
PDelayResponse services. The GeneralService includes
Announce, FollowUp, DelayResponse,
PDelayResponseFollowUp, Management, and Signaling
services. Each PTP individual service is an operation with
corresponding arguments (messages).

PTPService

«Interface»

EventService
«Interface»

Sync(sync:Sync):UInteger16
DelayRequest(delayRequest:Delay_Req):UInteger16
PDelayReponse(pDelayResposne:Pdelay_Resp):UInteger16
PDelayRequest(pDelayRequest:Pdelay_Req):UInteger16

GeneralService
«Interface»

Announce(announce:Announce):UInteger16
DelayResponse(delayResponse:Delay_Resp):UInteger16
PDelayResponseFollowUp(pDelayResponseFollowUp:Pdelay_Resp_Follow_Up):UInteger16
Signaling(signaling:Signaling):UInteger16
Management(management:Management):UInteger16
FollowUp(followUp:Follow_Up):UInteger16

Fig. 4. PTP services.

B.5 PTP Port of IEEE 1588

Each port of the PTP ordinary, boundary, or transparent
clock supports the event interface and general interface. The
event interface is used to send and receive event messages,
which are time-stamped based on the value of the local clock.
The general interface is used to send and receive general
messages, such as Announce and Management. A port may
implement both the Delay Request-Response mechanism and
Peer Delay mechanism, but only one mechanism is active at
any time. Figure 5 shows the definition of the PTPPort class.
The PTPPort can be subdivided into OClockPort,
BClockPort, and TClockPort, which can inherit all the
attributes of PTPPort. The OClockPort is an ordinary
clock port, which has one OClockPortDS and one
ForeignMasterDS. The BClockPort is a boundary clock

25

2008 International IEEE Symposium on Precision Clock Synchronization (ISPCS)
for Measurement, Control and Communication
Ann Arbor, U.S.A Sept. 22-26, 2008.

port, which has one BClockPortDS and one
ForeignMasterDS. The TClockPort is a transparent clock
port, which has one TClockPortDS. The PTPort has also
one EventInterface, and one GeneralInterface. The
GeneralInterface implements GeneralService, and
EventInterface implements EventService. Figure 5
also shows the definition of EventInterface class. For our
application framework, we implemented EventInterface
and GeneralInterface using Java multicast sockets.

PTPPort

portAddress:PortAddress
portIdentity:PortIdentity
state:PTPPortState
versionNumber:UInteger4
timestamp:Timestamp
pathDelayMeasurementMechanism:DelayMechanism

GeneralService
«Interface»

OClockPort

1
oClockPortDS

1
oClockPortDS

OClockPortDS

1foreignMasterDS

ForeignMasterDS

1foreignMasterDS

BClockPort

1bClockPortDS 1bClockPortDS

BClockPortDS

1
foreignMasterDS

1
foreignMasterDS

ForeignMasterDS

TClockPort

TClockPortDS

1tClockPortDS 1tClockPortDS

1 generalInterface

GeneralInterface

1 generalInterface1eventInterface 1eventInterface

EventInterface

eventMsgMulticastDestinationPort:int=319
datagramBufferLength:int=512
PrimaryMulticastGroupIPv4IPAddress:String="224.0.1.129"

EventInterface()
PDelayRequest(pdelayreq:Pdelay_Req):UInteger16
PDelayResponse(pdelayResp:Pdelay_Resp):UInteger16
DelayRequest(delayReq:Delay_Req):UInteger16
Sync(sync:Sync):UInteger16

EventService
«Interface»

Fig. 5. PTP port.

BoundaryClock

EndToEndTransparentClock

OrdinaryClock

PeerToPeerTransparentClock

ManagementNode

PTPDevice

TransparentClock

PTPClock

Fig. 6. PTP Device.

B.6 PTP Devices of IEEE 1588

A PTP device can send or receive PTP messages on a
network. As shown in Figure 6, a PTPDevice can be sub-
classified into ManagementNode and PTPClock. A clock is
capable of providing a measurement of the passage of time
since a defined epoch. A PTP clock is a clock that
participates in the PTP protocol. The PTPClock can be sub-
classified into OrdinaryClock, BoundaryClock, and
TransparentClock. Furthermore, transparent clocks can

be subclassified into PeerToPeerTransparentClock and
EndToEndTransparentClock. The different clocks have
different datasets.

OrdinaryClock

priority1:UInteger8
priority2:UInteger8
clockClass:ClockClass
clockAccuracy:ClockAccuracy
timeSource:TimeSource
offsetScaledLogVariance:UInteger16
numberPorts:UInteger16

LocalClock

1localClock 1localClock

1

oClockDefaultDS

OClockDefaultDS
1

oClockDefaultDS

1

oClockCurrentDS

OClockCurrentDS
1

oClockCurrentDS

OClockParentDS

1
oClockParentDS

1
oClockParentDS

1
oClockTimePropertiesDS

OClockTimePropertiesDS

1
oClockTimePropertiesDS

1
oClockPort

1
oClockPort

OClockPort

Fig. 7. Object model of ordinary clock.

An ordinary clock communicates with the network via
two logical interfaces based on a single physical port. The
ordinary clock can be the grandmaster clock in a system or a
slave clock in the master-slave hierarchy. Figure 7 shows the
object model of the ordinary clock. Each OrdinaryClock
has one LocalClock, one OClockDefaultDS, one
OClockCurrentDS, one OClockParentDS, one
TimePropertiesDS, and one OBClockPort. Each
ordinary clock may have only one OClockPort. The
ordinary clock can implement the Delay Request-Response
mechanism or the Peer Delay mechanism.

 Slave

Clock
Slave
Port

Master
Port

Master
Clock

Slave
Port

Master
Port

Master
Port

Master
Port

Network
Router

IEEE
1588

Messages

IEEE
1588

Messages

IEEE
1588

Message

IEEE
1588

Message

Slave
Clock

Slave
Port

Master
Port

Master
Clock

Slave
Port

Master
Port

Master
Port

Master
Port

Network
Router

IEEE
1588

Messages

IEEE
1588

Messages

IEEE
1588

Message

IEEE
1588

Message

Fig. 8. Prototype system of IEEE 1588 application.

IV. PROTOTYPE SYSTEM

The application layer mainly focuses on IEEE 1588
application design and development. To design specific
applications, IEEE 1588 application developers can use
composition and aggregation relations among the application
objects or classes that inherit from the classes of the IEEE
1588 layer to design their specific applications. Figure 8
shows a prototype system of an IEEE 1588 application based
on the established application framework. This prototype
system consists of a master clock (laptop), a network router,

26

2008 International IEEE Symposium on Precision Clock Synchronization (ISPCS)
for Measurement, Control and Communication
Ann Arbor, U.S.A Sept. 22-26, 2008.

and a slave clock (laptop). The timestamp is implemented at
the application level using Java
System.currentTimeMillis(), which can read system
clock time in milliseconds.

A. Master Clock

Figure 9(a) shows the object model of a master clock

system, which consists of a MasterClockSystem, a
DisplayMasterClock (displays the time of the master
clock), and a MasterClock. The master clock is a subclass
of an ordinary clock. It inherits all ordinary clock attributes,
which are shown in Figure 5 and Figure 7. The
MasterClock has a few of the functions shown in the
Figure 9 (a). The function initialization()sets all
datasets and the port of a master clock. The function
masterTimeSynchronization() sends Sync,
Follow_UP, and Delay_Resp messages to the slave clock,
and receives Delay_Req message in return.

OrdinaryClock

MasterClock

MasterClock()
initialization():void
delayRequestResponse():void
run():void
masterTimeSynchronization():void
StopMasterClockTimeSync():void

SlaveClock

initialization():void
delayRequestResponse():void
run():void
SlaveClock()
slaveTimeSynchronization():void
StopSlaveClockTimeSync():void

OrdinaryClock

1
masterClock

MasterClockSystem

1
masterClock

SlaveClockSystem

1 slaveClock1 slaveClock

DisplayMasterClock

1 displayMasterClock1 displayMasterClock

DisplaySlaveClock

1displaySlaveClock 1displaySlaveClock

(a) (b)

OrdinaryClock

MasterClock

MasterClock()
initialization():void
delayRequestResponse():void
run():void
masterTimeSynchronization():void
StopMasterClockTimeSync():void

SlaveClock

initialization():void
delayRequestResponse():void
run():void
SlaveClock()
slaveTimeSynchronization():void
StopSlaveClockTimeSync():void

OrdinaryClock

1
masterClock

MasterClockSystem

1
masterClock

SlaveClockSystem

1 slaveClock1 slaveClock

DisplayMasterClock

1 displayMasterClock1 displayMasterClock

DisplaySlaveClock

1displaySlaveClock 1displaySlaveClock

(a) (b)
Fig.9. Object models of master and slave clock systems.

B. Slave Clock

Figure 9(b) shows the object model of a slave clock

system, which consist of a slaveClockSystem, a

DisplaySlaveClock for displaying the times of the slave
clock, and a SlaveClock. The slave clock is a subclass
of an ordinary clock. It inherits all attributes from the
ordinary clock. The slave clock functions are shown in the
Figure 9(b). The function initialization() sets all
datasets and the port of a slave clock. The function
slaveTimeSynchronization() sends the Delay_Req
message to the master clock, and receives Sync,
Follow_Up, and Delay_Resp messages in return.

As shown in Figure 9, by implementing the foundation
classes of the IEEE 1588 standard in an application
framework, IEEE 1588 application developers can easily
create IEEE 1588 application objects, which inherit from the
IEEE 1588 classes of the application framework. The
development time of IEEE 1588 applications can be
dramatically reduced by reusing design and code provided
by the application framework.

Master Slave
MasterTime1

(t1)
SlaveTime1

(t2)

MasterTime2
(t4)

SlaveTime2
(t3)

DelayM2S

DelayS2M

Sync (t1)
Follow_Up (t1)

Delay_Resp (t4)

Delay_Req (t3)

t1
t2
t3
t4

Master Slave
MasterTime1

(t1)
SlaveTime1

(t2)

MasterTime2
(t4)

SlaveTime2
(t3)

DelayM2S

DelayS2M

Sync (t1)
Follow_Up (t1)

Delay_Resp (t4)

Delay_Req (t3)

t1
t2
t3
t4

Fig. 10. Delay Request-Response mechanism.

C. Case Study of Delay Request-Response

The IEEE 1588 standard defines two types of
synchronization mechanisms: Delay Request-Response and
Peer Delay. The case study mainly focuses on the Delay
Request-Response mechanism. Figure 10 shows the clock
synchronization process between the master clock and slave
clock using the Delay Request-Response mechanism. The
master clock periodically sends Sync messages to the slave
clock every 2 seconds. The Sync message contains a
timestamp (t1) when the packet left the master clock. The
master clock may also optionally send a Follow_Up
message containing the exact timestamp (precision t1) for
the Sync packet. The slave clock measures the exact
reception time (t2) of the Sync message. Then, the slave
clock sends a Delay_Req message to the master.
Delay_Req message contains a timestamp (t3) when the
Delay_Req packet left the slave clock. The master clock
measures the reception time (t4) of the Delay_Req message.
The Delay_Resp message from the master clock includes
the time t4 to the slave clock. Slave clocks can accurately
calculate the mean delay and offset between their local clock
and the master clock based on the following equations
defined in the IEEE 1588 standard.

 delay = ((t2-t1)+(t4-t3))/2

offset = ((t2-t1)-(t4-t3))/2

The slave clocks can then adjust their local clocks based

on the calculated offset to synchronize their time with the
master clock. Then the slave clock can communicate with
the master clock by sending and receiving these
synchronization packets through the general interface and
event interface.

Figure 11 shows the result of a clock synchronization.
In Figure 11(a), the timing parameters of the master clock
system are shown. In Figure 11(b), in addition to the timing
parameters of the slave clock system, the user interface also
displays the delay (14781 ms) of the master clock to slave
clock, the delay (-14766 ms) of the slave clock to master
clock, the calculated delay (7 ms), and offset (14774 ms)
between the slave clock and master clock. Thus the slave
clock can adjust its local clock based on the offset and
synchronize it with the master clock. Consequently the

27

2008 International IEEE Symposium on Precision Clock Synchronization (ISPCS)
for Measurement, Control and Communication
Ann Arbor, U.S.A Sept. 22-26, 2008.

adjusted slave clock time (current slave clock time + offset)
is shown in the slave clock user interface in Figure 11(b).
Due to the unavailability of IEEE 1588-2008 compliant
devices in the market at the time of this application
framework implementation, the prototype shown in Figure 8
was used to verify the validity of the application framework.

(a)

(b)

Fig. 11. Result of a clock synchronization.

V. CONCLUSION

This paper describes an application framework for the
IEEE 1588 standard. A prototype application system of the
IEEE 1588 is developed based on the established application
framework. The case study of the Delay Request-Response
mechanism was successfully tested with the established
application framework. With the help of this application
framework, the time-to-market for IEEE 1588 applications
can be significantly reduced. Our future work is to further
explore this application framework on platforms with
different clock accuracies.

** Disclaimer: Commercial equipment and software, many of which are
either registered or trademarked, are identified in order to adequately specify
certain procedures. In no case does such identification imply
recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.

REFERENCES

1. Introduction to IEEE 1588. [Online]. Available:

http://ieee1588.nist.gov/intro.htm.
2. Standard for a Precision Clock Synchronization Protocol for

Networked Measurement and Control Systems, IEEE STD 1588-2008,
IEEE Instrumentation and Measurement Society, TC-9, The Institute of
Electrical and Electronics Engineers, Inc., New York, NY, 24 July
2008.

3. Jan Bosch, An Object-Oriented Framework for Measurement Systems.
[Online]. Available:
http://www.bth.se/fou/Forskinfo.nsf/0/4e272b001dce3383c12568a3002
ca9e5/$FILE/Research%20Report%208-97.pdf

4. Rahlph E. Hohnson, Brian Foote, “Designing Reusable Classes”,
Journal of Object-oriented Programming, 1988, June/July, Vol. 1,
No.2, pp.22-35

5. Mohamed E. Fayad and Douglas C. Schmidt. “Object-oriented
Application Frameworks”, Communication of the ACM, 1997, Oct.,
Vol. 40, No.10, pp.32-38.

6. Savitha Srinivasan, “Design patterns in object-oriented frameworks”,
IEEE Computer, 1999, Vol. 32, Issue 2, pp.24-32

7. Tobias Ohlsson, Development of object-oriented frameworks. [Online].
Avaiable:http://hem.fyristorg.com/tobias.ohlsson/development_pt97toh
.pdf

8. UML. [Online]. Available:
http://en.wikipedia.org/wiki/Unified_Modeling_Language

9. Fowler, Martin, Scott, Kendall. UML Distilled (second edition) - A
brief guide to the standard object modeling language, Addison-Wesley,
1999.

10. MacApp, [Online] Available: http://en.wikipedia.org/wiki/MacApp.
11. Douglas C. Schmidt. ASX: an Object-Oriented Framework for

Developing Distributed Applications, [Online]: Available
http://www.cs.wustl.edu/~schmidt/PDF/C++-USENIX-94.pdf

12. Traub, A, Schraft, R.D., “Object-oriented real-time framework for
distributed control systems”, Proceedings - IEEE International
Conference on Robotics and Automation, Vol. 4, 1999, May 10-15
Detroit, MI, USA, p. 3115-3121

13. Kadar, B, Monostori, L., Szelke, E., “Object-oriented framework for
developing distributed manufacturing architectures”, Journal of
Intelligent Manufacturing, Vol.9, No. 2, Apr, 1998, p.173-179

14. Fayad, Mohamed, Fayad, Mohamed E., Schmidt, Douglas C., Building
Application Frameworks: Object-Oriented Foundations of Framework
Design, John Wiley & Sons (Ed). September 1999

15. D. Roberts, R Johnson, “Evolving frameworks: A pattern language for
developing object-oriented frameworks”, [Online] Available: http://st-
www.cs.uiuc.edu/~droberts/evolving.pdf

16. Takeo Hayase, Nobuyuki Ikeda, and Kazunori Matsumoto, “A three-
view model for developing object-oriented frameworks”, Proceedings
of the 39th International Conference and Exhibition on Technology of
Object-Oriented Languages and Systems, Santa Barbara, CA, USA, 29
July-3 Aug. 2001, pp.108-119

17. Jan Bosch, Peter Molin, Michael Mattsson, PerOlof Bengtsson, Object-
oriented frameworks - problems & experiences, Object-oriented
Application Frameworks, M Fayad, D Schmidt, R Johnson (eds.), John
Wiley, 1999

18. Pao Pao-Ann Hsiung, Trong-Yen Lee, Win-Bin See, Jih-Ming Fu, and
Sao-Jie Chen, “VERTAF: An Object-Oriented Application Framework
for Embedded Real-Time Systems”, Proceedings of the Fifth IEEE
International Symposium on Object-Oriented Real-Time Distributed
Computing, 29 April - 1 May 2002 Washington DC, USA, p. 322-329

19. K. Lee, E. Y. Song, “Object-oriented application framework for IEEE
1451.1 standard”, IEEE Transactions on Instrumentation and
Measurement, Vol. 54, No. 4, pp.1527-1533, August 2005.

20. Pao-Ann Hsiung, Trong-Yen Lee, Jih-Ming Fu and Win-Bin See,
SESAG: an object-oriented application framework for real-time
systems, Software Practice and Experience, 2005, Vol.35, No.10
pp.899–921

21. Leandro B. Becker, and Carlos E. Pereira, “SIMOO-RT: an object-
oriented framework for the development of real-time industrial
automation Systems”, IEEE Transactions on Robotics and Automation,
Vol. 18, No. 4, August 2002, pp.421-430

22. Software Framework: [Online]. Available:
http://en.wikipedia.org/wiki/Software_framework

23. Application framework: [Online]. Available:
http://en.wikipedia.org/wiki/Application_framework.

24. Kang Lee, Eugene Song, Object-oriented Model for IEEE 1588
Standard, 2007 International IEEE Symposium on Precision Clock
Synchronization (ISPCS) for Measurement, Control and
Communication, Vienna, Austria, October 1-3, 2007, pp:7-12.

25. Kang Lee, Eugene Y. Song, IEEE 1588 Object Model for Distributed
Measurement and Control Systems, in preparation for submission to
IEEE Transactions on Instrumentation and Measurement.

28

